Tomographic measurement of dielectric tensors at optical frequency (original) (raw)

References

  1. Needleman, D. & Dogic, Z. Active matter at the interface between materials science and cell biology. Nat. Rev. Mater. 2, 17048 (2017).
    Article CAS Google Scholar
  2. Priestly, E. Introduction to Liquid Crystals (Springer Science & Business Media, 2012).
  3. Inou, S. Collected Works of Shinya Inou: Microscopes, Living Cells, and Dynamic Molecules (World Scientific, 2008).
  4. Tuchin, V. V. Tissue Optics (SPIE Press, 2015).
  5. Woltman, S. J., Jay, G. D. & Crawford, G. P. Liquid-crystal materials find a new order in biomedical applications. Nat. Mater. 6, 929–938 (2007).
    Article CAS Google Scholar
  6. Erdmann, J. H., Žumer, S. & Doane, J. W. Configuration transition in a nematic liquid crystal confined to a small spherical cavity. Phys. Rev. Lett. 64, 1907–1910 (1990).
    Article CAS Google Scholar
  7. Lopez-Leon, T., Koning, V., Devaiah, K., Vitelli, V. & Fernandez-Nieves, A. Frustrated nematic order in spherical geometries. Nat. Phys. 7, 391–394 (2011).
    Article CAS Google Scholar
  8. Senyuk, B. et al. Topological colloids. Nature 493, 200–205 (2013).
    Article CAS Google Scholar
  9. Murphy, D. B. Fundamentals of Light Microscopy and Electronic Imaging (John Wiley & Sons, 2002).
  10. Wang, Z., Millet, L. J., Gillette, M. U. & Popescu, G. Jones phase microscopy of transparent and anisotropic samples. Opt. Lett. 33, 1270–1272 (2008).
    Article Google Scholar
  11. Kim, Y., Jeong, J., Jang, J., Kim, M. W. & Park, Y. Polarization holographic microscopy for extracting spatio-temporally resolved Jones matrix. Opt. Express 20, 9948–9955 (2012).
    Article Google Scholar
  12. Jeong, J., Davidson, Z. S., Collings, P. J., Lubensky, T. C. & Yodh, A. Chiral symmetry breaking and surface faceting in chromonic liquid crystal droplets with giant elastic anisotropy. Proc. Natl Acad. Sci. USA 111, 1742–1747 (2014).
    Article CAS Google Scholar
  13. Tortora, L. & Lavrentovich, O. D. Chiral symmetry breaking by spatial confinement in tactoidal droplets of lyotropic chromonic liquid crystals. Proc. Natl Acad. Sci. USA 108, 5163–5168 (2011).
    Article CAS Google Scholar
  14. Smalyukh, I. I., Shiyanovskii, S. & Lavrentovich, O. Three-dimensional imaging of orientational order by fluorescence confocal polarizing microscopy. Chem. Phys. Lett. 336, 88–96 (2001).
    Article CAS Google Scholar
  15. Duclos, G. et al. Topological structure and dynamics of three-dimensional active nematics. Science 367, 1120–1124 (2020).
    Article CAS Google Scholar
  16. Rezakhaniha, R. et al. Experimental investigation of collagen waviness and orientation in the arterial adventitia using confocal laser scanning microscopy. Biomech. Model. Mechanobiol. 11, 461–473 (2012).
    Article CAS Google Scholar
  17. Kachynski, A., Kuzmin, A., Prasad, P. & Smalyukh, I. Coherent anti-Stokes Raman scattering polarized microscopy of three-dimensional director structures in liquid crystals. Appl. Phys. Lett. 91, 151905 (2007).
    Article Google Scholar
  18. Lee, T., Trivedi, R. P. & Smalyukh, I. I. Multimodal nonlinear optical polarizing microscopy of long-range molecular order in liquid crystals. Opt. Lett. 35, 3447–3449 (2010).
    Article CAS Google Scholar
  19. Lee, T., Mundoor, H., Gann, D. G., Callahan, T. J. & Smalyukh, I. I. Imaging of director fields in liquid crystals using stimulated Raman scattering microscopy. Opt. Express 21, 12129–12134 (2013).
    Article Google Scholar
  20. Wolf, E. Three-dimensional structure determination of semi-transparent objects from holographic data. Opt. Commun. 1, 153–156 (1969).
    Article Google Scholar
  21. Park, Y., Depeursinge, C. & Popescu, G. Quantitative phase imaging in biomedicine. Nat. Photon. 12, 578–589 (2018).
    Article CAS Google Scholar
  22. Kim, K. et al. Optical diffraction tomography techniques for the study of cell pathophysiology. J. Biomed. Photonics Eng. 2, 020201 (2016).
    Google Scholar
  23. van Rooij, J. & Kalkman, J. Polarization contrast optical diffraction tomography. Biomed. Opt. Express 11, 2109–2121 (2020).
    Article Google Scholar
  24. Saba, A., Lim, J., Ayoub, A. B., Antoine, E. E. & Psaltis, D. Polarization-sensitive optical diffraction tomography. Optica 8, 402–408 (2021).
    Article Google Scholar
  25. Born, M. & Wolf, E. Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light (Elsevier, 2013).
  26. Devaney, A. Inverse-scattering theory within the Rytov approximation. Opt. Lett. 6, 374–376 (1981).
    Article CAS Google Scholar
  27. Bracewell, R. N. & Bracewell, R. N. The Fourier Transform and Its Applications 31999 (McGraw-Hill, 1986).
    Google Scholar
  28. Strang, G. Introduction to Linear Algebra (Wellesley-Cambridge Press, 1993).
    Google Scholar
  29. Takeda, M., Ina, H. & Kobayashi, S. Fourier-transform method of fringe-pattern analysis for computer-based topography and interferometry. JOSA 72, 156–160 (1982).
    Article Google Scholar
  30. Lauer, V. New approach to optical diffraction tomography yielding a vector equation of diffraction tomography and a novel tomographic microscope. J. Microsc. 205, 165–176 (2002).
    Article CAS Google Scholar
  31. Park, C., Shin, S. & Park, Y. Generalized quantification of three-dimensional resolution in optical diffraction tomography using the projection of maximal spatial bandwidths. JOSA A 35, 1891–1898 (2018).
    Article CAS Google Scholar
  32. Vennes, M., Zentel, R., Rössle, M., Stepputat, M. & Kolb, U. Smectic liquid‐crystalline colloids by miniemulsion techniques. Adv. Mater. 17, 2123–2127 (2005).
    Article CAS Google Scholar
  33. Lee, J.-H., Kamal, T., Roth, S. V., Zhang, P. & Park, S.-Y. Structures and alignment of anisotropic liquid crystal particles in a liquid crystal cell. RSC Adv. 4, 40617–40625 (2014).
    Article CAS Google Scholar
  34. Cairns, D. R., Sibulkin, M. & Crawford, G. P. Switching dynamics of suspended mesogenic polymer microspheres. Appl. Phys. Lett. 78, 2643–2645 (2001).
    Article CAS Google Scholar
  35. Basile, F., Bloisi, F., Vicari, L. & Simoni, F. Optical phase shift of polymer-dispersed liquid crystals. Phys. Rev. E 48, 432–438 (1993).
    Article CAS Google Scholar
  36. Francescangeli, O., Stanic, V., Lucchetti, L., Ferrero, C. & Burghammer, M. X-ray microdiffraction study of the liquid crystal ordering in confined geometries. Mol. Cryst. Liq. Cryst. 412, 59–67 (2004).
    Article Google Scholar
  37. Nastishin, Y. A. et al. Optical characterization of the nematic lyotropic chromonic liquid crystals: light absorption, birefringence, and scalar order parameter. Phys. Rev. E 72, 041711 (2005).
    Article Google Scholar
  38. Golovaty, D., Kim, Y.-K., Lavrentovich, O. D., Novack, M. & Sternberg, P. Phase transitions in nematics: textures with tactoids and disclinations. Math. Model. Nat. Phenom. 15, 8 (2020).
    Article Google Scholar
  39. You, R., Choi, Y. S., Shin, M. J., Seo, M. K. & Yoon, D. K. Reconfigurable periodic liquid crystal defect array via modulation of electric field. Adv. Mater. Technol. 4, 1900454 (2019).
    Article CAS Google Scholar
  40. Doostmohammadi, A., Ignés-Mullol, J., Yeomans, J. M. & Sagués, F. Active nematics. Nat. Commun. 9, 3246 (2018).
  41. DeCamp, S. J., Redner, G. S., Baskaran, A., Hagan, M. F. & Dogic, Z. Orientational order of motile defects in active nematics. Nat. Mater. 14, 1110–1115 (2015).
    Article CAS Google Scholar
  42. Laissue, P. P., Alghamdi, R. A., Tomancak, P., Reynaud, E. G. & Shroff, H. Assessing phototoxicity in live fluorescence imaging. Nat. Methods 14, 657–661 (2017).
    Article CAS Google Scholar
  43. Almohammadi, H., Bagnani, M. & Mezzenga, R. Flow-induced order–order transitions in amyloid fibril liquid crystalline tactoids. Nat. Commun. 11, 5416 (2020).
  44. Park, S. M. et al. Fabrication of chiral M13 bacteriophage film by evaporation‐induced self‐assembly. Small 17, 2008097 (2021).
  45. Cha, Y. J., Park, S. M., You, R., Kim, H. & Yoon, D. K. Microstructure arrays of DNA using topographic control. Nat. Commun. 10, 2512 (2019).
  46. Gianaroli, L. et al. Birefringence characteristics in sperm heads allow for the selection of reacted spermatozoa for intracytoplasmic sperm injection. Fertil. Steril. 93, 807–813 (2010).
    Article Google Scholar
  47. Wang, W., Meng, L., Hackett, R. & Keefe, D. Developmental ability of human oocytes with or without birefringent spindles imaged by Polscope before insemination. Hum. Reprod. 16, 1464–1468 (2001).
    Article CAS Google Scholar
  48. Madaschi, C. et al. Zona pellucida birefringence score and meiotic spindle visualization in relation to embryo development and ICSI outcomes. Reprod. Biomed. Online 18, 681–686 (2009).
    Article Google Scholar
  49. Riching, K. M. et al. 3D collagen alignment limits protrusions to enhance breast cancer cell persistence. Biophys. J. 107, 2546–2558 (2014).
    Article CAS Google Scholar
  50. Shin, S., Kim, K., Yoon, J. & Park, Y. Active illumination using a digital micromirror device for quantitative phase imaging. Opt. Lett. 40, 5407–5410 (2015).
    Article Google Scholar
  51. Lee, K., Kim, K., Kim, G., Shin, S. & Park, Y. Time-multiplexed structured illumination using a DMD for optical diffraction tomography. Opt. Lett. 42, 999–1002 (2017).
    Article Google Scholar
  52. Kim, K., Kim, K. S., Park, H., Ye, J. C. & Park, Y. Real-time visualization of 3-D dynamic microscopic objects using optical diffraction tomography. Opt. Express 21, 32269–32278 (2013).
    Article Google Scholar
  53. You, R. et al. Programmable liquid crystal defect arrays via electric field modulation for mechanically functional liquid crystal networks. ACS Appl. Mater. Interfaces 13, 36253–36261 (2021).
    Article CAS Google Scholar

Download references