Tomographic measurement of dielectric tensors at optical frequency (original) (raw)
References
Needleman, D. & Dogic, Z. Active matter at the interface between materials science and cell biology. Nat. Rev. Mater.2, 17048 (2017). ArticleCAS Google Scholar
Priestly, E. Introduction to Liquid Crystals (Springer Science & Business Media, 2012).
Inou, S. Collected Works of Shinya Inou: Microscopes, Living Cells, and Dynamic Molecules (World Scientific, 2008).
Tuchin, V. V. Tissue Optics (SPIE Press, 2015).
Woltman, S. J., Jay, G. D. & Crawford, G. P. Liquid-crystal materials find a new order in biomedical applications. Nat. Mater.6, 929–938 (2007). ArticleCAS Google Scholar
Erdmann, J. H., Žumer, S. & Doane, J. W. Configuration transition in a nematic liquid crystal confined to a small spherical cavity. Phys. Rev. Lett.64, 1907–1910 (1990). ArticleCAS Google Scholar
Lopez-Leon, T., Koning, V., Devaiah, K., Vitelli, V. & Fernandez-Nieves, A. Frustrated nematic order in spherical geometries. Nat. Phys.7, 391–394 (2011). ArticleCAS Google Scholar
Murphy, D. B. Fundamentals of Light Microscopy and Electronic Imaging (John Wiley & Sons, 2002).
Wang, Z., Millet, L. J., Gillette, M. U. & Popescu, G. Jones phase microscopy of transparent and anisotropic samples. Opt. Lett.33, 1270–1272 (2008). Article Google Scholar
Kim, Y., Jeong, J., Jang, J., Kim, M. W. & Park, Y. Polarization holographic microscopy for extracting spatio-temporally resolved Jones matrix. Opt. Express20, 9948–9955 (2012). Article Google Scholar
Jeong, J., Davidson, Z. S., Collings, P. J., Lubensky, T. C. & Yodh, A. Chiral symmetry breaking and surface faceting in chromonic liquid crystal droplets with giant elastic anisotropy. Proc. Natl Acad. Sci. USA111, 1742–1747 (2014). ArticleCAS Google Scholar
Tortora, L. & Lavrentovich, O. D. Chiral symmetry breaking by spatial confinement in tactoidal droplets of lyotropic chromonic liquid crystals. Proc. Natl Acad. Sci. USA108, 5163–5168 (2011). ArticleCAS Google Scholar
Smalyukh, I. I., Shiyanovskii, S. & Lavrentovich, O. Three-dimensional imaging of orientational order by fluorescence confocal polarizing microscopy. Chem. Phys. Lett.336, 88–96 (2001). ArticleCAS Google Scholar
Duclos, G. et al. Topological structure and dynamics of three-dimensional active nematics. Science367, 1120–1124 (2020). ArticleCAS Google Scholar
Rezakhaniha, R. et al. Experimental investigation of collagen waviness and orientation in the arterial adventitia using confocal laser scanning microscopy. Biomech. Model. Mechanobiol.11, 461–473 (2012). ArticleCAS Google Scholar
Kachynski, A., Kuzmin, A., Prasad, P. & Smalyukh, I. Coherent anti-Stokes Raman scattering polarized microscopy of three-dimensional director structures in liquid crystals. Appl. Phys. Lett.91, 151905 (2007). Article Google Scholar
Lee, T., Trivedi, R. P. & Smalyukh, I. I. Multimodal nonlinear optical polarizing microscopy of long-range molecular order in liquid crystals. Opt. Lett.35, 3447–3449 (2010). ArticleCAS Google Scholar
Lee, T., Mundoor, H., Gann, D. G., Callahan, T. J. & Smalyukh, I. I. Imaging of director fields in liquid crystals using stimulated Raman scattering microscopy. Opt. Express21, 12129–12134 (2013). Article Google Scholar
Wolf, E. Three-dimensional structure determination of semi-transparent objects from holographic data. Opt. Commun.1, 153–156 (1969). Article Google Scholar
Park, Y., Depeursinge, C. & Popescu, G. Quantitative phase imaging in biomedicine. Nat. Photon.12, 578–589 (2018). ArticleCAS Google Scholar
Kim, K. et al. Optical diffraction tomography techniques for the study of cell pathophysiology. J. Biomed. Photonics Eng.2, 020201 (2016). Google Scholar
van Rooij, J. & Kalkman, J. Polarization contrast optical diffraction tomography. Biomed. Opt. Express11, 2109–2121 (2020). Article Google Scholar
Saba, A., Lim, J., Ayoub, A. B., Antoine, E. E. & Psaltis, D. Polarization-sensitive optical diffraction tomography. Optica8, 402–408 (2021). Article Google Scholar
Born, M. & Wolf, E. Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light (Elsevier, 2013).
Devaney, A. Inverse-scattering theory within the Rytov approximation. Opt. Lett.6, 374–376 (1981). ArticleCAS Google Scholar
Bracewell, R. N. & Bracewell, R. N. The Fourier Transform and Its Applications 31999 (McGraw-Hill, 1986). Google Scholar
Strang, G. Introduction to Linear Algebra (Wellesley-Cambridge Press, 1993). Google Scholar
Takeda, M., Ina, H. & Kobayashi, S. Fourier-transform method of fringe-pattern analysis for computer-based topography and interferometry. JOSA72, 156–160 (1982). Article Google Scholar
Lauer, V. New approach to optical diffraction tomography yielding a vector equation of diffraction tomography and a novel tomographic microscope. J. Microsc.205, 165–176 (2002). ArticleCAS Google Scholar
Park, C., Shin, S. & Park, Y. Generalized quantification of three-dimensional resolution in optical diffraction tomography using the projection of maximal spatial bandwidths. JOSA A35, 1891–1898 (2018). ArticleCAS Google Scholar
Vennes, M., Zentel, R., Rössle, M., Stepputat, M. & Kolb, U. Smectic liquid‐crystalline colloids by miniemulsion techniques. Adv. Mater.17, 2123–2127 (2005). ArticleCAS Google Scholar
Lee, J.-H., Kamal, T., Roth, S. V., Zhang, P. & Park, S.-Y. Structures and alignment of anisotropic liquid crystal particles in a liquid crystal cell. RSC Adv.4, 40617–40625 (2014). ArticleCAS Google Scholar
Cairns, D. R., Sibulkin, M. & Crawford, G. P. Switching dynamics of suspended mesogenic polymer microspheres. Appl. Phys. Lett.78, 2643–2645 (2001). ArticleCAS Google Scholar
Basile, F., Bloisi, F., Vicari, L. & Simoni, F. Optical phase shift of polymer-dispersed liquid crystals. Phys. Rev. E48, 432–438 (1993). ArticleCAS Google Scholar
Francescangeli, O., Stanic, V., Lucchetti, L., Ferrero, C. & Burghammer, M. X-ray microdiffraction study of the liquid crystal ordering in confined geometries. Mol. Cryst. Liq. Cryst.412, 59–67 (2004). Article Google Scholar
Nastishin, Y. A. et al. Optical characterization of the nematic lyotropic chromonic liquid crystals: light absorption, birefringence, and scalar order parameter. Phys. Rev. E72, 041711 (2005). Article Google Scholar
Golovaty, D., Kim, Y.-K., Lavrentovich, O. D., Novack, M. & Sternberg, P. Phase transitions in nematics: textures with tactoids and disclinations. Math. Model. Nat. Phenom.15, 8 (2020). Article Google Scholar
You, R., Choi, Y. S., Shin, M. J., Seo, M. K. & Yoon, D. K. Reconfigurable periodic liquid crystal defect array via modulation of electric field. Adv. Mater. Technol.4, 1900454 (2019). ArticleCAS Google Scholar
Doostmohammadi, A., Ignés-Mullol, J., Yeomans, J. M. & Sagués, F. Active nematics. Nat. Commun. 9, 3246 (2018).
DeCamp, S. J., Redner, G. S., Baskaran, A., Hagan, M. F. & Dogic, Z. Orientational order of motile defects in active nematics. Nat. Mater.14, 1110–1115 (2015). ArticleCAS Google Scholar
Laissue, P. P., Alghamdi, R. A., Tomancak, P., Reynaud, E. G. & Shroff, H. Assessing phototoxicity in live fluorescence imaging. Nat. Methods14, 657–661 (2017). ArticleCAS Google Scholar
Almohammadi, H., Bagnani, M. & Mezzenga, R. Flow-induced order–order transitions in amyloid fibril liquid crystalline tactoids. Nat. Commun. 11, 5416 (2020).
Park, S. M. et al. Fabrication of chiral M13 bacteriophage film by evaporation‐induced self‐assembly. Small17, 2008097 (2021).
Cha, Y. J., Park, S. M., You, R., Kim, H. & Yoon, D. K. Microstructure arrays of DNA using topographic control. Nat. Commun. 10, 2512 (2019).
Gianaroli, L. et al. Birefringence characteristics in sperm heads allow for the selection of reacted spermatozoa for intracytoplasmic sperm injection. Fertil. Steril.93, 807–813 (2010). Article Google Scholar
Wang, W., Meng, L., Hackett, R. & Keefe, D. Developmental ability of human oocytes with or without birefringent spindles imaged by Polscope before insemination. Hum. Reprod.16, 1464–1468 (2001). ArticleCAS Google Scholar
Madaschi, C. et al. Zona pellucida birefringence score and meiotic spindle visualization in relation to embryo development and ICSI outcomes. Reprod. Biomed. Online18, 681–686 (2009). Article Google Scholar
Riching, K. M. et al. 3D collagen alignment limits protrusions to enhance breast cancer cell persistence. Biophys. J.107, 2546–2558 (2014). ArticleCAS Google Scholar
Shin, S., Kim, K., Yoon, J. & Park, Y. Active illumination using a digital micromirror device for quantitative phase imaging. Opt. Lett.40, 5407–5410 (2015). Article Google Scholar
Lee, K., Kim, K., Kim, G., Shin, S. & Park, Y. Time-multiplexed structured illumination using a DMD for optical diffraction tomography. Opt. Lett.42, 999–1002 (2017). Article Google Scholar
Kim, K., Kim, K. S., Park, H., Ye, J. C. & Park, Y. Real-time visualization of 3-D dynamic microscopic objects using optical diffraction tomography. Opt. Express21, 32269–32278 (2013). Article Google Scholar
You, R. et al. Programmable liquid crystal defect arrays via electric field modulation for mechanically functional liquid crystal networks. ACS Appl. Mater. Interfaces13, 36253–36261 (2021). ArticleCAS Google Scholar