Enterotypes in the landscape of gut microbial community composition (original) (raw)

Change history

In the version of this Perspective originally published, the first and last name of co-author Manimozhiyan Arumugam were switched. This has now been corrected in all versions of the Perspective.

References

  1. Huttenhower, C. et al. Structure, function and diversity of the healthy human microbiome. Nature 486, 207–214 (2012).
    CAS Google Scholar
  2. Sender, R., Fuchs, S. & Milo, R. Revised estimates for the number of human and bacteria cells in the body. PLoS Biol. 14, e1002533 (2016).
    PubMed PubMed Central Google Scholar
  3. Qin, J. et al. A human gut microbial gene catalogue established by metagenomic sequencing. Nature 464, 59–65 (2010).
    CAS PubMed PubMed Central Google Scholar
  4. Turnbaugh, P. J. et al. A core gut microbiome in obese and lean twins. Nature 457, 480–484 (2009).
    CAS PubMed Google Scholar
  5. Faith, J. J. et al. The long-term stability of the human gut microbiota. Science 341, 1237439 (2013).
    PubMed PubMed Central Google Scholar
  6. Le Chatelier, E. et al. Richness of human gut microbiome correlates with metabolic markers. Nature 500, 541–546 (2013).
    PubMed Google Scholar
  7. Falony, G. et al. Population-level analysis of gut microbiome variation. Science 352, 560–564 (2016).
    CAS PubMed Google Scholar
  8. Yatsunenko, T. et al. Human gut microbiome viewed across age and geography. Nature 486, 222–227 (2012).
    Article CAS PubMed PubMed Central Google Scholar
  9. Jeffery, I. B., Claesson, M. J., O’Toole, P. W. & Shanahan, F. Categorization of the gut microbiota: enterotypes or gradients? Nat. Rev. Microbiol. 10, 591–592 (2012).
    CAS PubMed Google Scholar
  10. Lahti, L., Salojärvi, J., Salonen, A., Scheffer, M. & de Vos, W. M. Tipping elements in the human intestinal ecosystem. Nat. Commun. 5, 4344 (2014).
    CAS PubMed Google Scholar
  11. Sørlie, T. et al. Gene expression patterns of breast carcinomas distinguish tumor subclasses with clinical implications. Proc. Natl Acad. Sci. USA 98, 10869–10874 (2001).
    PubMed PubMed Central Google Scholar
  12. Sorlie, T. et al. Repeated observation of breast tumor subtypes in independent gene expression data sets. Proc. Natl Acad. Sci. USA 100, 8418–8423 (2003).
    CAS PubMed PubMed Central Google Scholar
  13. Yamauchi, M. et al. Assessment of colorectal cancer molecular features along bowel subsites challenges the conception of distinct dichotomy of proximal versus distal colorectum. Gut 61, 847–854 (2012).
    CAS PubMed Google Scholar
  14. Arumugam, M. et al. Enterotypes of the human gut microbiome. Nature 473, 174–180 (2011).
    CAS PubMed PubMed Central Google Scholar
  15. Ravel, J. et al. Vaginal microbiome of reproductive-age women. Proc. Natl Acad. Sci. USA 108, 4680–4687 (2011).
    CAS PubMed Google Scholar
  16. Koren, O. et al. A guide to enterotypes across the human body: meta-analysis of microbial community structures in human microbiome datasets. PLoS Comput. Biol. 9, e1002863 (2013).
    CAS PubMed PubMed Central Google Scholar
  17. Ding, T. & Schloss, P. D. Dynamics and associations of microbial community types across the human body. Nature 509, 357–360 (2014).
    CAS PubMed PubMed Central Google Scholar
  18. Zhou, Y. et al. Exploration of bacterial community classes in major human habitats. Genome Biol. 15, R66 (2014).
    PubMed PubMed Central Google Scholar
  19. Qin, J. et al. A metagenome-wide association study of gut microbiota in type 2 diabetes. Nature 490, 55–60 (2012).
    CAS PubMed Google Scholar
  20. Dethlefsen, L., Eckburg, P. B., Bik, E. M. & Relman, D. A. Assembly of the human intestinal microbiota. Trends Ecol. Evol. 21, 517–523 (2006).
    PubMed Google Scholar
  21. Schloissnig, S. et al. Genomic variation landscape of the human gut microbiome. Nature 493, 45–50 (2013).
    PubMed Google Scholar
  22. Zhu, A., Sunagawa, S., Mende, D. R. & Bork, P. Inter-individual differences in the gene content of human gut bacterial species. Genome Biol. 16, 82 (2015).
    PubMed PubMed Central Google Scholar
  23. Wu, G. D. et al. Linking long-term dietary patterns with gut microbial enterotypes. Science 334, 105–108 (2011).
    CAS PubMed PubMed Central Google Scholar
  24. Karlsson, F. H., Nookaew, I. & Nielsen, J. Metagenomic data utilization and analysis (MEDUSA) and construction of a global gut microbial gene catalogue. PLoS Comput. Biol. 10, e1003706 (2014).
    PubMed PubMed Central Google Scholar
  25. Bergstrom, A. et al. Establishment of intestinal microbiota during early life: a longitudinal, explorative study of a large cohort of Danish infants. Appl. Environ. Microbiol. 80, 2889–2900 (2014).
    CAS PubMed PubMed Central Google Scholar
  26. Holmes, I., Harris, K. & Quince, C. Dirichlet multinomial mixtures: generative models for microbial metagenomics. PLoS ONE 7, e30126 (2012).
    CAS PubMed PubMed Central Google Scholar
  27. Quince, C. et al. The impact of Crohn’s disease genes on healthy human gut microbiota: a pilot study. Gut 62, 952–954 (2013).
    PubMed Google Scholar
  28. Roager, H. M., Licht, T. R., Poulsen, S. K., Larsen, T. M. & Bahl, M. I. Microbial enterotypes, inferred by the Prevotella-to-Bacteroides ratio, remained stable during a 6-month randomized controlled diet intervention with the new nordic diet. Appl. Environ. Microbiol. 80, 1142–1149 (2014).
    PubMed PubMed Central Google Scholar
  29. Zupancic, M. L. et al. Analysis of the gut microbiota in the Old Order Amish and its relation to the metabolic syndrome. PLoS ONE 7, e43052 (2012).
    CAS PubMed PubMed Central Google Scholar
  30. Claesson, M. J. et al. Gut microbiota composition correlates with diet and health in the elderly. Nature 488, 178–184 (2012).
    CAS PubMed Google Scholar
  31. Gibson, T. E., Bashan, A., Cao, H.-T., Weiss, S. T. & Liu, Y.-Y. On the origins and control of community types in the human microbiome. PLoS Comput. Biol. 12, e1004688 (2016).
    PubMed PubMed Central Google Scholar
  32. Hildebrand, F. et al. Inflammation-associated enterotypes, host genotype, cage and inter-individual effects drive gut microbiota variation in common laboratory mice. Genome Biol. 14, R4 (2013).
    PubMed PubMed Central Google Scholar
  33. Wang, J. et al. Dietary history contributes to enterotype-like clustering and functional metagenomic content in the intestinal microbiome of wild mice. Proc. Natl Acad. Sci. USA 111, 2703–2710 (2014).
    Google Scholar
  34. Moeller, A. H. et al. Chimpanzees and humans harbour compositionally similar gut enterotypes. Nat. Commun. 3, 1179 (2012).
    PubMed Google Scholar
  35. Moeller, A. H. et al. Stability of the gorilla microbiome despite simian immunodeficiency virus infection. Mol. Ecol. 24, 690–697 (2015).
    CAS PubMed PubMed Central Google Scholar
  36. Mach, N. et al. Early-life establishment of the swine gut microbiome and impact on host phenotypes. Environ. Microbiol. Rep. 7, 554–569 (2015).
    CAS PubMed Google Scholar
  37. Ramayo-Caldas, Y. et al. Phylogenetic network analysis applied to pig gut microbiota identifies an ecosystem structure linked with growth traits. ISME J. 10, 2973–2977 (2016).
    PubMed PubMed Central Google Scholar
  38. Li, J. et al. Two gut community enterotypes recur in diverse bumblebee species. Curr. Biol. 25, R652–R653 (2015).
    CAS PubMed Google Scholar
  39. Moeller, A. H. et al. Rapid changes in the gut microbiome during human evolution. Proc. Natl Acad. Sci. USA 111, 16431–16435 (2014).
    CAS PubMed PubMed Central Google Scholar
  40. Foster, K. R., Schluter, J., Coyte, K. Z. & Rakoff-Nahoum, S. The evolution of the host microbiome as an ecosystem on a leash. Nature 548, 43–51 (2017).
    CAS PubMed PubMed Central Google Scholar
  41. Scheffer, M. & Carpenter, S. R. Catastrophic regime shifts in ecosystems: linking theory to observation. Trends Ecol. Evol. 18, 648–656 (2003).
    Google Scholar
  42. Huse, S. M., Ye, Y., Zhou, Y. & Fodor, A. A. A core human microbiome as viewed through 16S rRNA sequence clusters. PLoS ONE 7, e34242 (2012).
    CAS PubMed PubMed Central Google Scholar
  43. Gorvitovskaia, A., Holmes, S. P. & Huse, S. M. Interpreting Prevotella and Bacteroides as biomarkers of diet and lifestyle. Microbiome 4, 15 (2016).
    PubMed PubMed Central Google Scholar
  44. Vieira-Silva, S. et al. Species–function relationships shape ecological properties of the human gut microbiome. Nat. Microbiol. 1, 16088 (2016).
    CAS PubMed Google Scholar
  45. Sankaran, M. et al. Determinants of woody cover in African savannas. Nature 438, 846–849 (2005).
    CAS PubMed Google Scholar
  46. Staver, A. C., Archibald, S. & Levin, S. Tree cover in sub-Saharan Africa: rainfall and fire constrain forest and savanna as alternative stable states. Ecology 92, 1063–1072 (2011).
    PubMed Google Scholar
  47. Kanehisa, M. & Goto, S. KEGG: kyoto encyclopedia of genes and genomes. Nucleic Acids Res. 28, 27–30 (2000).
    CAS PubMed PubMed Central Google Scholar
  48. Huerta-Cepas, J. et al. eggNOG 4.5: a hierarchical orthology framework with improved functional annotations for eukaryotic, prokaryotic and viral sequences. Nucleic Acids Res. 44, 286–293 (2016).
    CAS PubMed Google Scholar
  49. Ou, J. et al. Diet, microbiota, and microbial metabolites in colon cancer risk in rural Africans and African Americans. Am. J. Clin. Nutr. 98, 111–120 (2013).
    CAS PubMed PubMed Central Google Scholar
  50. Nakayama, J. et al. Diversity in gut bacterial community of school-age children in Asia. Sci. Rep. 5, 8397 (2015).
    CAS PubMed PubMed Central Google Scholar
  51. Smith, M. I. et al. Gut microbiomes of Malawian twin pairs discordant for Kwashiorkor. Science 339, 548–554 (2013).
    CAS PubMed PubMed Central Google Scholar
  52. De Filippo, C. et al. Impact of diet in shaping gut microbiota revealed by a comparative study in children from Europe and rural Africa. Proc. Natl Acad. Sci. USA 107, 14691–14696 (2010).
    PubMed PubMed Central Google Scholar
  53. David, L. A. et al. Diet rapidly and reproducibly alters the human gut microbiome. Nature 505, 559–563 (2014).
    CAS PubMed Google Scholar
  54. Purushe, J. et al. Comparative genome analysis of Prevotella ruminicola and Prevotella bryantii: insights into their environmental niche. Microb. Ecol. 60, 721–729 (2010).
    PubMed Google Scholar
  55. Cantarel, B. L. et al. The Carbohydrate-Active EnZymes database (CAZy): an expert resource for glycogenomics. Nucleic Acids Res. 37, D233–D238 (2009).
    CAS PubMed Google Scholar
  56. Pereira, F. C. & Berry, D. Microbial nutrient niches in the gut. Environ. Microbiol. 19, 1366–1378 (2017).
    PubMed PubMed Central Google Scholar
  57. Vandeputte, D. et al. Stool consistency is strongly associated with gut microbiota richness and composition, enterotypes and bacterial growth rates. Gut 65, 57–62 (2016).
    CAS PubMed Google Scholar
  58. Roager, H. M. et al. Colonic transit time is related to bacterial metabolism and mucosal turnover in the gut. Nat. Microbiol. 1, 16093 (2016).
    CAS PubMed Google Scholar
  59. Caporaso, J. G. et al. Moving pictures of the human microbiome. Genome Biol. 12, R50 (2011).
    PubMed PubMed Central Google Scholar
  60. Gibbons, S. M., Kearney, S. M., Smillie, C. S. & Alm, E. J. Two dynamic regimes in the human gut microbiome. PLoS Comput. Biol. 13, e1005364 (2017).
    PubMed PubMed Central Google Scholar
  61. Voigt, A. Y. et al. Temporal and technical variability of human gut metagenomes. Genome Biol. 16, 73 (2015).
    PubMed PubMed Central Google Scholar
  62. Dethlefsen, L. & Relman, D. A. Incomplete recovery and individualized responses of the human distal gut microbiota to repeated antibiotic perturbation. Proc. Natl Acad. Sci. USA 108, 4554–4561 (2011).
    CAS PubMed Google Scholar
  63. Van Nood, E. et al. Duodenal infusion of donor feces for recurrent Clostridium difficile. N. Engl. J. Med. 368, 407–415 (2013).
    PubMed Google Scholar
  64. Kovatcheva-Datchary, P. et al. Dietary fiber-induced improvement in glucose metabolism is associated with increased abundance of Prevotella. Cell Metab. 22, 971–982 (2015).
    CAS PubMed Google Scholar
  65. Ley, R. E., Turnbaugh, P. J., Klein, S. & Gordon, J. I. Human gut microbes associated with obesity. Nature 444, 1022–1023 (2006).
    CAS PubMed Google Scholar
  66. Haiser, H. J. et al. Predicting and manipulating cardiac drug inactivation by the human gut bacterium Eggerthella lenta. Science 341, 295–298 (2013).
    CAS PubMed PubMed Central Google Scholar
  67. Liang, X. et al. Bidirectional interactions between indomethacin and the murine intestinal microbiota. eLife 4, e08973 (2015).
    PubMed PubMed Central Google Scholar
  68. Spanogiannopoulos, P., Bess, E. N., Carmody, R. N. & Turnbaugh, P. J. The microbial pharmacists within us: a metagenomic view of xenobiotic metabolism. Nat. Rev. Microbiol. 14, 273–287 (2016).
    CAS PubMed PubMed Central Google Scholar
  69. Forslund, K. et al. Disentangling type 2 diabetes and metformin treatment signatures in the human gut microbiota. Nature 528, 262–266 (2015).
    CAS PubMed PubMed Central Google Scholar
  70. Zhu, L. et al. Characterization of gut microbiomes in nonalcoholic steatohepatitis (NASH) patients: a connection between endogenous alcohol and NASH. Hepatology 57, 601–609 (2013).
    CAS PubMed Google Scholar
  71. Zeller, G. et al. Potential of fecal microbiota for early-stage detection of colorectal cancer. Mol. Syst. Biol. 10, 766 (2014).
    PubMed PubMed Central Google Scholar
  72. Sobhani, I. et al. Microbial dysbiosis in colorectal cancer (CRC) patients. PLoS ONE 6, e16393 (2011).
    CAS PubMed PubMed Central Google Scholar
  73. De Palma, G. et al. Intestinal dysbiosis and reduced immunoglobulin-coated bacteria associated with coeliac disease in children. Microbiology 10, 63 (2010).
    PubMed PubMed Central Google Scholar
  74. Jernberg, C., Löfmark, S., Edlund, C. & Jansson, J. K. Long-term impacts of antibiotic exposure on the human intestinal microbiota. Microbiology 156, 3216–3223 (2010).
    CAS PubMed Google Scholar
  75. Scher, J. U. et al. Expansion of intestinal Prevotella copri correlates with enhanced susceptibility to arthritis. eLife 2, e01202 (2013).
    PubMed PubMed Central Google Scholar
  76. Larsen, N. et al. Gut microbiota in human adults with type 2 diabetes differs from non-diabetic adults. PLoS ONE 5, e9085 (2010).
    PubMed PubMed Central Google Scholar
  77. Lozupone, C. A. et al. Alterations in the gut microbiota associated with HIV-1 infection. Cell Host Microbe 14, 329–339 (2013).
    CAS PubMed Google Scholar
  78. Noguera-Julian, M. et al. Gut microbiota linked to sexual preference and HIV infection. EBioMedicine 5, 135–146 (2016).
    PubMed PubMed Central Google Scholar
  79. Karlsson, F. H. et al. Symptomatic atherosclerosis is associated with an altered gut metagenome. Nat. Commun. 3, 1245 (2012).
    PubMed Google Scholar
  80. Knights, D. et al. Rethinking ‘enterotypes’. Cell Host Microbe 16, 433–437 (2014).
    CAS PubMed PubMed Central Google Scholar
  81. Schubert, A. M. et al. Microbiome data distinguish patients with Clostridium difficile infection and non-_C. difficile_-associated diarrhea from healthy controls. mBio 5, e01021-14 (2014).
    PubMed PubMed Central Google Scholar
  82. Flegal, K. M., Kit, B. K., Orpana, H. & Graubard, B. I. Association of all-cause mortality with overweight and obesity using standard body mass index categories: a systematic review and meta-analysis. JAMA 309, 71–82 (2013).
    CAS PubMed PubMed Central Google Scholar
  83. Wu, G. D. et al. Sampling and pyrosequencing methods for characterizing bacterial communities in the human gut using 16S sequence tags. Microbiology 10, 206 (2010).
    PubMed PubMed Central Google Scholar
  84. Morton, J. T. et al. Uncovering the horseshoe effect in microbial analyses. mSystems 2, e00166–16 (2017).
    PubMed PubMed Central Google Scholar
  85. Costea, P. et al. Towards standards for human fecal sample processing in metagenomic studies. Nat. Biotechnol. 35, 1069–1076 (2017).
  86. Sinha, R. et al. Assessment of variation in microbial community amplicon sequencing by the Microbiome Quality Control (MBQC) project consortium. Nat. Biotechnol. 35, 1077–1086 (2017).
  87. Mardanov, A. V. et al. Metagenomic analysis of the dynamic changes in the gut microbiome of the participants of the MARS-500 experiment, simulating long term space flight. Acta Naturae 5, 116–125 (2013).
  88. Segata, N. et al. Metagenomic microbial community profiling using unique clade-specific marker genes. Nat. Methods 9, 811–814 (2012).
    CAS PubMed PubMed Central Google Scholar
  89. Karlsson, F. H., Nookaew, I. & Nielsen, J. Metagenomic data utilization and analysis (MEDUSA) and construction of a global gut microbial gene catalogue. PLoS Comput. Biol. 10, e1003706 (2014).
  90. MacDonald, N. J., Parks, D. H. & Beiko, R. G. Rapid identification of high-confidence taxonomic assignments for metagenomic data. Nucleic Acids Res. 40, e111 (2012).
  91. Zhang, J. et al. Mongolians core gut microbiota and its correlation with seasonal dietary changes. Sci. Rep. 4, 5001 (2014).
  92. Morotomi, N. et al. Evaluation of intestinal microbiotas of healthy japanese adults and effect of antibiotics using the 16S ribosomal RNA gene based clone library method. Biol. Pharm. Bull. 34, 1011–1020 (2011).
    CAS Google Scholar
  93. Eloe-Fadrosh, E. A. et al. Impact of oral typhoid vaccination on the human gut microbiota and correlations with _S. typhi_-specific immunological responses. PLoS ONE 4, e62026 (2013).
    CAS PubMed PubMed Central Google Scholar

Download references

Acknowledgements

The authors are grateful to the members of the Bork group at EMBL for discussions and assistance. The research leading to these results has received funding from EMBL, the VIB, the Rega institute for Medical Research, the European Research Council via the CancerBiome project (project reference 268985), MicrobesInside (250172) and the European Community’s Seventh Framework Programme via the MetaHIT (HEALTH-F4-2007-201052), the METACARDIS project (FP7-HEALTH-2012-INNOVATION-I-305312), the European Union’s Horizon 2020 research and innovation programme (Marie Sklodowska-Curie grant 600375), Metagenopolis grant ANR-11-DPBS-0001 and the IHMS project (FP7-HEALTH-2010-single-stage-261376).

Author information

Author notes

  1. Paul I. Costea and Falk Hildebrand contributed equally to this work.

Authors and Affiliations

  1. European Molecular Biology Laboratory, Heidelberg, Germany
    Paul I. Costea, Falk Hildebrand, Shinichi Sunagawa, Georg Zeller & Peer Bork
  2. VIB Center for Microbiology, VIB, Belgium
    Falk Hildebrand & Jeroen Raes
  3. Laboratory of Microbiology, Vrije Universiteit Brussel, Brussels, Belgium
    Falk Hildebrand & Jeroen Raes
  4. The Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
    Manimozhiyan Arumugam
  5. Wallenberg Laboratory, Department of Molecular and Clinical Medicine, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
    Fredrik Bäckhed & Jun Wang
  6. Novo Nordisk Foundation Center for Basic Metabolic Research, Section for Metabolic Receptology and Enteroendocrinology, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
    Fredrik Bäckhed
  7. New York University Langone Medical Center, New York, NY, USA
    Martin J. Blaser
  8. Department of Microbiology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
    Frederic D. Bushman
  9. RPU Immunobiology, Department of Bacteriology & Immunology, University of Helsinki, Helsinki, Finland
    Willem M. de Vos
  10. Laboratory of Microbiology, Wageningen University, Wageningen, The Netherlands
    Willem M. de Vos
  11. Metagenopolis, Institut National de la Recherche Agronomique, Jouy en Josas, France
    S. Dusko Ehrlich
  12. King’s College London, Centre for Host-Microbiome Interactions, Dental Institute Central Office, Guy’s Hospital, London, UK
    S. Dusko Ehrlich
  13. Institute for Genome Sciences at the University of Maryland School of Medicine, Baltimore, MD, USA
    Claire M. Fraser
  14. Graduate School of Advanced Science and Engineering, Waseda University, Tokyo, Japan
    Masahira Hattori
  15. Department of Biostatistics, Harvard School of Public Health, Boston, MA, USA
    Curtis Huttenhower
  16. APC Microbiome Institute, University College Cork, Cork, Ireland
    Ian B. Jeffery, Paul W. O’Toole & Fergus Shanahan
  17. Biotechnology Institute, University of Minnesota, Saint Paul, MN, USA
    Dan Knights
  18. Department of Computer Science and Engineering, University of Minnesota, Minneapolis, MN, USA
    Dan Knights
  19. Center for Clinical Epidemiology and Biostatistics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
    James D. Lewis
  20. MPI Department of Microbiome Science, Tübingen, Germany
    Ruth E. Ley
  21. Department of Integrative Biology, University of Texas, Austin, TX, USA
    Howard Ochman
  22. Warwick Medical School, University of Warwick, Coventry, UK
    Christopher Quince
  23. Department of Microbiology and Immunology, Stanford University, Stanford, CA, USA
    David A. Relman
  24. Department of Medicine, Stanford University, Stanford, CA, USA
    David A. Relman
  25. Veterans Affairs Palo Alto Health Care System, Palo Alto, CA, USA
    David A. Relman
  26. Department of Biology, Institute of Microbiology, ETH Zurich, Zurich, Switzerland
    Shinichi Sunagawa
  27. Department of Biology, University of Copenhagen, Copenhagen, Denmark
    Jun Wang
  28. Princess Al Jawhara Albrahim Center of Excellence in the Research of Hereditary Disorders, King Abdulaziz University, Jeddah, Saudi Arabia
    Jun Wang
  29. Macau University of Science and Technology, Avenida Wai long, Taipa, Macau, China
    Jun Wang
  30. Department of Medicine and State Key Laboratory of Pharmaceutical Biotechnology, University of Hong Kong, Pokfulam, Hong Kong
    Jun Wang
  31. The Jackson Laboratory for Genomic Medicine, Farmington, CT, USA
    George M. Weinstock
  32. Division of Gastroenterology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
    Gary D. Wu
  33. Ministry of Education Key Laboratory for Systems Biomedicine, Shanghai Centre for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai, China
    Liping Zhao
  34. Department of Microbiology and Immunology, Rega Institute KU Leuven, Leuven, Belgium
    Jeroen Raes
  35. Department of Computer Science, University of Colorado, Boulder, CO, USA
    Rob Knight
  36. Biofrontiers Institute, University of Colorado, Boulder, CO, USA
    Rob Knight
  37. Department of Chemistry and Biochemistry, University of Colorado, Boulder, CO, USA
    Rob Knight
  38. Howard Hughes Medical Institute, University of Colorado, Boulder, CO, USA
    Rob Knight
  39. Max-Delbrück-Centre for Molecular Medicine, Berlin, Germany
    Peer Bork
  40. Molecular Medicine Partnership Unit, Heidelberg, Germany
    Peer Bork

Authors

  1. Paul I. Costea
  2. Falk Hildebrand
  3. Manimozhiyan Arumugam
  4. Fredrik Bäckhed
  5. Martin J. Blaser
  6. Frederic D. Bushman
  7. Willem M. de Vos
  8. S. Dusko Ehrlich
  9. Claire M. Fraser
  10. Masahira Hattori
  11. Curtis Huttenhower
  12. Ian B. Jeffery
  13. Dan Knights
  14. James D. Lewis
  15. Ruth E. Ley
  16. Howard Ochman
  17. Paul W. O’Toole
  18. Christopher Quince
  19. David A. Relman
  20. Fergus Shanahan
  21. Shinichi Sunagawa
  22. Jun Wang
  23. George M. Weinstock
  24. Gary D. Wu
  25. Georg Zeller
  26. Liping Zhao
  27. Jeroen Raes
  28. Rob Knight
  29. Peer Bork

Contributions

P.B., R.K. and J.R. conceived the review. P.I.C., F.H. and G.Z. performed data analysis. F.H., P.I.C., J.R. and P.B. performed the literature research, with input from all co-authors. P.I.C., F.H., S.S., R.K., J.R. and P.B. wrote the manuscript with contributions from M.A., F.B., M.J.B., F.D.B., W.M.d.V., S.D.E., C.m.F., M.H., C.H., I.B.J., D.K., J.D.L., R.E.L., H.O., P.W.O., C.Q., D.A.R., F.S., J.W., G.M.W., G.D.W., G.Z. and L.Z.

Corresponding authors

Correspondence toJeroen Raes, Rob Knight or Peer Bork.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

About this article

Cite this article

Costea, P.I., Hildebrand, F., Arumugam, M. et al. Enterotypes in the landscape of gut microbial community composition.Nat Microbiol 3, 8–16 (2018). https://doi.org/10.1038/s41564-017-0072-8

Download citation