Cubic ice Ic without stacking defects obtained from ice XVII (original) (raw)

References

  1. Hobbs, P. V. Ice Physics (Oxford Univ. Press, 1974).
  2. Petrenko, V. F. & Whitworth R. W. Physics of Ice (Oxford Univ. Press, 1999).
  3. Salzmann, C. G., Radaelli, P. G., Slater, B. & Finney, J. L. The polymorphism of ice: five unresolved questions. Phys. Chem. Chem. Phys. 13, 18468–18480 (2011).
    Article CAS Google Scholar
  4. Salzmann, C. G. Advances in the experimental exploration of water’s phase diagram. J. Chem. Phys. 150, 060901 (2019).
    Article CAS Google Scholar
  5. Bartels-Rausch, T. et al. Ice structures, patterns, and processes: a view across the icefields. Rev. Mod. Phys. 84, 885 (2012).
    Article CAS Google Scholar
  6. König, H. Eine kubische eismodifikation. Z. Kristallogr. 105, 279–286 (1943).
    Article Google Scholar
  7. Dowell, L. G. & Rinfret, A. P. Low-temperature forms of ice as studied by X-ray diffraction. Nature 188, 1144–1148 (1960).
    Article CAS Google Scholar
  8. Bertie, J. E., Calvert, L. D. & Whalley, E. Transformations of ice II, ice III, and ice V at atmospheric pressure. J. Chem. Phys. 38, 840 (1963).
    Article CAS Google Scholar
  9. Bertie, J. E., Calvert, L. D. & Whalley, E. Transformations of ice VI and ice VII at atmospheric pressure. Can. J. Chem. 42, 1373–1378 (1964).
    Article CAS Google Scholar
  10. Arnold, G. P., Finch, E. D., Rabideau, S. W. & Wenzel, R. G. Neutron-diffraction study of ice polymorphs. III. Ice Ic. J. Chem. Phys. 49, 4354–4369 (1968).
    Article Google Scholar
  11. Klotz, S. et al. Metastable ice VII at low temperature and ambient pressure. Nature 398, 681–684 (1999).
    Article CAS Google Scholar
  12. Murray, B. J., Knopf, D. A. & Bertram, A. K. The formation of cubic ice under conditions relevant to Earth’s atmosphere. Nature 434, 202–205 (2005).
    Article CAS Google Scholar
  13. Falenty, A. & Kuhs, W. F. Self-preservation of CO2 gas hydrates - surface microstructure and ice perfection. J. Phys. Chem. B 113, 15975–15988 (2009).
    Article CAS Google Scholar
  14. Falenty, A., Hansen, T. & Kuhs, W. F. in Physics and Chemistry of Ice (ed. Furukawa, Y. et al.) 411– 419 (Hokkaido Univ. Press, 2011).
  15. Baker, J. M., Dore, J. C. & Behrens, P. Nucleation of ice in confined geometry. J. Phys. Chem. B 101, 6226–6229 (1997).
    Article CAS Google Scholar
  16. Kuhs, W. F., Sippel, C., Falenty, A. & Hansen, T. C. Extent and relevance of stacking disorder in ice Ic. Proc. Natl Acad. Sci. USA 109, 21259–21264 (2012).
    Article CAS Google Scholar
  17. Malkin, T. L., Murray, B. J., Brukhno, A. V., Anwar, J. & Salzmann, C. G. Structure of ice crystallized from supercooled water. Proc. Natl Acad. Sci. USA 109, 1041–1045 (2012).
    Article CAS Google Scholar
  18. Malkin, T. L. et al. Stacking disorder in ice I. Phys. Chem. Chem. Phys. 17, 60–76 (2015).
    Article CAS Google Scholar
  19. Whalley, E. Scheiner’s halo: evidence for ice Ic in the atmosphere. Science 211, 389–390 (1981).
    Article CAS Google Scholar
  20. Murphy, D. M. Dehydration in cold clouds is enhanced by a transition from cubic to hexagonal ice. Geophys. Res. Lett. 30, 2230 (2003).
    Article Google Scholar
  21. Murray, B. J. et al. Trigonal ice crystals in earth’s atmosphere. Bull. Am. Meteorol. Soc. 94, 169–186 (2015).
    Google Scholar
  22. Gronkowski, P. The search for a cometary outbursts mechanism: a comparison of various theories. Astron. Nachr. Astron. Notes 328, 126–136 (2007).
    Article CAS Google Scholar
  23. Hansen, T. C., Koza, M. M. & Kuhs, W. F. Formation and annealing of cubic ice: I. modelling of stacking faults. J. Phys. Condens. Matter 20, 285104 (2008).
    Article CAS Google Scholar
  24. del Rosso, L., Celli, M. & Ulivi, L. A new porous water ice stable at atmospheric pressure obtained by emptying a hydrogen filled ice. Nature Commun. 7, 13394 (2016).
    Article CAS Google Scholar
  25. del Rosso, L. et al. Refined structure of metastable ice XVII from neutron diffraction measurements. J. Phys. Chem. C 120, 26955–26959 (2016).
    Article CAS Google Scholar
  26. del Rosso, L. et al. Dynamics of hydrogen guests in ice XVII nanopores. Phys. Rev. Mater. 1, 065602 (2017).
    Article Google Scholar
  27. Giacovazzo, C. et al. Fundamentals of Crystallography. IUCr Texts on Crystallography (Oxford Univ. Press, 1992).
  28. Larson, A. C. & Von Dreele, R. B. General Structure Analysis System (GSAS) Report LAUR 86-748 (Los Alamos National Laboratory, 2004).
  29. Rodriguez-Carvajal, J. Recent advances in magnetic structure determination by neutron powder diffraction. Physica B 192, 55–69 (1993).
    Article CAS Google Scholar
  30. Kuhs, W. F., Bliss, D. & Finney, J. High-resolution neutron powder diffraction study of ice Ic. J. Phys. Colloques 48, 631–636 (1987).
    Google Scholar
  31. Hansen, T. C., Sippel, C. & Kuhs, W. F. Approximations to the full description of stacking disorder in ice I for powder diffraction. Z. Kristallogr. 230, 75–86 (2015).
    CAS Google Scholar
  32. Playford, H. Y., Whale, T. F., Murray, B., Tucker, M. G. & Salzmann, C. G. Analysis of stacking disorder in ice I using pair distribution functions. J. Appl. Crystallogr. 51, 1211–1220 (2018).
    Article CAS Google Scholar
  33. Amaya, A. J. et al. How cubic can ice be?. J. Chem. Phys. Lett. 8, 3216–3222 (2017).
    Article CAS Google Scholar
  34. Röttger, K., Endriss, A., Ihringer, J., Doyle, S. & Kuhs, W. F. Lattice constants and thermal expansion of H2O and D2O ice Ih between 10 and 265 K. Acta Crystallogr. B 50, 644–648 (1994).
    Article Google Scholar
  35. Fortes, A. D. Accurate and precise lattice parameters of H2O and D2O ice Ih between 1.6 and 270 K from high-resolution time-of-flight neutron powder diffraction data. Acta Crystallogr. B 74, 196–216 (2018).
    Article CAS Google Scholar
  36. Treacy, M. M. J., Newsam, J. M. & Deem, M. W. A general recursion method for calculating diffracted intensities from crystals containing planar faults. Proc. R. Soc. Lond. A 433, 499–520 (1991).
    Article Google Scholar
  37. Pimentel, G. C. & Sederholm, C. H. Correlation of infrared stretching frequencies and hydrogen bond distances in crystals. J. Chem. Phys. 24, 639–641 (1956).
    Article CAS Google Scholar
  38. Pruzan, P. Pressure effects on the hydrogen bond in ice up to 80 GPa. J. Mol. Struct. 322, 279–286 (1994).
    Article CAS Google Scholar
  39. Vos, W. L., Finger, L. W., Hemley, R. J. & Mao, H. K. Pressure dependence of hydrogen bonding in a novel H2-H2O clathrate. Chem. Phys. Lett. 257, 524–530 (1996).
    Article CAS Google Scholar
  40. Carr, T. H. G., Shephard, J. J. & Salzmann, C. G. Spectroscopic signature of stacking disorder in ice I. J. Phys. Chem. Lett. 5, 2469–2473 (2014).
    Article CAS Google Scholar
  41. Komatsu, K. et al. Ice Ic without stacking disorder by evacuating hydrogen from hydrogen hydrate. Nat. Commun. 11, 464 (2020).
  42. Handa, Y. P., Klug, D. D. & Whalley, E. Difference in energy between cubic and hexagonal ice. J. Chem. Phys. 84, 7009 (1986).
    Article CAS Google Scholar
  43. Engel, E. A., Monserrat, B. & Needs, R. J. Anharmonic nuclear motion and the relative stability of hexagonal and cubic ice. Phys. Rev. X 5, 021033 (2015).
    Google Scholar
  44. Raza, Z. et al. Proton ordering in cubic ice and hexagonal ice; a potential new ice phase–XIc. Phys. Chem. Chem. Phys. 13, 19788–19795 (2011).
    Article CAS Google Scholar
  45. Giannasi, A., Celli, M., Grazzi, F., Ulivi, L. & Zoppi, M. An apparatus for simultaneous thermodynamic and optical measurements with large temperature excursions. Rev. Sci. Instrum. 79, 13105 (2008).
    Article CAS Google Scholar
  46. Ulivi, L., Grazzi, F., Colognesi, D., del Rosso, L. & Celli, M. Structures of Metastable Water Ice XVII with Different Guests Molecules (STFC ISIS Neutron and Muon Source, 2018); https://doi.org/10.5286/ISIS.E.RB1820334
  47. Arnold, O. et al. Mantid–data analysis and visualization package for neutron scattering and μ SR experiments. Nucl. Instrum. Meth. A 764, 156–166 (2014).
    Article CAS Google Scholar
  48. Catti, M. et al. Ne- and O2-filled ice XVII: a neutron diffraction study. Phys. Chem. Chem. Phys. 21, 14671–14677 (2019).
    Article CAS Google Scholar
  49. Ulivi, L. et al. Structure of Refilled Metastable Water Ice XVII (Institut Laue-Langevin, 2018); https://doi.org/10.5291/ILL-DATA.5-22-759
  50. Ulivi, L. and Hansen, T. C. Transformations of Stacking-pure Ice Ic into Ice Ih (Institut Laue-Langevin, 2019); https://doi.org/10.5291/ILL-DATA.EASY-498

Download references