Enterotypes in the landscape of gut microbial community composition (original) (raw)
Change history
13 February 2018
In the version of this Perspective originally published, the first and last name of co-author Manimozhiyan Arumugam were switched. This has now been corrected in all versions of the Perspective.
References
- Huttenhower, C. et al. Structure, function and diversity of the healthy human microbiome. Nature 486, 207–214 (2012).
CAS Google Scholar - Sender, R., Fuchs, S. & Milo, R. Revised estimates for the number of human and bacteria cells in the body. PLoS Biol. 14, e1002533 (2016).
PubMed PubMed Central Google Scholar - Qin, J. et al. A human gut microbial gene catalogue established by metagenomic sequencing. Nature 464, 59–65 (2010).
CAS PubMed PubMed Central Google Scholar - Turnbaugh, P. J. et al. A core gut microbiome in obese and lean twins. Nature 457, 480–484 (2009).
CAS PubMed Google Scholar - Faith, J. J. et al. The long-term stability of the human gut microbiota. Science 341, 1237439 (2013).
PubMed PubMed Central Google Scholar - Le Chatelier, E. et al. Richness of human gut microbiome correlates with metabolic markers. Nature 500, 541–546 (2013).
PubMed Google Scholar - Falony, G. et al. Population-level analysis of gut microbiome variation. Science 352, 560–564 (2016).
CAS PubMed Google Scholar - Yatsunenko, T. et al. Human gut microbiome viewed across age and geography. Nature 486, 222–227 (2012).
Article CAS PubMed PubMed Central Google Scholar - Jeffery, I. B., Claesson, M. J., O’Toole, P. W. & Shanahan, F. Categorization of the gut microbiota: enterotypes or gradients? Nat. Rev. Microbiol. 10, 591–592 (2012).
CAS PubMed Google Scholar - Lahti, L., Salojärvi, J., Salonen, A., Scheffer, M. & de Vos, W. M. Tipping elements in the human intestinal ecosystem. Nat. Commun. 5, 4344 (2014).
CAS PubMed Google Scholar - Sørlie, T. et al. Gene expression patterns of breast carcinomas distinguish tumor subclasses with clinical implications. Proc. Natl Acad. Sci. USA 98, 10869–10874 (2001).
PubMed PubMed Central Google Scholar - Sorlie, T. et al. Repeated observation of breast tumor subtypes in independent gene expression data sets. Proc. Natl Acad. Sci. USA 100, 8418–8423 (2003).
CAS PubMed PubMed Central Google Scholar - Yamauchi, M. et al. Assessment of colorectal cancer molecular features along bowel subsites challenges the conception of distinct dichotomy of proximal versus distal colorectum. Gut 61, 847–854 (2012).
CAS PubMed Google Scholar - Arumugam, M. et al. Enterotypes of the human gut microbiome. Nature 473, 174–180 (2011).
CAS PubMed PubMed Central Google Scholar - Ravel, J. et al. Vaginal microbiome of reproductive-age women. Proc. Natl Acad. Sci. USA 108, 4680–4687 (2011).
CAS PubMed Google Scholar - Koren, O. et al. A guide to enterotypes across the human body: meta-analysis of microbial community structures in human microbiome datasets. PLoS Comput. Biol. 9, e1002863 (2013).
CAS PubMed PubMed Central Google Scholar - Ding, T. & Schloss, P. D. Dynamics and associations of microbial community types across the human body. Nature 509, 357–360 (2014).
CAS PubMed PubMed Central Google Scholar - Zhou, Y. et al. Exploration of bacterial community classes in major human habitats. Genome Biol. 15, R66 (2014).
PubMed PubMed Central Google Scholar - Qin, J. et al. A metagenome-wide association study of gut microbiota in type 2 diabetes. Nature 490, 55–60 (2012).
CAS PubMed Google Scholar - Dethlefsen, L., Eckburg, P. B., Bik, E. M. & Relman, D. A. Assembly of the human intestinal microbiota. Trends Ecol. Evol. 21, 517–523 (2006).
PubMed Google Scholar - Schloissnig, S. et al. Genomic variation landscape of the human gut microbiome. Nature 493, 45–50 (2013).
PubMed Google Scholar - Zhu, A., Sunagawa, S., Mende, D. R. & Bork, P. Inter-individual differences in the gene content of human gut bacterial species. Genome Biol. 16, 82 (2015).
PubMed PubMed Central Google Scholar - Wu, G. D. et al. Linking long-term dietary patterns with gut microbial enterotypes. Science 334, 105–108 (2011).
CAS PubMed PubMed Central Google Scholar - Karlsson, F. H., Nookaew, I. & Nielsen, J. Metagenomic data utilization and analysis (MEDUSA) and construction of a global gut microbial gene catalogue. PLoS Comput. Biol. 10, e1003706 (2014).
PubMed PubMed Central Google Scholar - Bergstrom, A. et al. Establishment of intestinal microbiota during early life: a longitudinal, explorative study of a large cohort of Danish infants. Appl. Environ. Microbiol. 80, 2889–2900 (2014).
CAS PubMed PubMed Central Google Scholar - Holmes, I., Harris, K. & Quince, C. Dirichlet multinomial mixtures: generative models for microbial metagenomics. PLoS ONE 7, e30126 (2012).
CAS PubMed PubMed Central Google Scholar - Quince, C. et al. The impact of Crohn’s disease genes on healthy human gut microbiota: a pilot study. Gut 62, 952–954 (2013).
PubMed Google Scholar - Roager, H. M., Licht, T. R., Poulsen, S. K., Larsen, T. M. & Bahl, M. I. Microbial enterotypes, inferred by the Prevotella-to-Bacteroides ratio, remained stable during a 6-month randomized controlled diet intervention with the new nordic diet. Appl. Environ. Microbiol. 80, 1142–1149 (2014).
PubMed PubMed Central Google Scholar - Zupancic, M. L. et al. Analysis of the gut microbiota in the Old Order Amish and its relation to the metabolic syndrome. PLoS ONE 7, e43052 (2012).
CAS PubMed PubMed Central Google Scholar - Claesson, M. J. et al. Gut microbiota composition correlates with diet and health in the elderly. Nature 488, 178–184 (2012).
CAS PubMed Google Scholar - Gibson, T. E., Bashan, A., Cao, H.-T., Weiss, S. T. & Liu, Y.-Y. On the origins and control of community types in the human microbiome. PLoS Comput. Biol. 12, e1004688 (2016).
PubMed PubMed Central Google Scholar - Hildebrand, F. et al. Inflammation-associated enterotypes, host genotype, cage and inter-individual effects drive gut microbiota variation in common laboratory mice. Genome Biol. 14, R4 (2013).
PubMed PubMed Central Google Scholar - Wang, J. et al. Dietary history contributes to enterotype-like clustering and functional metagenomic content in the intestinal microbiome of wild mice. Proc. Natl Acad. Sci. USA 111, 2703–2710 (2014).
Google Scholar - Moeller, A. H. et al. Chimpanzees and humans harbour compositionally similar gut enterotypes. Nat. Commun. 3, 1179 (2012).
PubMed Google Scholar - Moeller, A. H. et al. Stability of the gorilla microbiome despite simian immunodeficiency virus infection. Mol. Ecol. 24, 690–697 (2015).
CAS PubMed PubMed Central Google Scholar - Mach, N. et al. Early-life establishment of the swine gut microbiome and impact on host phenotypes. Environ. Microbiol. Rep. 7, 554–569 (2015).
CAS PubMed Google Scholar - Ramayo-Caldas, Y. et al. Phylogenetic network analysis applied to pig gut microbiota identifies an ecosystem structure linked with growth traits. ISME J. 10, 2973–2977 (2016).
PubMed PubMed Central Google Scholar - Li, J. et al. Two gut community enterotypes recur in diverse bumblebee species. Curr. Biol. 25, R652–R653 (2015).
CAS PubMed Google Scholar - Moeller, A. H. et al. Rapid changes in the gut microbiome during human evolution. Proc. Natl Acad. Sci. USA 111, 16431–16435 (2014).
CAS PubMed PubMed Central Google Scholar - Foster, K. R., Schluter, J., Coyte, K. Z. & Rakoff-Nahoum, S. The evolution of the host microbiome as an ecosystem on a leash. Nature 548, 43–51 (2017).
CAS PubMed PubMed Central Google Scholar - Scheffer, M. & Carpenter, S. R. Catastrophic regime shifts in ecosystems: linking theory to observation. Trends Ecol. Evol. 18, 648–656 (2003).
Google Scholar - Huse, S. M., Ye, Y., Zhou, Y. & Fodor, A. A. A core human microbiome as viewed through 16S rRNA sequence clusters. PLoS ONE 7, e34242 (2012).
CAS PubMed PubMed Central Google Scholar - Gorvitovskaia, A., Holmes, S. P. & Huse, S. M. Interpreting Prevotella and Bacteroides as biomarkers of diet and lifestyle. Microbiome 4, 15 (2016).
PubMed PubMed Central Google Scholar - Vieira-Silva, S. et al. Species–function relationships shape ecological properties of the human gut microbiome. Nat. Microbiol. 1, 16088 (2016).
CAS PubMed Google Scholar - Sankaran, M. et al. Determinants of woody cover in African savannas. Nature 438, 846–849 (2005).
CAS PubMed Google Scholar - Staver, A. C., Archibald, S. & Levin, S. Tree cover in sub-Saharan Africa: rainfall and fire constrain forest and savanna as alternative stable states. Ecology 92, 1063–1072 (2011).
PubMed Google Scholar - Kanehisa, M. & Goto, S. KEGG: kyoto encyclopedia of genes and genomes. Nucleic Acids Res. 28, 27–30 (2000).
CAS PubMed PubMed Central Google Scholar - Huerta-Cepas, J. et al. eggNOG 4.5: a hierarchical orthology framework with improved functional annotations for eukaryotic, prokaryotic and viral sequences. Nucleic Acids Res. 44, 286–293 (2016).
CAS PubMed Google Scholar - Ou, J. et al. Diet, microbiota, and microbial metabolites in colon cancer risk in rural Africans and African Americans. Am. J. Clin. Nutr. 98, 111–120 (2013).
CAS PubMed PubMed Central Google Scholar - Nakayama, J. et al. Diversity in gut bacterial community of school-age children in Asia. Sci. Rep. 5, 8397 (2015).
CAS PubMed PubMed Central Google Scholar - Smith, M. I. et al. Gut microbiomes of Malawian twin pairs discordant for Kwashiorkor. Science 339, 548–554 (2013).
CAS PubMed PubMed Central Google Scholar - De Filippo, C. et al. Impact of diet in shaping gut microbiota revealed by a comparative study in children from Europe and rural Africa. Proc. Natl Acad. Sci. USA 107, 14691–14696 (2010).
PubMed PubMed Central Google Scholar - David, L. A. et al. Diet rapidly and reproducibly alters the human gut microbiome. Nature 505, 559–563 (2014).
CAS PubMed Google Scholar - Purushe, J. et al. Comparative genome analysis of Prevotella ruminicola and Prevotella bryantii: insights into their environmental niche. Microb. Ecol. 60, 721–729 (2010).
PubMed Google Scholar - Cantarel, B. L. et al. The Carbohydrate-Active EnZymes database (CAZy): an expert resource for glycogenomics. Nucleic Acids Res. 37, D233–D238 (2009).
CAS PubMed Google Scholar - Pereira, F. C. & Berry, D. Microbial nutrient niches in the gut. Environ. Microbiol. 19, 1366–1378 (2017).
PubMed PubMed Central Google Scholar - Vandeputte, D. et al. Stool consistency is strongly associated with gut microbiota richness and composition, enterotypes and bacterial growth rates. Gut 65, 57–62 (2016).
CAS PubMed Google Scholar - Roager, H. M. et al. Colonic transit time is related to bacterial metabolism and mucosal turnover in the gut. Nat. Microbiol. 1, 16093 (2016).
CAS PubMed Google Scholar - Caporaso, J. G. et al. Moving pictures of the human microbiome. Genome Biol. 12, R50 (2011).
PubMed PubMed Central Google Scholar - Gibbons, S. M., Kearney, S. M., Smillie, C. S. & Alm, E. J. Two dynamic regimes in the human gut microbiome. PLoS Comput. Biol. 13, e1005364 (2017).
PubMed PubMed Central Google Scholar - Voigt, A. Y. et al. Temporal and technical variability of human gut metagenomes. Genome Biol. 16, 73 (2015).
PubMed PubMed Central Google Scholar - Dethlefsen, L. & Relman, D. A. Incomplete recovery and individualized responses of the human distal gut microbiota to repeated antibiotic perturbation. Proc. Natl Acad. Sci. USA 108, 4554–4561 (2011).
CAS PubMed Google Scholar - Van Nood, E. et al. Duodenal infusion of donor feces for recurrent Clostridium difficile. N. Engl. J. Med. 368, 407–415 (2013).
PubMed Google Scholar - Kovatcheva-Datchary, P. et al. Dietary fiber-induced improvement in glucose metabolism is associated with increased abundance of Prevotella. Cell Metab. 22, 971–982 (2015).
CAS PubMed Google Scholar - Ley, R. E., Turnbaugh, P. J., Klein, S. & Gordon, J. I. Human gut microbes associated with obesity. Nature 444, 1022–1023 (2006).
CAS PubMed Google Scholar - Haiser, H. J. et al. Predicting and manipulating cardiac drug inactivation by the human gut bacterium Eggerthella lenta. Science 341, 295–298 (2013).
CAS PubMed PubMed Central Google Scholar - Liang, X. et al. Bidirectional interactions between indomethacin and the murine intestinal microbiota. eLife 4, e08973 (2015).
PubMed PubMed Central Google Scholar - Spanogiannopoulos, P., Bess, E. N., Carmody, R. N. & Turnbaugh, P. J. The microbial pharmacists within us: a metagenomic view of xenobiotic metabolism. Nat. Rev. Microbiol. 14, 273–287 (2016).
CAS PubMed PubMed Central Google Scholar - Forslund, K. et al. Disentangling type 2 diabetes and metformin treatment signatures in the human gut microbiota. Nature 528, 262–266 (2015).
CAS PubMed PubMed Central Google Scholar - Zhu, L. et al. Characterization of gut microbiomes in nonalcoholic steatohepatitis (NASH) patients: a connection between endogenous alcohol and NASH. Hepatology 57, 601–609 (2013).
CAS PubMed Google Scholar - Zeller, G. et al. Potential of fecal microbiota for early-stage detection of colorectal cancer. Mol. Syst. Biol. 10, 766 (2014).
PubMed PubMed Central Google Scholar - Sobhani, I. et al. Microbial dysbiosis in colorectal cancer (CRC) patients. PLoS ONE 6, e16393 (2011).
CAS PubMed PubMed Central Google Scholar - De Palma, G. et al. Intestinal dysbiosis and reduced immunoglobulin-coated bacteria associated with coeliac disease in children. Microbiology 10, 63 (2010).
PubMed PubMed Central Google Scholar - Jernberg, C., Löfmark, S., Edlund, C. & Jansson, J. K. Long-term impacts of antibiotic exposure on the human intestinal microbiota. Microbiology 156, 3216–3223 (2010).
CAS PubMed Google Scholar - Scher, J. U. et al. Expansion of intestinal Prevotella copri correlates with enhanced susceptibility to arthritis. eLife 2, e01202 (2013).
PubMed PubMed Central Google Scholar - Larsen, N. et al. Gut microbiota in human adults with type 2 diabetes differs from non-diabetic adults. PLoS ONE 5, e9085 (2010).
PubMed PubMed Central Google Scholar - Lozupone, C. A. et al. Alterations in the gut microbiota associated with HIV-1 infection. Cell Host Microbe 14, 329–339 (2013).
CAS PubMed Google Scholar - Noguera-Julian, M. et al. Gut microbiota linked to sexual preference and HIV infection. EBioMedicine 5, 135–146 (2016).
PubMed PubMed Central Google Scholar - Karlsson, F. H. et al. Symptomatic atherosclerosis is associated with an altered gut metagenome. Nat. Commun. 3, 1245 (2012).
PubMed Google Scholar - Knights, D. et al. Rethinking ‘enterotypes’. Cell Host Microbe 16, 433–437 (2014).
CAS PubMed PubMed Central Google Scholar - Schubert, A. M. et al. Microbiome data distinguish patients with Clostridium difficile infection and non-_C. difficile_-associated diarrhea from healthy controls. mBio 5, e01021-14 (2014).
PubMed PubMed Central Google Scholar - Flegal, K. M., Kit, B. K., Orpana, H. & Graubard, B. I. Association of all-cause mortality with overweight and obesity using standard body mass index categories: a systematic review and meta-analysis. JAMA 309, 71–82 (2013).
CAS PubMed PubMed Central Google Scholar - Wu, G. D. et al. Sampling and pyrosequencing methods for characterizing bacterial communities in the human gut using 16S sequence tags. Microbiology 10, 206 (2010).
PubMed PubMed Central Google Scholar - Morton, J. T. et al. Uncovering the horseshoe effect in microbial analyses. mSystems 2, e00166–16 (2017).
PubMed PubMed Central Google Scholar - Costea, P. et al. Towards standards for human fecal sample processing in metagenomic studies. Nat. Biotechnol. 35, 1069–1076 (2017).
- Sinha, R. et al. Assessment of variation in microbial community amplicon sequencing by the Microbiome Quality Control (MBQC) project consortium. Nat. Biotechnol. 35, 1077–1086 (2017).
- Mardanov, A. V. et al. Metagenomic analysis of the dynamic changes in the gut microbiome of the participants of the MARS-500 experiment, simulating long term space flight. Acta Naturae 5, 116–125 (2013).
- Segata, N. et al. Metagenomic microbial community profiling using unique clade-specific marker genes. Nat. Methods 9, 811–814 (2012).
CAS PubMed PubMed Central Google Scholar - Karlsson, F. H., Nookaew, I. & Nielsen, J. Metagenomic data utilization and analysis (MEDUSA) and construction of a global gut microbial gene catalogue. PLoS Comput. Biol. 10, e1003706 (2014).
- MacDonald, N. J., Parks, D. H. & Beiko, R. G. Rapid identification of high-confidence taxonomic assignments for metagenomic data. Nucleic Acids Res. 40, e111 (2012).
- Zhang, J. et al. Mongolians core gut microbiota and its correlation with seasonal dietary changes. Sci. Rep. 4, 5001 (2014).
- Morotomi, N. et al. Evaluation of intestinal microbiotas of healthy japanese adults and effect of antibiotics using the 16S ribosomal RNA gene based clone library method. Biol. Pharm. Bull. 34, 1011–1020 (2011).
CAS Google Scholar - Eloe-Fadrosh, E. A. et al. Impact of oral typhoid vaccination on the human gut microbiota and correlations with _S. typhi_-specific immunological responses. PLoS ONE 4, e62026 (2013).
CAS PubMed PubMed Central Google Scholar
Acknowledgements
The authors are grateful to the members of the Bork group at EMBL for discussions and assistance. The research leading to these results has received funding from EMBL, the VIB, the Rega institute for Medical Research, the European Research Council via the CancerBiome project (project reference 268985), MicrobesInside (250172) and the European Community’s Seventh Framework Programme via the MetaHIT (HEALTH-F4-2007-201052), the METACARDIS project (FP7-HEALTH-2012-INNOVATION-I-305312), the European Union’s Horizon 2020 research and innovation programme (Marie Sklodowska-Curie grant 600375), Metagenopolis grant ANR-11-DPBS-0001 and the IHMS project (FP7-HEALTH-2010-single-stage-261376).
Author information
Author notes
- Paul I. Costea and Falk Hildebrand contributed equally to this work.
Authors and Affiliations
- European Molecular Biology Laboratory, Heidelberg, Germany
Paul I. Costea, Falk Hildebrand, Shinichi Sunagawa, Georg Zeller & Peer Bork - VIB Center for Microbiology, VIB, Belgium
Falk Hildebrand & Jeroen Raes - Laboratory of Microbiology, Vrije Universiteit Brussel, Brussels, Belgium
Falk Hildebrand & Jeroen Raes - The Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
Manimozhiyan Arumugam - Wallenberg Laboratory, Department of Molecular and Clinical Medicine, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
Fredrik Bäckhed & Jun Wang - Novo Nordisk Foundation Center for Basic Metabolic Research, Section for Metabolic Receptology and Enteroendocrinology, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
Fredrik Bäckhed - New York University Langone Medical Center, New York, NY, USA
Martin J. Blaser - Department of Microbiology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
Frederic D. Bushman - RPU Immunobiology, Department of Bacteriology & Immunology, University of Helsinki, Helsinki, Finland
Willem M. de Vos - Laboratory of Microbiology, Wageningen University, Wageningen, The Netherlands
Willem M. de Vos - Metagenopolis, Institut National de la Recherche Agronomique, Jouy en Josas, France
S. Dusko Ehrlich - King’s College London, Centre for Host-Microbiome Interactions, Dental Institute Central Office, Guy’s Hospital, London, UK
S. Dusko Ehrlich - Institute for Genome Sciences at the University of Maryland School of Medicine, Baltimore, MD, USA
Claire M. Fraser - Graduate School of Advanced Science and Engineering, Waseda University, Tokyo, Japan
Masahira Hattori - Department of Biostatistics, Harvard School of Public Health, Boston, MA, USA
Curtis Huttenhower - APC Microbiome Institute, University College Cork, Cork, Ireland
Ian B. Jeffery, Paul W. O’Toole & Fergus Shanahan - Biotechnology Institute, University of Minnesota, Saint Paul, MN, USA
Dan Knights - Department of Computer Science and Engineering, University of Minnesota, Minneapolis, MN, USA
Dan Knights - Center for Clinical Epidemiology and Biostatistics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
James D. Lewis - MPI Department of Microbiome Science, Tübingen, Germany
Ruth E. Ley - Department of Integrative Biology, University of Texas, Austin, TX, USA
Howard Ochman - Warwick Medical School, University of Warwick, Coventry, UK
Christopher Quince - Department of Microbiology and Immunology, Stanford University, Stanford, CA, USA
David A. Relman - Department of Medicine, Stanford University, Stanford, CA, USA
David A. Relman - Veterans Affairs Palo Alto Health Care System, Palo Alto, CA, USA
David A. Relman - Department of Biology, Institute of Microbiology, ETH Zurich, Zurich, Switzerland
Shinichi Sunagawa - Department of Biology, University of Copenhagen, Copenhagen, Denmark
Jun Wang - Princess Al Jawhara Albrahim Center of Excellence in the Research of Hereditary Disorders, King Abdulaziz University, Jeddah, Saudi Arabia
Jun Wang - Macau University of Science and Technology, Avenida Wai long, Taipa, Macau, China
Jun Wang - Department of Medicine and State Key Laboratory of Pharmaceutical Biotechnology, University of Hong Kong, Pokfulam, Hong Kong
Jun Wang - The Jackson Laboratory for Genomic Medicine, Farmington, CT, USA
George M. Weinstock - Division of Gastroenterology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
Gary D. Wu - Ministry of Education Key Laboratory for Systems Biomedicine, Shanghai Centre for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai, China
Liping Zhao - Department of Microbiology and Immunology, Rega Institute KU Leuven, Leuven, Belgium
Jeroen Raes - Department of Computer Science, University of Colorado, Boulder, CO, USA
Rob Knight - Biofrontiers Institute, University of Colorado, Boulder, CO, USA
Rob Knight - Department of Chemistry and Biochemistry, University of Colorado, Boulder, CO, USA
Rob Knight - Howard Hughes Medical Institute, University of Colorado, Boulder, CO, USA
Rob Knight - Max-Delbrück-Centre for Molecular Medicine, Berlin, Germany
Peer Bork - Molecular Medicine Partnership Unit, Heidelberg, Germany
Peer Bork
Authors
- Paul I. Costea
- Falk Hildebrand
- Manimozhiyan Arumugam
- Fredrik Bäckhed
- Martin J. Blaser
- Frederic D. Bushman
- Willem M. de Vos
- S. Dusko Ehrlich
- Claire M. Fraser
- Masahira Hattori
- Curtis Huttenhower
- Ian B. Jeffery
- Dan Knights
- James D. Lewis
- Ruth E. Ley
- Howard Ochman
- Paul W. O’Toole
- Christopher Quince
- David A. Relman
- Fergus Shanahan
- Shinichi Sunagawa
- Jun Wang
- George M. Weinstock
- Gary D. Wu
- Georg Zeller
- Liping Zhao
- Jeroen Raes
- Rob Knight
- Peer Bork
Contributions
P.B., R.K. and J.R. conceived the review. P.I.C., F.H. and G.Z. performed data analysis. F.H., P.I.C., J.R. and P.B. performed the literature research, with input from all co-authors. P.I.C., F.H., S.S., R.K., J.R. and P.B. wrote the manuscript with contributions from M.A., F.B., M.J.B., F.D.B., W.M.d.V., S.D.E., C.m.F., M.H., C.H., I.B.J., D.K., J.D.L., R.E.L., H.O., P.W.O., C.Q., D.A.R., F.S., J.W., G.M.W., G.D.W., G.Z. and L.Z.
Corresponding authors
Correspondence toJeroen Raes, Rob Knight or Peer Bork.
Ethics declarations
Competing interests
The authors declare no competing financial interests.
Additional information
Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Supplementary information
Rights and permissions
About this article
Cite this article
Costea, P.I., Hildebrand, F., Arumugam, M. et al. Enterotypes in the landscape of gut microbial community composition.Nat Microbiol 3, 8–16 (2018). https://doi.org/10.1038/s41564-017-0072-8
- Received: 15 August 2017
- Accepted: 27 October 2017
- Published: 18 December 2017
- Issue date: January 2018
- DOI: https://doi.org/10.1038/s41564-017-0072-8