Hänsch, T. W. Nobel lecture: passion for precision. Rev. Mod. Phys.78, 1297–1309 (2006). ADS Google Scholar
Wilken, T. et al. A spectrograph for exoplanet observations calibrated at the centimetre-per-second level. Nature485, 611–614 (2012). ADS Google Scholar
Baltuška, A. et al. Attosecond control of electronic processes by intense light fields. Nature421, 611–615 (2003). ADS Google Scholar
Torres-Company, V. & Weiner, A. M. Optical frequency comb technology for ultra-broadband radio-frequency photonics. Laser Photon. Rev.8, 368–393 (2013). ADS Google Scholar
Maddaloni, P., Bellini, M. & de Natale, P. Laser-Based Measurements for Time and Frequency Domain Applications: A Handbook (CRC Press, Boca Raton, 2013). Google Scholar
Ye, J. & Cundiff, S. T. (eds) Femtosecond Optical Frequency Comb: Principle,Operation and Applications (Springer Science + Business Media, Boston, 2005).
Teets, R., Eckstein, J. & Hänsch, T. W. Coherent two-photon excitation by multiple light pulses. Phys. Rev. Lett.38, 760–764 (1977). ADS Google Scholar
Eckstein, J. N., Ferguson, A. I. & Hänsch, T. W. High-resolution two-photon spectroscopy with picosecond light pulses. Phys. Rev. Lett.40, 847–850 (1978). ADS Google Scholar
Baklanov, Y. V. & Chebotayev, V. P. Narrow resonances of two-photon absorption of super-narrow pulses in a gas. Appl. Phys.12, 97–99 (1977). ADS Google Scholar
Eckstein, J. N. High Resolution Spectroscopy Using Multiple Coherent Interactions. PhD thesis, Stanford Univ. (1978).
Reichert, J., Holzwarth, R., Udem, T. & Hänsch, T. W. Measuring the frequency of light with mode-locked lasers. Opt. Commun.172, 59–68 (1999). ADS Google Scholar
Keilmann, F., Gohle, C. & Holzwarth, R. Time-domain mid-infrared frequency-comb spectrometer. Opt. Lett.29, 1542–1544 (2004). ADS Google Scholar
Picqué, N. & Guelachvili, G. Femtosecond frequency combs: new trends for Fourier transform spectroscopy. In Fourier Transform Spectroscopy/Hyperspectral Imaging and Sounding of the Environment Paper FTuA2 (OSA, 2005).
Yasui, T. et al. Terahertz frequency comb by multifrequency-heterodyning photoconductive detection for high-accuracy, high-resolution terahertz spectroscopy. Appl. Phys. Lett.88, 241104 (2006). ADS Google Scholar
Thorpe, M. J. et al. Broadband cavity ringdown spectroscopy for sensitive and rapid molecular detection. Science311, 1595–1599 (2006). ADS Google Scholar
Diddams, S. A., Hollberg, L. & Mbele, V. Molecular fingerprinting with the resolved modes of a femtosecond laser frequency comb. Nature445, 627–630 (2007). Google Scholar
Gohle, C. et al. Frequency comb Vernier spectroscopy for broadband, high-resolution, high-sensitivity absorption and dispersion spectra. Phys. Rev. Lett.99, 263902 (2007). ADS Google Scholar
Coddington, I., Swann, W. C. & Newbury, N. R. Coherent multiheterodyne spectroscopy using stabilized optical frequency combs. Phys. Rev. Lett.100, 013902 (2008). ADS Google Scholar
Mandon, J., Guelachvili, G. & Picqué, N. Fourier transform spectroscopy with a laser frequency comb. Nat. Photon.3, 99–102 (2009). ADS Google Scholar
Marian, A. et al. United time-frequency spectroscopy for dynamics and global structure. Science306, 2063–2068 (2004). ADS Google Scholar
Kippenberg, T. J., Gaeta, A. L., Lipson, M. & Gorodetsky, M. L. Dissipative Kerr solitons in optical microresonators. Science361, eaan8083 (2018). Google Scholar
Stern, B. et al. Battery-operated integrated frequency comb generator. Nature562, 401–405 (2018). ADS Google Scholar
Wang, Z. et al. A III–V-on-Si ultra-dense comb laser. Light Sci. Appl.6, e16260 (2017). Google Scholar
Long, D. A. et al. Multiheterodyne spectroscopy with optical frequency combs generated from a continuous-wave laser. Opt. Lett.39, 2688–2690 (2014). ADS Google Scholar
Millot, G. et al. Frequency-agile dual-comb spectroscopy. Nat. Photon.10, 27–30 (2016). ADS Google Scholar
Consolino, L. et al. Phase-locking to a free-space terahertz comb for metrological-grade terahertz lasers. Nat. Commun.3, 1040 (2012). Google Scholar
Yardimci, N. T., Yang, S. H., Berry, C. W. & Jarrahi, M. High-power terahertz generation using large-area plasmonic photoconductive emitters. IEEE Trans. Terahertz Sci. Technol.5, 223–229 (2015). ADS Google Scholar
Burghoff, D. et al. Terahertz laser frequency combs. Nat. Photon.8, 462–467 (2014). ADS Google Scholar
Rösch, M. et al. Heterogeneous terahertz quantum cascade lasers exceeding 1.9 THz spectral bandwidth and featuring dual comb operation. Nanophotonics7, 237–242 (2018). Google Scholar
Tammaro, S. et al. High density terahertz frequency comb produced by coherent synchrotron radiation. Nat. Commun.6, 7733 (2015). Google Scholar
Schliesser, A., Picqué, N. & Hänsch, T. W. Mid-infrared frequency combs. Nat. Photon.6, 440–449 (2012). ADS Google Scholar
Duval, S. et al. Femtosecond fiber lasers reach the mid-infrared. Optica2, 623–626 (2015). Google Scholar
Schunemann, P. G. et al. Advances in nonlinear optical crystals for mid-infrared coherent sources. J. Opt. Soc. Am. B33, D36–D43 (2016). Google Scholar
Vainio, M. & Halonen, L. Mid-infrared optical parametric oscillators and frequency combs for molecular spectroscopy. Phys. Chem. Chem. Phys.18, 4266–4294 (2016). Google Scholar
Meek, S. et al. Fourier transform spectroscopy around 3 μm with a broad difference frequency comb. Appl. Phys. B114, 573–578 (2014). ADS Google Scholar
Mayer, A. S. et al. Offset-free gigahertz midinfrared frequency comb based on optical parametric amplification in a periodically poled lithium niobate waveguide. Phys. Rev. Appl.6, 054009 (2016). ADS Google Scholar
Galli, I. et al. High-coherence mid-infrared frequency comb. Opt. Express21, 28877–28885 (2013). ADS Google Scholar
Maidment, L., Schunemann, P. G. & Reid, D. T. Molecular fingerprint-region spectroscopy from 5 to 12 μm using an orientation-patterned gallium phosphide optical parametric oscillator. Opt. Lett.41, 4261–4264 (2016). ADS Google Scholar
Seidel, M. et al. Multi-watt, multi-octave, mid-infrared femtosecond source. Sci. Adv.4, eaaq1526 (2018). Google Scholar
Wang, C. Y. et al. Mid-infrared optical frequency combs at 2.5 μm based on crystalline microresonators. Nat. Commun.4, 1345 (2013). Google Scholar
Griffith, A. G. et al. Silicon-chip mid-infrared frequency comb generation. Nat. Commun.6, 6299 (2015). Google Scholar
Lau, R. K. W. et al. Octave-spanning mid-infrared supercontinuum generation in silicon nanowaveguides. Opt. Lett.39, 4518–4521 (2014). ADS Google Scholar
Kuyken, B. et al. An octave-spanning mid-infrared frequency comb generated in a silicon nanophotonic wire waveguide. Nat. Commun.6, 6310 (2015). Google Scholar
Singh, N. et al. Midinfrared supercontinuum generation from 2 to 6 microns in a silicon nanowire. Optica2, 797–802 (2015). Google Scholar
Hugi, A. et al. Mid-infrared frequency comb based on a quantum cascade laser. Nature492, 229–233 (2012). ADS Google Scholar
Sterczewski, L. A. et al. Multiheterodyne spectroscopy using interband cascade lasers. Opt. Eng.57, 011014 (2018). ADS Google Scholar
Zhao, S. et al. Beryllium-free Li4Sr(BO3)2 for deep-ultraviolet nonlinear optical applications. Nat. Commun.5, 4019 (2014). Google Scholar
Gohle, C. et al. A frequency comb in the extreme ultraviolet. Nature436, 234–237 (2005). ADS Google Scholar
Jones, R. J., Moll, K. D., Thorpe, M. J. & Ye, J. Phase-coherent frequency combs in the vacuum ultraviolet via high-harmonic generation inside a femtosecond enhancement cavity. Phys. Rev. Lett.94, 193201 (2005). ADS Google Scholar
Porat, G. et al. Phase-matched extreme-ultraviolet frequency-comb generation. Nat. Photon.12, 387–391 (2018). ADS Google Scholar
Cingöz, A. et al. Direct frequency comb spectroscopy in the extreme ultraviolet. Nature482, 68–71 (2012). ADS Google Scholar
Yost, D. C. et al. Spectroscopy of the hydrogen 1_S_–3_S_ transition with chirped laser pulses. Phys. Rev. A93, 042509 (2016). ADS Google Scholar
Solaro, C. et al. Direct frequency-comb-driven Raman transitions in the terahertz range. Phys. Rev. Lett.120, 253601 (2018). ADS Google Scholar
Barmes, I., Witte, S. & Eikema, K. S. E. Spatial and spectral coherent control with frequency combs. Nat. Photon.7, 38–42 (2012). ADS Google Scholar
Morgenweg, J., Barmes, I. & Eikema, K. S. E. Ramsey-comb spectroscopy with intense ultrashort laser pulses. Nat. Phys.10, 30–33 (2013). Google Scholar
Altmann, R. K. et al. Deep-ultraviolet frequency metrology of H2 for tests of molecular quantum theory. Phys. Rev. Lett.120, 043204 (2018). ADS Google Scholar
Nugent-Glandorf, L. et al. Mid-infrared virtually imaged phased array spectrometer for rapid and broadband trace gas detection. Opt. Lett.37, 3285–3287 (2012). ADS Google Scholar
Yu, M. et al. Gas-phase microresonator-based comb spectroscopy without an external pump laser. ACS Photon.5, 2780–2785 (2018). Google Scholar
Bjork, B. J. et al. Direct frequency comb measurement of OD + CO → DOCO kinetics. Science354, 444–448 (2016). ADS Google Scholar
Griffiths, P. R. & De Haseth, J. A. Fourier Transform Infrared Spectroscopy 2nd edn (John Wiley, Hoboken, 2007). Google Scholar
Foltynowicz, A. et al. Quantum-noise-limited optical frequency comb spectroscopy. Phys. Rev. Lett.107, 233002 (2011). ADS Google Scholar
Spaun, B. et al. Continuous probing of cold complex molecules with infrared frequency comb spectroscopy. Nature533, 517–520 (2016). ADS Google Scholar
Changala, P. B. et al. Rovibrational quantum state resolution of the C60 fullerene. Science363, 49–54 (2019). Google Scholar
Lee, S.-J., Widiyatmoko, B., Kourogi, M. & Ohtsu, M. Ultrahigh scanning speed optical coherence tomography using optical frequency comb generators. Jpn. J. Appl. Phys.40, L878–L880 (2001). ADS Google Scholar
Jacquet, P. et al. Frequency comb Fourier transform spectroscopy with kHz optical resolution. In Advances in Imaging Paper FMB2 (OSA, 2009).
Zolot, A. M. et al. Direct-comb molecular spectroscopy with accurate, resolved comb teeth over 43 THz. Opt. Lett.37, 638–640 (2012). ADS Google Scholar
Okubo, S. et al. Ultra-broadband dual-comb spectroscopy across 1.0–1.9 μm. Appl. Phys. Express8, 082402 (2015). ADS Google Scholar
Chen, Z., Yan, M., Hänsch, T. W. & Picqué, N. A phase-stable dual-comb interferometer. Nat. Commun.9, 3035 (2018). ADS Google Scholar
Chen, Z., Hänsch, T. W. & Picqué, N. Mid-infrared feed-forward dual-comb spectroscopy. Proc. Natl Acad. Sci. USAhttps://doi.org/10.1073/pnas.1819082116 (2019).
Ideguchi, T. et al. Adaptive real-time dual-comb spectroscopy. Nat. Commun.5, 3375 (2014). Google Scholar
Roy, J., Deschênes, J.-D., Potvin, S. & Genest, J. Continuous real-time correction and averaging for frequency comb interferometry. Opt. Express20, 21932–21939 (2012). ADS Google Scholar
Burghoff, D., Yang, Y. & Hu, Q. Computational multiheterodyne spectroscopy. Sci. Adv.2, e1601227 (2016). ADS Google Scholar
Ycas, G. et al. High-coherence mid-infrared dual-comb spectroscopy spanning 2.6 to 5.2 μm. Nat. Photon.12, 202–208 (2018). ADS Google Scholar
Zhao, X. et al. Picometer-resolution dual-comb spectroscopy with a free-running fiber laser. Opt. Express24, 21833–21845 (2016). ADS Google Scholar
Mehravar, S., Norwood, R. A., Peyghambarian, N. & Kieu, K. Real-time dual-comb spectroscopy with a free-running bidirectionally mode-locked fiber laser. Appl. Phys. Lett.108, 231104 (2016). ADS Google Scholar
Yang, Q.-F., Yi, X., Yang, K. Y. & Vahala, K. Counter-propagating solitons in microresonators. Nat. Photon.11, 560–564 (2017). Google Scholar
Link, S. M., Maas, D. J. H. C., Waldburger, D. & Keller, U. Dual-comb spectroscopy of water vapor with a free-running semiconductor disk laser. Science356, 1164–1168 (2017). Google Scholar
Yan, M. et al. Mid-infrared dual-comb spectroscopy with electro-optic modulators. Light Sci. Appl.6, e17076 (2017). Google Scholar
Bernhardt, B. et al. Cavity-enhanced dual-comb spectroscopy. Nat. Photon.4, 55–57 (2010). ADS Google Scholar
Suh, M.-G. et al. Microresonator soliton dual-comb spectroscopy. Science354, 600–603 (2016). ADS Google Scholar
Dutt, A. et al. On-chip dual-comb source for spectroscopy. Sci. Adv.4, e1701858 (2018). ADS Google Scholar
Yu, M. et al. Silicon-chip-based mid-infrared dual-comb spectroscopy. Nat. Commun.9, 1869 (2018). ADS Google Scholar
Ideguchi, T. et al. Adaptive dual-comb spectroscopy in the green region. Opt. Lett.37, 4847–4849 (2012). ADS Google Scholar
Hipke, A. et al. Broadband Doppler-limited two-photon and stepwise excitation spectroscopy with laser frequency combs. Phys. Rev. A90, 011805 (2014). ADS Google Scholar
Villares, G., Hugi, A., Blaser, S. & Faist, J. Dual-comb spectroscopy based on quantum-cascade-laser frequency combs. Nat. Commun.5, 5192 (2014). ADS Google Scholar
Yang, Y. et al. Terahertz multiheterodyne spectroscopy using laser frequency combs. Optica3, 499–502 (2016). Google Scholar
Bernhardt, B. et al. Mid-infrared dual-comb spectroscopy with 2.4 μm Cr2+:ZnSe femtosecond lasers. Appl. Phys. B100, 3–8 (2010). ADS Google Scholar
Muraviev, A. V., Smolski, V. O., Loparo, Z. E. & Vodopyanov, K. L. Massively parallel sensing of trace molecules and their isotopologues with broadband subharmonic mid-infrared frequency combs. Nat. Photon.12, 209–214 (2018). ADS Google Scholar
Jin, Y., Cristescu, S. M., Harren, F. J. M. & Mandon, J. Femtosecond optical parametric oscillators toward real-time dual-comb spectroscopy. Appl. Phys. B119, 65–74 (2015). ADS Google Scholar
Kara, O. et al. Dual-comb spectroscopy in the spectral fingerprint region using OPGaP optical parametric oscillators. Opt. Express25, 32713–32721 (2017). ADS Google Scholar
Zhu, F. et al. Mid-infrared dual frequency comb spectroscopy based on fiber lasers for the detection of methane in ambient air. Laser Phys. Lett.12, 095701 (2015). ADS Google Scholar
Finneran, I. A. et al. Decade-spanning high-precision terahertz frequency comb. Phys. Rev. Lett.114, 163902 (2015). ADS Google Scholar
Yasui, T. et al. Adaptive sampling dual terahertz comb spectroscopy using dual free-running femtosecond lasers. Sci. Rep.5, 10786 (2015). ADS Google Scholar
Ideguchi, T. et al. Coherent Raman spectro-imaging with laser frequency combs. Nature502, 355–358 (2013). ADS Google Scholar
Ideguchi, T. et al. Raman-induced Kerr-effect dual-comb spectroscopy. Opt. Lett.37, 4498–4500 (2012). ADS Google Scholar
Asahara, A. & Minoshima, K. Development of ultrafast time-resolved dual-comb spectroscopy. APL Photon.2, 041301 (2017). ADS Google Scholar
Meek, S. A. et al. Doppler-free Fourier transform spectroscopy. Opt. Lett.43, 162–165 (2018). ADS Google Scholar
Fleisher, A. J. et al. Coherent cavity-enhanced dual-comb spectroscopy. Opt. Express24, 10424–10434 (2016). ADS Google Scholar
Hase, E. et al. Scan-less confocal phase imaging based on dual-comb microscopy. Optica5, 634–643 (2018). Google Scholar
Coluccelli, N. et al. The optical frequency comb fibre spectrometer. Nat. Commun.7, 12995 (2016). ADS Google Scholar
Lee, K. et al. Fourier-transform spectroscopy using an Er-doped fiber femtosecond laser by sweeping the pulse repetition rate. Sci. Rep.5, 15726 (2015). ADS Google Scholar
Gambetta, A. et al. Scanning micro-resonator direct-comb absolute spectroscopy. Sci. Rep.6, 35541 (2016). ADS Google Scholar
Urabe, K. & Sakai, O. Absorption spectroscopy using interference between optical frequency comb and single-wavelength laser. Appl. Phys. Lett.101, 051105 (2012). ADS Google Scholar
Ozawa, A. et al. Single ion fluorescence excited with a single mode of an UV frequency comb. Nat. Commun.8, 44 (2017). ADS Google Scholar
Siciliani de Cumis, M. et al. Tracing part-per-billion line shifts with direct-frequency-comb Vernier spectroscopy. Phys. Rev. A91, 012505 (2015). ADS Google Scholar
Schroeder, P. J. et al. Broadband, high-resolution investigation of advanced absorption line shapes at high temperature. Phys. Rev. A96, 022514 (2017). ADS Google Scholar
Bourbeau-Hébert, N. et al. Real-time dynamic atomic spectroscopy using electro-optic frequency combs. Phys. Rev. Appl.6, 044012 (2016). ADS Google Scholar
Reber, M. A. R., Chen, Y. & Allison, T. K. Cavity-enhanced ultrafast spectroscopy: ultrafast meets ultrasensitive. Optica3, 311–317 (2016). Google Scholar
Kim, J., Cho, B., Yoon, T. H. & Cho, M. Dual-frequency comb transient absorption: broad dynamic range measurement of femtosecond to nanosecond relaxation processes. J. Phys. Chem. Lett.9, 1866–1871 (2018). Google Scholar
Avino, S. et al. Evanescent-wave comb spectroscopy of liquids with strongly dispersive optical fiber cavities. Appl. Phys. Lett.102, 201116 (2013). ADS Google Scholar
Cho, B., Yoon, T. H. & Cho, M. Dual-comb spectroscopy of molecular electronic transitions in condensed phases. Phys. Rev. A97, 033831 (2018). ADS Google Scholar
Ganz, T. et al. Vector frequency-comb Fourier-transform spectroscopy for characterizing metamaterials. New J. Phys.10, 123007 (2008). ADS Google Scholar
Apolonski, A. et al. Controlling the phase evolution of few-cycle light pulses. Phys. Rev. Lett.85, 740–743 (2000). ADS Google Scholar
Meshulach, D. & Silberberg, Y. Coherent quantum control of two-photon transitions by a femtosecond laser pulse. Nature396, 239–242 (1998). ADS Google Scholar
Stowe, M. C., Cruz, F. C., Marian, A. & Ye, J. High resolution atomic coherent control via spectral phase manipulation of an optical frequency comb. Phys. Rev. Lett.96, 153001 (2006). ADS Google Scholar
Lomsadze, B. & Cundiff, S. T. Frequency combs enable rapid and high-resolution multidimensional coherent spectroscopy. Science357, 1389–1391 (2017). ADSMathSciNetMATH Google Scholar
Lomsadze, B., Smith, B. C. & Cundiff, S. T. Tri-comb spectroscopy. Nat. Photon.12, 676–680 (2018). ADS Google Scholar
Bennett, K., Rouxel, J. R. & Mukamel, S. Linear and nonlinear frequency- and time-domain spectroscopy with multiple frequency combs. J. Chem. Phys.147, 094304 (2017). ADS Google Scholar
Coburn, S. et al. Regional trace-gas source attribution using a field-deployed dual frequency comb spectrometer. Optica5, 320–327 (2018). Google Scholar
Bergevin, J. et al. Dual-comb spectroscopy of laser-induced plasmas. Nat. Commun.9, 1273 (2018). ADS Google Scholar
Thorpe, M. J., Balslev-Clausen, D., Kirchner, M. S. & Ye, J. Cavity-enhanced optical frequency comb spectroscopy: application to human breath analysis. Opt. Express16, 2387–2397 (2008). ADS Google Scholar
Klocke, J. L. et al. Single-shot sub-microsecond mid-infrared spectroscopy on protein reactions with quantum cascade laser frequency combs. Anal. Chem.90, 10494–10500 (2018). Google Scholar
Brehm, M., Schliesser, A. & Keilmann, F. Spectroscopic near-field microscopy using frequency combs in the mid-infrared. Opt. Express14, 11222–11233 (2006). ADS Google Scholar
Chen, Z., Yan, M., Hänsch, T. W. & Picqué, N. Evanescent-wave gas sensing with dual-comb spectroscopy. In Conference on Lasers and Electro-Optics Paper SF1M.7 (OSA, 2017).