Cubic ice Ic without stacking defects obtained from ice XVII (original) (raw)
References
Hobbs, P. V. Ice Physics (Oxford Univ. Press, 1974).
Petrenko, V. F. & Whitworth R. W. Physics of Ice (Oxford Univ. Press, 1999).
Salzmann, C. G., Radaelli, P. G., Slater, B. & Finney, J. L. The polymorphism of ice: five unresolved questions. Phys. Chem. Chem. Phys.13, 18468–18480 (2011). ArticleCAS Google Scholar
Salzmann, C. G. Advances in the experimental exploration of water’s phase diagram. J. Chem. Phys.150, 060901 (2019). ArticleCAS Google Scholar
Bartels-Rausch, T. et al. Ice structures, patterns, and processes: a view across the icefields. Rev. Mod. Phys.84, 885 (2012). ArticleCAS Google Scholar
König, H. Eine kubische eismodifikation. Z. Kristallogr.105, 279–286 (1943). Article Google Scholar
Dowell, L. G. & Rinfret, A. P. Low-temperature forms of ice as studied by X-ray diffraction. Nature188, 1144–1148 (1960). ArticleCAS Google Scholar
Bertie, J. E., Calvert, L. D. & Whalley, E. Transformations of ice II, ice III, and ice V at atmospheric pressure. J. Chem. Phys.38, 840 (1963). ArticleCAS Google Scholar
Bertie, J. E., Calvert, L. D. & Whalley, E. Transformations of ice VI and ice VII at atmospheric pressure. Can. J. Chem.42, 1373–1378 (1964). ArticleCAS Google Scholar
Arnold, G. P., Finch, E. D., Rabideau, S. W. & Wenzel, R. G. Neutron-diffraction study of ice polymorphs. III. Ice Ic. J. Chem. Phys.49, 4354–4369 (1968). Article Google Scholar
Klotz, S. et al. Metastable ice VII at low temperature and ambient pressure. Nature398, 681–684 (1999). ArticleCAS Google Scholar
Murray, B. J., Knopf, D. A. & Bertram, A. K. The formation of cubic ice under conditions relevant to Earth’s atmosphere. Nature434, 202–205 (2005). ArticleCAS Google Scholar
Falenty, A. & Kuhs, W. F. Self-preservation of CO2 gas hydrates - surface microstructure and ice perfection. J. Phys. Chem. B113, 15975–15988 (2009). ArticleCAS Google Scholar
Falenty, A., Hansen, T. & Kuhs, W. F. in Physics and Chemistry of Ice (ed. Furukawa, Y. et al.) 411– 419 (Hokkaido Univ. Press, 2011).
Baker, J. M., Dore, J. C. & Behrens, P. Nucleation of ice in confined geometry. J. Phys. Chem. B101, 6226–6229 (1997). ArticleCAS Google Scholar
Kuhs, W. F., Sippel, C., Falenty, A. & Hansen, T. C. Extent and relevance of stacking disorder in ice Ic. Proc. Natl Acad. Sci. USA109, 21259–21264 (2012). ArticleCAS Google Scholar
Malkin, T. L., Murray, B. J., Brukhno, A. V., Anwar, J. & Salzmann, C. G. Structure of ice crystallized from supercooled water. Proc. Natl Acad. Sci. USA109, 1041–1045 (2012). ArticleCAS Google Scholar
Malkin, T. L. et al. Stacking disorder in ice I. Phys. Chem. Chem. Phys.17, 60–76 (2015). ArticleCAS Google Scholar
Whalley, E. Scheiner’s halo: evidence for ice Ic in the atmosphere. Science211, 389–390 (1981). ArticleCAS Google Scholar
Murphy, D. M. Dehydration in cold clouds is enhanced by a transition from cubic to hexagonal ice. Geophys. Res. Lett.30, 2230 (2003). Article Google Scholar
Murray, B. J. et al. Trigonal ice crystals in earth’s atmosphere. Bull. Am. Meteorol. Soc.94, 169–186 (2015). Google Scholar
Gronkowski, P. The search for a cometary outbursts mechanism: a comparison of various theories. Astron. Nachr. Astron. Notes328, 126–136 (2007). ArticleCAS Google Scholar
Hansen, T. C., Koza, M. M. & Kuhs, W. F. Formation and annealing of cubic ice: I. modelling of stacking faults. J. Phys. Condens. Matter20, 285104 (2008). ArticleCAS Google Scholar
del Rosso, L., Celli, M. & Ulivi, L. A new porous water ice stable at atmospheric pressure obtained by emptying a hydrogen filled ice. Nature Commun.7, 13394 (2016). ArticleCAS Google Scholar
del Rosso, L. et al. Refined structure of metastable ice XVII from neutron diffraction measurements. J. Phys. Chem. C120, 26955–26959 (2016). ArticleCAS Google Scholar
del Rosso, L. et al. Dynamics of hydrogen guests in ice XVII nanopores. Phys. Rev. Mater.1, 065602 (2017). Article Google Scholar
Giacovazzo, C. et al. Fundamentals of Crystallography. IUCr Texts on Crystallography (Oxford Univ. Press, 1992).
Larson, A. C. & Von Dreele, R. B. General Structure Analysis System (GSAS) Report LAUR 86-748 (Los Alamos National Laboratory, 2004).
Rodriguez-Carvajal, J. Recent advances in magnetic structure determination by neutron powder diffraction. Physica B192, 55–69 (1993). ArticleCAS Google Scholar
Kuhs, W. F., Bliss, D. & Finney, J. High-resolution neutron powder diffraction study of ice Ic. J. Phys. Colloques48, 631–636 (1987). Google Scholar
Hansen, T. C., Sippel, C. & Kuhs, W. F. Approximations to the full description of stacking disorder in ice I for powder diffraction. Z. Kristallogr.230, 75–86 (2015). CAS Google Scholar
Playford, H. Y., Whale, T. F., Murray, B., Tucker, M. G. & Salzmann, C. G. Analysis of stacking disorder in ice I using pair distribution functions. J. Appl. Crystallogr.51, 1211–1220 (2018). ArticleCAS Google Scholar
Amaya, A. J. et al. How cubic can ice be?. J. Chem. Phys. Lett.8, 3216–3222 (2017). ArticleCAS Google Scholar
Röttger, K., Endriss, A., Ihringer, J., Doyle, S. & Kuhs, W. F. Lattice constants and thermal expansion of H2O and D2O ice Ih between 10 and 265 K. Acta Crystallogr. B50, 644–648 (1994). Article Google Scholar
Fortes, A. D. Accurate and precise lattice parameters of H2O and D2O ice Ih between 1.6 and 270 K from high-resolution time-of-flight neutron powder diffraction data. Acta Crystallogr. B74, 196–216 (2018). ArticleCAS Google Scholar
Treacy, M. M. J., Newsam, J. M. & Deem, M. W. A general recursion method for calculating diffracted intensities from crystals containing planar faults. Proc. R. Soc. Lond. A433, 499–520 (1991). Article Google Scholar
Pimentel, G. C. & Sederholm, C. H. Correlation of infrared stretching frequencies and hydrogen bond distances in crystals. J. Chem. Phys.24, 639–641 (1956). ArticleCAS Google Scholar
Pruzan, P. Pressure effects on the hydrogen bond in ice up to 80 GPa. J. Mol. Struct.322, 279–286 (1994). ArticleCAS Google Scholar
Vos, W. L., Finger, L. W., Hemley, R. J. & Mao, H. K. Pressure dependence of hydrogen bonding in a novel H2-H2O clathrate. Chem. Phys. Lett.257, 524–530 (1996). ArticleCAS Google Scholar
Carr, T. H. G., Shephard, J. J. & Salzmann, C. G. Spectroscopic signature of stacking disorder in ice I. J. Phys. Chem. Lett.5, 2469–2473 (2014). ArticleCAS Google Scholar
Komatsu, K. et al. Ice Ic without stacking disorder by evacuating hydrogen from hydrogen hydrate. Nat. Commun.11, 464 (2020).
Handa, Y. P., Klug, D. D. & Whalley, E. Difference in energy between cubic and hexagonal ice. J. Chem. Phys.84, 7009 (1986). ArticleCAS Google Scholar
Engel, E. A., Monserrat, B. & Needs, R. J. Anharmonic nuclear motion and the relative stability of hexagonal and cubic ice. Phys. Rev. X5, 021033 (2015). Google Scholar
Raza, Z. et al. Proton ordering in cubic ice and hexagonal ice; a potential new ice phase–XIc. Phys. Chem. Chem. Phys.13, 19788–19795 (2011). ArticleCAS Google Scholar
Giannasi, A., Celli, M., Grazzi, F., Ulivi, L. & Zoppi, M. An apparatus for simultaneous thermodynamic and optical measurements with large temperature excursions. Rev. Sci. Instrum.79, 13105 (2008). ArticleCAS Google Scholar
Ulivi, L., Grazzi, F., Colognesi, D., del Rosso, L. & Celli, M. Structures of Metastable Water Ice XVII with Different Guests Molecules (STFC ISIS Neutron and Muon Source, 2018); https://doi.org/10.5286/ISIS.E.RB1820334
Arnold, O. et al. Mantid–data analysis and visualization package for neutron scattering and μ SR experiments. Nucl. Instrum. Meth. A764, 156–166 (2014). ArticleCAS Google Scholar
Catti, M. et al. Ne- and O2-filled ice XVII: a neutron diffraction study. Phys. Chem. Chem. Phys.21, 14671–14677 (2019). ArticleCAS Google Scholar