Frequency comb spectroscopy (original) (raw)

References

  1. Hänsch, T. W. Nobel lecture: passion for precision. Rev. Mod. Phys. 78, 1297–1309 (2006).
    ADS Google Scholar
  2. Wilken, T. et al. A spectrograph for exoplanet observations calibrated at the centimetre-per-second level. Nature 485, 611–614 (2012).
    ADS Google Scholar
  3. Baltuška, A. et al. Attosecond control of electronic processes by intense light fields. Nature 421, 611–615 (2003).
    ADS Google Scholar
  4. Torres-Company, V. & Weiner, A. M. Optical frequency comb technology for ultra-broadband radio-frequency photonics. Laser Photon. Rev. 8, 368–393 (2013).
    ADS Google Scholar
  5. Maddaloni, P., Bellini, M. & de Natale, P. Laser-Based Measurements for Time and Frequency Domain Applications: A Handbook (CRC Press, Boca Raton, 2013).
    Google Scholar
  6. Ye, J. & Cundiff, S. T. (eds) Femtosecond Optical Frequency Comb: Principle,Operation and Applications (Springer Science + Business Media, Boston, 2005).
  7. Teets, R., Eckstein, J. & Hänsch, T. W. Coherent two-photon excitation by multiple light pulses. Phys. Rev. Lett. 38, 760–764 (1977).
    ADS Google Scholar
  8. Eckstein, J. N., Ferguson, A. I. & Hänsch, T. W. High-resolution two-photon spectroscopy with picosecond light pulses. Phys. Rev. Lett. 40, 847–850 (1978).
    ADS Google Scholar
  9. Baklanov, Y. V. & Chebotayev, V. P. Narrow resonances of two-photon absorption of super-narrow pulses in a gas. Appl. Phys. 12, 97–99 (1977).
    ADS Google Scholar
  10. Eckstein, J. N. High Resolution Spectroscopy Using Multiple Coherent Interactions. PhD thesis, Stanford Univ. (1978).
  11. Reichert, J., Holzwarth, R., Udem, T. & Hänsch, T. W. Measuring the frequency of light with mode-locked lasers. Opt. Commun. 172, 59–68 (1999).
    ADS Google Scholar
  12. Keilmann, F., Gohle, C. & Holzwarth, R. Time-domain mid-infrared frequency-comb spectrometer. Opt. Lett. 29, 1542–1544 (2004).
    ADS Google Scholar
  13. Picqué, N. & Guelachvili, G. Femtosecond frequency combs: new trends for Fourier transform spectroscopy. In Fourier Transform Spectroscopy/Hyperspectral Imaging and Sounding of the Environment Paper FTuA2 (OSA, 2005).
  14. Yasui, T. et al. Terahertz frequency comb by multifrequency-heterodyning photoconductive detection for high-accuracy, high-resolution terahertz spectroscopy. Appl. Phys. Lett. 88, 241104 (2006).
    ADS Google Scholar
  15. Thorpe, M. J. et al. Broadband cavity ringdown spectroscopy for sensitive and rapid molecular detection. Science 311, 1595–1599 (2006).
    ADS Google Scholar
  16. Diddams, S. A., Hollberg, L. & Mbele, V. Molecular fingerprinting with the resolved modes of a femtosecond laser frequency comb. Nature 445, 627–630 (2007).
    Google Scholar
  17. Gohle, C. et al. Frequency comb Vernier spectroscopy for broadband, high-resolution, high-sensitivity absorption and dispersion spectra. Phys. Rev. Lett. 99, 263902 (2007).
    ADS Google Scholar
  18. Coddington, I., Swann, W. C. & Newbury, N. R. Coherent multiheterodyne spectroscopy using stabilized optical frequency combs. Phys. Rev. Lett. 100, 013902 (2008).
    ADS Google Scholar
  19. Mandon, J., Guelachvili, G. & Picqué, N. Fourier transform spectroscopy with a laser frequency comb. Nat. Photon. 3, 99–102 (2009).
    ADS Google Scholar
  20. Marian, A. et al. United time-frequency spectroscopy for dynamics and global structure. Science 306, 2063–2068 (2004).
    ADS Google Scholar
  21. Kippenberg, T. J., Gaeta, A. L., Lipson, M. & Gorodetsky, M. L. Dissipative Kerr solitons in optical microresonators. Science 361, eaan8083 (2018).
    Google Scholar
  22. Stern, B. et al. Battery-operated integrated frequency comb generator. Nature 562, 401–405 (2018).
    ADS Google Scholar
  23. Wang, Z. et al. A III–V-on-Si ultra-dense comb laser. Light Sci. Appl. 6, e16260 (2017).
    Google Scholar
  24. Long, D. A. et al. Multiheterodyne spectroscopy with optical frequency combs generated from a continuous-wave laser. Opt. Lett. 39, 2688–2690 (2014).
    ADS Google Scholar
  25. Millot, G. et al. Frequency-agile dual-comb spectroscopy. Nat. Photon. 10, 27–30 (2016).
    ADS Google Scholar
  26. Consolino, L. et al. Phase-locking to a free-space terahertz comb for metrological-grade terahertz lasers. Nat. Commun. 3, 1040 (2012).
    Google Scholar
  27. Yardimci, N. T., Yang, S. H., Berry, C. W. & Jarrahi, M. High-power terahertz generation using large-area plasmonic photoconductive emitters. IEEE Trans. Terahertz Sci. Technol. 5, 223–229 (2015).
    ADS Google Scholar
  28. Burghoff, D. et al. Terahertz laser frequency combs. Nat. Photon. 8, 462–467 (2014).
    ADS Google Scholar
  29. Rösch, M. et al. Heterogeneous terahertz quantum cascade lasers exceeding 1.9 THz spectral bandwidth and featuring dual comb operation. Nanophotonics 7, 237–242 (2018).
    Google Scholar
  30. Tammaro, S. et al. High density terahertz frequency comb produced by coherent synchrotron radiation. Nat. Commun. 6, 7733 (2015).
    Google Scholar
  31. Schliesser, A., Picqué, N. & Hänsch, T. W. Mid-infrared frequency combs. Nat. Photon. 6, 440–449 (2012).
    ADS Google Scholar
  32. Duval, S. et al. Femtosecond fiber lasers reach the mid-infrared. Optica 2, 623–626 (2015).
    Google Scholar
  33. Schunemann, P. G. et al. Advances in nonlinear optical crystals for mid-infrared coherent sources. J. Opt. Soc. Am. B 33, D36–D43 (2016).
    Google Scholar
  34. Vainio, M. & Halonen, L. Mid-infrared optical parametric oscillators and frequency combs for molecular spectroscopy. Phys. Chem. Chem. Phys. 18, 4266–4294 (2016).
    Google Scholar
  35. Meek, S. et al. Fourier transform spectroscopy around 3 μm with a broad difference frequency comb. Appl. Phys. B 114, 573–578 (2014).
    ADS Google Scholar
  36. Mayer, A. S. et al. Offset-free gigahertz midinfrared frequency comb based on optical parametric amplification in a periodically poled lithium niobate waveguide. Phys. Rev. Appl. 6, 054009 (2016).
    ADS Google Scholar
  37. Galli, I. et al. High-coherence mid-infrared frequency comb. Opt. Express 21, 28877–28885 (2013).
    ADS Google Scholar
  38. Maidment, L., Schunemann, P. G. & Reid, D. T. Molecular fingerprint-region spectroscopy from 5 to 12 μm using an orientation-patterned gallium phosphide optical parametric oscillator. Opt. Lett. 41, 4261–4264 (2016).
    ADS Google Scholar
  39. Seidel, M. et al. Multi-watt, multi-octave, mid-infrared femtosecond source. Sci. Adv. 4, eaaq1526 (2018).
    Google Scholar
  40. Wang, C. Y. et al. Mid-infrared optical frequency combs at 2.5 μm based on crystalline microresonators. Nat. Commun. 4, 1345 (2013).
    Google Scholar
  41. Griffith, A. G. et al. Silicon-chip mid-infrared frequency comb generation. Nat. Commun. 6, 6299 (2015).
    Google Scholar
  42. Lau, R. K. W. et al. Octave-spanning mid-infrared supercontinuum generation in silicon nanowaveguides. Opt. Lett. 39, 4518–4521 (2014).
    ADS Google Scholar
  43. Kuyken, B. et al. An octave-spanning mid-infrared frequency comb generated in a silicon nanophotonic wire waveguide. Nat. Commun. 6, 6310 (2015).
    Google Scholar
  44. Singh, N. et al. Midinfrared supercontinuum generation from 2 to 6 microns in a silicon nanowire. Optica 2, 797–802 (2015).
    Google Scholar
  45. Gaeta, A. L., Lipson, M. & Kippenberg, T. J. Photonic-chip-based frequency combs. Nat. Photon. https://doi.org/10.1038/s41566-019-0358-x (2019).
  46. Hugi, A. et al. Mid-infrared frequency comb based on a quantum cascade laser. Nature 492, 229–233 (2012).
    ADS Google Scholar
  47. Sterczewski, L. A. et al. Multiheterodyne spectroscopy using interband cascade lasers. Opt. Eng. 57, 011014 (2018).
    ADS Google Scholar
  48. Zhao, S. et al. Beryllium-free Li4Sr(BO3)2 for deep-ultraviolet nonlinear optical applications. Nat. Commun. 5, 4019 (2014).
    Google Scholar
  49. Gohle, C. et al. A frequency comb in the extreme ultraviolet. Nature 436, 234–237 (2005).
    ADS Google Scholar
  50. Jones, R. J., Moll, K. D., Thorpe, M. J. & Ye, J. Phase-coherent frequency combs in the vacuum ultraviolet via high-harmonic generation inside a femtosecond enhancement cavity. Phys. Rev. Lett. 94, 193201 (2005).
    ADS Google Scholar
  51. Porat, G. et al. Phase-matched extreme-ultraviolet frequency-comb generation. Nat. Photon. 12, 387–391 (2018).
    ADS Google Scholar
  52. Cingöz, A. et al. Direct frequency comb spectroscopy in the extreme ultraviolet. Nature 482, 68–71 (2012).
    ADS Google Scholar
  53. Yost, D. C. et al. Spectroscopy of the hydrogen 1_S_–3_S_ transition with chirped laser pulses. Phys. Rev. A 93, 042509 (2016).
    ADS Google Scholar
  54. Solaro, C. et al. Direct frequency-comb-driven Raman transitions in the terahertz range. Phys. Rev. Lett. 120, 253601 (2018).
    ADS Google Scholar
  55. Barmes, I., Witte, S. & Eikema, K. S. E. Spatial and spectral coherent control with frequency combs. Nat. Photon. 7, 38–42 (2012).
    ADS Google Scholar
  56. Morgenweg, J., Barmes, I. & Eikema, K. S. E. Ramsey-comb spectroscopy with intense ultrashort laser pulses. Nat. Phys. 10, 30–33 (2013).
    Google Scholar
  57. Altmann, R. K. et al. Deep-ultraviolet frequency metrology of H2 for tests of molecular quantum theory. Phys. Rev. Lett. 120, 043204 (2018).
    ADS Google Scholar
  58. Nugent-Glandorf, L. et al. Mid-infrared virtually imaged phased array spectrometer for rapid and broadband trace gas detection. Opt. Lett. 37, 3285–3287 (2012).
    ADS Google Scholar
  59. Yu, M. et al. Gas-phase microresonator-based comb spectroscopy without an external pump laser. ACS Photon. 5, 2780–2785 (2018).
    Google Scholar
  60. Bjork, B. J. et al. Direct frequency comb measurement of OD + CO → DOCO kinetics. Science 354, 444–448 (2016).
    ADS Google Scholar
  61. Griffiths, P. R. & De Haseth, J. A. Fourier Transform Infrared Spectroscopy 2nd edn (John Wiley, Hoboken, 2007).
    Google Scholar
  62. Foltynowicz, A. et al. Quantum-noise-limited optical frequency comb spectroscopy. Phys. Rev. Lett. 107, 233002 (2011).
    ADS Google Scholar
  63. Spaun, B. et al. Continuous probing of cold complex molecules with infrared frequency comb spectroscopy. Nature 533, 517–520 (2016).
    ADS Google Scholar
  64. Changala, P. B. et al. Rovibrational quantum state resolution of the C60 fullerene. Science 363, 49–54 (2019).
    Google Scholar
  65. Lee, S.-J., Widiyatmoko, B., Kourogi, M. & Ohtsu, M. Ultrahigh scanning speed optical coherence tomography using optical frequency comb generators. Jpn. J. Appl. Phys. 40, L878–L880 (2001).
    ADS Google Scholar
  66. Jacquet, P. et al. Frequency comb Fourier transform spectroscopy with kHz optical resolution. In Advances in Imaging Paper FMB2 (OSA, 2009).
  67. Zolot, A. M. et al. Direct-comb molecular spectroscopy with accurate, resolved comb teeth over 43 THz. Opt. Lett. 37, 638–640 (2012).
    ADS Google Scholar
  68. Okubo, S. et al. Ultra-broadband dual-comb spectroscopy across 1.0–1.9 μm. Appl. Phys. Express 8, 082402 (2015).
    ADS Google Scholar
  69. Chen, Z., Yan, M., Hänsch, T. W. & Picqué, N. A phase-stable dual-comb interferometer. Nat. Commun. 9, 3035 (2018).
    ADS Google Scholar
  70. Chen, Z., Hänsch, T. W. & Picqué, N. Mid-infrared feed-forward dual-comb spectroscopy. Proc. Natl Acad. Sci. USA https://doi.org/10.1073/pnas.1819082116 (2019).
  71. Ideguchi, T. et al. Adaptive real-time dual-comb spectroscopy. Nat. Commun. 5, 3375 (2014).
    Google Scholar
  72. Roy, J., Deschênes, J.-D., Potvin, S. & Genest, J. Continuous real-time correction and averaging for frequency comb interferometry. Opt. Express 20, 21932–21939 (2012).
    ADS Google Scholar
  73. Burghoff, D., Yang, Y. & Hu, Q. Computational multiheterodyne spectroscopy. Sci. Adv. 2, e1601227 (2016).
    ADS Google Scholar
  74. Ycas, G. et al. High-coherence mid-infrared dual-comb spectroscopy spanning 2.6 to 5.2 μm. Nat. Photon. 12, 202–208 (2018).
    ADS Google Scholar
  75. Zhao, X. et al. Picometer-resolution dual-comb spectroscopy with a free-running fiber laser. Opt. Express 24, 21833–21845 (2016).
    ADS Google Scholar
  76. Mehravar, S., Norwood, R. A., Peyghambarian, N. & Kieu, K. Real-time dual-comb spectroscopy with a free-running bidirectionally mode-locked fiber laser. Appl. Phys. Lett. 108, 231104 (2016).
    ADS Google Scholar
  77. Yang, Q.-F., Yi, X., Yang, K. Y. & Vahala, K. Counter-propagating solitons in microresonators. Nat. Photon. 11, 560–564 (2017).
    Google Scholar
  78. Link, S. M., Maas, D. J. H. C., Waldburger, D. & Keller, U. Dual-comb spectroscopy of water vapor with a free-running semiconductor disk laser. Science 356, 1164–1168 (2017).
    Google Scholar
  79. Yan, M. et al. Mid-infrared dual-comb spectroscopy with electro-optic modulators. Light Sci. Appl. 6, e17076 (2017).
    Google Scholar
  80. Bernhardt, B. et al. Cavity-enhanced dual-comb spectroscopy. Nat. Photon. 4, 55–57 (2010).
    ADS Google Scholar
  81. Suh, M.-G. et al. Microresonator soliton dual-comb spectroscopy. Science 354, 600–603 (2016).
    ADS Google Scholar
  82. Dutt, A. et al. On-chip dual-comb source for spectroscopy. Sci. Adv. 4, e1701858 (2018).
    ADS Google Scholar
  83. Yu, M. et al. Silicon-chip-based mid-infrared dual-comb spectroscopy. Nat. Commun. 9, 1869 (2018).
    ADS Google Scholar
  84. Ideguchi, T. et al. Adaptive dual-comb spectroscopy in the green region. Opt. Lett. 37, 4847–4849 (2012).
    ADS Google Scholar
  85. Hipke, A. et al. Broadband Doppler-limited two-photon and stepwise excitation spectroscopy with laser frequency combs. Phys. Rev. A 90, 011805 (2014).
    ADS Google Scholar
  86. Villares, G., Hugi, A., Blaser, S. & Faist, J. Dual-comb spectroscopy based on quantum-cascade-laser frequency combs. Nat. Commun. 5, 5192 (2014).
    ADS Google Scholar
  87. Yang, Y. et al. Terahertz multiheterodyne spectroscopy using laser frequency combs. Optica 3, 499–502 (2016).
    Google Scholar
  88. Bernhardt, B. et al. Mid-infrared dual-comb spectroscopy with 2.4 μm Cr2+:ZnSe femtosecond lasers. Appl. Phys. B 100, 3–8 (2010).
    ADS Google Scholar
  89. Muraviev, A. V., Smolski, V. O., Loparo, Z. E. & Vodopyanov, K. L. Massively parallel sensing of trace molecules and their isotopologues with broadband subharmonic mid-infrared frequency combs. Nat. Photon. 12, 209–214 (2018).
    ADS Google Scholar
  90. Jin, Y., Cristescu, S. M., Harren, F. J. M. & Mandon, J. Femtosecond optical parametric oscillators toward real-time dual-comb spectroscopy. Appl. Phys. B 119, 65–74 (2015).
    ADS Google Scholar
  91. Kara, O. et al. Dual-comb spectroscopy in the spectral fingerprint region using OPGaP optical parametric oscillators. Opt. Express 25, 32713–32721 (2017).
    ADS Google Scholar
  92. Zhu, F. et al. Mid-infrared dual frequency comb spectroscopy based on fiber lasers for the detection of methane in ambient air. Laser Phys. Lett. 12, 095701 (2015).
    ADS Google Scholar
  93. Finneran, I. A. et al. Decade-spanning high-precision terahertz frequency comb. Phys. Rev. Lett. 114, 163902 (2015).
    ADS Google Scholar
  94. Yasui, T. et al. Adaptive sampling dual terahertz comb spectroscopy using dual free-running femtosecond lasers. Sci. Rep. 5, 10786 (2015).
    ADS Google Scholar
  95. Ideguchi, T. et al. Coherent Raman spectro-imaging with laser frequency combs. Nature 502, 355–358 (2013).
    ADS Google Scholar
  96. Ideguchi, T. et al. Raman-induced Kerr-effect dual-comb spectroscopy. Opt. Lett. 37, 4498–4500 (2012).
    ADS Google Scholar
  97. Asahara, A. & Minoshima, K. Development of ultrafast time-resolved dual-comb spectroscopy. APL Photon. 2, 041301 (2017).
    ADS Google Scholar
  98. Meek, S. A. et al. Doppler-free Fourier transform spectroscopy. Opt. Lett. 43, 162–165 (2018).
    ADS Google Scholar
  99. Fleisher, A. J. et al. Coherent cavity-enhanced dual-comb spectroscopy. Opt. Express 24, 10424–10434 (2016).
    ADS Google Scholar
  100. Hase, E. et al. Scan-less confocal phase imaging based on dual-comb microscopy. Optica 5, 634–643 (2018).
    Google Scholar
  101. Coluccelli, N. et al. The optical frequency comb fibre spectrometer. Nat. Commun. 7, 12995 (2016).
    ADS Google Scholar
  102. Lee, K. et al. Fourier-transform spectroscopy using an Er-doped fiber femtosecond laser by sweeping the pulse repetition rate. Sci. Rep. 5, 15726 (2015).
    ADS Google Scholar
  103. Gambetta, A. et al. Scanning micro-resonator direct-comb absolute spectroscopy. Sci. Rep. 6, 35541 (2016).
    ADS Google Scholar
  104. Urabe, K. & Sakai, O. Absorption spectroscopy using interference between optical frequency comb and single-wavelength laser. Appl. Phys. Lett. 101, 051105 (2012).
    ADS Google Scholar
  105. Ozawa, A. et al. Single ion fluorescence excited with a single mode of an UV frequency comb. Nat. Commun. 8, 44 (2017).
    ADS Google Scholar
  106. Siciliani de Cumis, M. et al. Tracing part-per-billion line shifts with direct-frequency-comb Vernier spectroscopy. Phys. Rev. A 91, 012505 (2015).
    ADS Google Scholar
  107. Schroeder, P. J. et al. Broadband, high-resolution investigation of advanced absorption line shapes at high temperature. Phys. Rev. A 96, 022514 (2017).
    ADS Google Scholar
  108. Bourbeau-Hébert, N. et al. Real-time dynamic atomic spectroscopy using electro-optic frequency combs. Phys. Rev. Appl. 6, 044012 (2016).
    ADS Google Scholar
  109. Reber, M. A. R., Chen, Y. & Allison, T. K. Cavity-enhanced ultrafast spectroscopy: ultrafast meets ultrasensitive. Optica 3, 311–317 (2016).
    Google Scholar
  110. Kim, J., Cho, B., Yoon, T. H. & Cho, M. Dual-frequency comb transient absorption: broad dynamic range measurement of femtosecond to nanosecond relaxation processes. J. Phys. Chem. Lett. 9, 1866–1871 (2018).
    Google Scholar
  111. Avino, S. et al. Evanescent-wave comb spectroscopy of liquids with strongly dispersive optical fiber cavities. Appl. Phys. Lett. 102, 201116 (2013).
    ADS Google Scholar
  112. Cho, B., Yoon, T. H. & Cho, M. Dual-comb spectroscopy of molecular electronic transitions in condensed phases. Phys. Rev. A 97, 033831 (2018).
    ADS Google Scholar
  113. Ganz, T. et al. Vector frequency-comb Fourier-transform spectroscopy for characterizing metamaterials. New J. Phys. 10, 123007 (2008).
    ADS Google Scholar
  114. Apolonski, A. et al. Controlling the phase evolution of few-cycle light pulses. Phys. Rev. Lett. 85, 740–743 (2000).
    ADS Google Scholar
  115. Meshulach, D. & Silberberg, Y. Coherent quantum control of two-photon transitions by a femtosecond laser pulse. Nature 396, 239–242 (1998).
    ADS Google Scholar
  116. Stowe, M. C., Cruz, F. C., Marian, A. & Ye, J. High resolution atomic coherent control via spectral phase manipulation of an optical frequency comb. Phys. Rev. Lett. 96, 153001 (2006).
    ADS Google Scholar
  117. Lomsadze, B. & Cundiff, S. T. Frequency combs enable rapid and high-resolution multidimensional coherent spectroscopy. Science 357, 1389–1391 (2017).
    ADS MathSciNet MATH Google Scholar
  118. Lomsadze, B., Smith, B. C. & Cundiff, S. T. Tri-comb spectroscopy. Nat. Photon. 12, 676–680 (2018).
    ADS Google Scholar
  119. Bennett, K., Rouxel, J. R. & Mukamel, S. Linear and nonlinear frequency- and time-domain spectroscopy with multiple frequency combs. J. Chem. Phys. 147, 094304 (2017).
    ADS Google Scholar
  120. Coburn, S. et al. Regional trace-gas source attribution using a field-deployed dual frequency comb spectrometer. Optica 5, 320–327 (2018).
    Google Scholar
  121. Bergevin, J. et al. Dual-comb spectroscopy of laser-induced plasmas. Nat. Commun. 9, 1273 (2018).
    ADS Google Scholar
  122. Thorpe, M. J., Balslev-Clausen, D., Kirchner, M. S. & Ye, J. Cavity-enhanced optical frequency comb spectroscopy: application to human breath analysis. Opt. Express 16, 2387–2397 (2008).
    ADS Google Scholar
  123. Klocke, J. L. et al. Single-shot sub-microsecond mid-infrared spectroscopy on protein reactions with quantum cascade laser frequency combs. Anal. Chem. 90, 10494–10500 (2018).
    Google Scholar
  124. Brehm, M., Schliesser, A. & Keilmann, F. Spectroscopic near-field microscopy using frequency combs in the mid-infrared. Opt. Express 14, 11222–11233 (2006).
    ADS Google Scholar
  125. Chen, Z., Yan, M., Hänsch, T. W. & Picqué, N. Evanescent-wave gas sensing with dual-comb spectroscopy. In Conference on Lasers and Electro-Optics Paper SF1M.7 (OSA, 2017).

Download references