The role of B cells in atherosclerosis (original) (raw)
GBD 2015 Mortality and Causes of Death Collaborators. Global, regional, and national life expectancy, all-cause mortality, and cause-specific mortality for 249 causes of death, 1980-2015: a systematic analysis for the Global Burden of Disease Study 2015. Lancet388, 1459–1544 (2016). Google Scholar
Libby, P., Lichtman, A. H. & Hansson, G. K. Immune effector mechanisms implicated in atherosclerosis: from mice to humans. Immunity38, 1092–1104 (2013). CASPubMedPubMed Central Google Scholar
Gisterå, A. & Hansson, G. K. The immunology of atherosclerosis. Nat. Rev. Nephrol.13, 368–380 (2017). PubMed Google Scholar
Binder, C. J., Papac-Milicevic, N. & Witztum, J. L. Innate sensing of oxidation-specific epitopes in health and disease. Nat. Rev. Immunol.16, 485–497 (2016). CASPubMed Google Scholar
Tsiantoulas, D., Diehl, C. J., Witztum, J. L. & Binder, C. J. B cells and humoral immunity in atherosclerosis. Circ. Res.114, 1743–1756 (2014). CASPubMedPubMed Central Google Scholar
Yahagi, K. et al. Pathophysiology of native coronary, vein graft, and in-stent atherosclerosis. Nat. Rev. Cardiol.13, 79–98 (2015). PubMed Google Scholar
Houtkamp, M. A., de Boer, O. J., van der Loos, C. M., van der Wal, A. C. & Becker, A. E. Adventitial infiltrates associated with advanced atherosclerotic plaques: structural organization suggests generation of local humoral immune responses. J. Pathol.193, 263–269 (2001). CASPubMed Google Scholar
Moos, M. P. et al. The lamina adventitia is the major site of immune cell accumulation in standard chow-fed apolipoprotein E-deficient mice. Arterioscler. Thromb. Vasc. Biol.25, 2386–2391 (2005). CASPubMed Google Scholar
Smith, J. D. et al. Decreased atherosclerosis in mice deficient in both macrophage colony-stimulating factor (op) and apolipoprotein E. Proc. Natl Acad. Sci. USA92, 8264–8268 (1995). CASPubMed Google Scholar
Song, L., Leung, C. & Schindler, C. Lymphocytes are important in early atherosclerosis. J. Clin. Invest.108, 251–259 (2001). CASPubMedPubMed Central Google Scholar
Reardon, C. A., Blachowicz, L., Lukens, J., Nissenbaum, M. & Getz, G. S. Genetic background selectively influences innominate artery atherosclerosis. Arterioscler. Thromb. Vasc. Biol.23, 1449–1454 (2003). CASPubMed Google Scholar
Skaggs, B. J., Hahn, B. H. & McMahon, M. Accelerated atherosclerosis in patients with SLE—mechanisms and management. Nat. Rev. Rheumatol.8, 214–223 (2012). CASPubMedPubMed Central Google Scholar
Ridker, P. M. et al. Antiinflammatory therapy with canakinumab for atherosclerotic disease. N. Engl. J. Med.377, 1119–1131 (2017). CAS Google Scholar
Tsiantoulas, D., Sage, A. P., Mallat, Z. & Binder, C. J. Targeting B cells in atherosclerosis: closing the gap from bench to bedside. Arterioscler. Thromb. Vasc. Biol.35, 296–302 (2015). CASPubMed Google Scholar
Srikakulapu, P. & McNamara, C. B. Cells and atherosclerosis. Am. J. Physiol. Heart Circ. Physiol.312, H1060–H1067 (2017). PubMedPubMed Central Google Scholar
Hardy, R. R., Kincade, P. W. & Dorshkind, K. The protean nature of cells in the B lymphocyte lineage. Immunity26, 703–714 (2007). CASPubMed Google Scholar
Clark, M. R., Mandal, M., Ochiai, K. & Singh, H. Orchestrating B cell lymphopoiesis through interplay of IL-7 receptor and pre-B cell receptor signalling. Nat. Rev. Immunol.14, 69–80 (2014). CASPubMed Google Scholar
Schatz, D. G. & Ji, Y. Recombination centres and the orchestration of V(D)J recombination. Nat. Rev. Immunol.11, 251–263 (2011). CASPubMed Google Scholar
Nimmerjahn, F. & Ravetch, J. V. Divergent immunoglobulin G subclass activity through selective Fc receptor binding. Science310, 1510–1512 (2005). CASPubMed Google Scholar
Anthony, R. M., Wermeling, F. & Ravetch, J. V. Novel roles for the IgG Fc glycan. Ann. NY Acad. Sci.1253, 170–180 (2012). CASPubMed Google Scholar
Menni, C. et al. Glycosylation profile of immunoglobulin G is cross-sectionally associated with cardiovascular disease risk score and subclinical atherosclerosis in two independent cohorts. Circ. Res.122, 1555–1564 (2018). CASPubMedPubMed Central Google Scholar
Pillai, S. & Cariappa, A. The follicular versus marginal zone B lymphocyte cell fate decision. Nat. Rev. Immunol.9, 767–777 (2009). CASPubMed Google Scholar
Hardy, R. R. B-1 B cells: development, selection, natural autoantibody and leukemia. Curr. Opin. Immunol.18, 547–555 (2006). CASPubMed Google Scholar
Baumgarth, N. B-1 cell heterogeneity and the regulation of natural and antigen-induced IgM production. Front. Immunol.7, 324 (2016). PubMedPubMed Central Google Scholar
Choi, Y., Dieter, J. A., Rothaeusler, K., Luo, Z. & Baumgarth, N. B-1 cells in the bone marrow are a significant source of natural IgM. Eur. J. Immunol.42, 120–129 (2012). CASPubMed Google Scholar
Griffin, D. O., Holodick, N. E. & Rothstein, T. L. Human B1 cells in umbilical cord and adult peripheral blood express the novel phenotype CD20+CD27+CD43+CD70−. J. Exp. Med.208, 67–80 (2011). CASPubMedPubMed Central Google Scholar
Muppidi, J. R. et al. Cannabinoid receptor 2 positions and retains marginal zone B cells within the splenic marginal zone. J. Exp. Med.208, 1941–1948 (2011). CASPubMedPubMed Central Google Scholar
Weller, S. et al. Human blood IgM “memory” B cells are circulating splenic marginal zone B cells harboring a prediversified immunoglobulin repertoire. Blood104, 3647–3654 (2004). CASPubMedPubMed Central Google Scholar
Palm, A.-K. E., Friedrich, H. C. & Kleinau, S. Nodal marginal zone B cells in mice: a novel subset with dormant self-reactivity. Sci. Rep.6, 27687 (2016). CASPubMedPubMed Central Google Scholar
Corcoran, L. M. & Tarlinton, D. M. Regulation of germinal center responses, memory B cells and plasma cell formation-an update. Curr. Opin. Immunol.39, 59–67 (2016). CASPubMed Google Scholar
Dogan, I. et al. Multiple layers of B cell memory with different effector functions. Nat. Immunol.10, 1292–1299 (2009). CASPubMed Google Scholar
Weisel, F. J., Zuccarino-Catania, G. V., Chikina, M. & Shlomchik, M. J. A. Temporal switch in the germinal center determines differential output of memory B and plasma cells. Immunity44, 116–130 (2016). CASPubMedPubMed Central Google Scholar
Reynolds, A. E., Kuraoka, M. & Kelsoe, G. Natural IgM is produced by CD5- plasma cells that occupy a distinct survival niche in bone marrow. J. Immunol.194, 231–242 (2015). CASPubMed Google Scholar
Montecino-Rodriguez, E. et al. Distinct genetic networks orchestrate the emergence of specific waves of fetal and adult B-1 and B-2 development. Immunity45, 527–539 (2016). CASPubMedPubMed Central Google Scholar
Tanigaki, K. et al. Notch–RBP-J signaling is involved in cell fate determination of marginal zone B cells. Nat. Immunol.3, 443–450 (2002). CASPubMed Google Scholar
Goodnow, C. C., Sprent, J., Fazekas de St Groth, B. & Vinuesa, C. G. Cellular and genetic mechanisms of self tolerance and autoimmunity. Nature435, 590–597 (2005). CASPubMed Google Scholar
von Boehmer, H. & Melchers, F. Checkpoints in lymphocyte development and autoimmune disease. Nat. Immunol.11, 14–20 (2009). Google Scholar
Chan, T. D. et al. Elimination of germinal-center-derived self-reactive B cells is governed by the location and concentration of self-antigen. Immunity37, 893–904 (2012). CASPubMed Google Scholar
Malkiel, S., Barlev, A. N., Atisha-Fregoso, Y., Suurmond, J. & Diamond, B. Plasma cell differentiation pathways in systemic lupus erythematosus. Front. Immunol.9, 427 (2018). PubMedPubMed Central Google Scholar
Knoflach, M., Behard, D. & Wick, G. Anti-HSP60 immunity is already associated with atherosclerosis early in life. Ann. NY Acad. Sci.1051, 323–331 (2005). CASPubMed Google Scholar
Grundtman, C. et al. Mycobacterial heat shock protein 65 (mbHSP65)-induced atherosclerosis: preventive oral tolerization and definition of atheroprotective and atherogenic mbHSP65 peptides. Atherosclerosis242, 303–310 (2015). CASPubMed Google Scholar
Aprahamian, T. et al. Impaired clearance of apoptotic cells promotes synergy between atherogenesis and autoimmune disease. J. Exp. Med.199, 1121–1131 (2004). CASPubMedPubMed Central Google Scholar
Feng, X. et al. ApoE−/−Fas−/− C57BL/6 mice: a novel murine model simultaneously exhibits lupus nephritis, atherosclerosis, and osteopenia. J. Lipid Res.48, 794–805 (2007). CASPubMed Google Scholar
Gautier, E. L. et al. Enhanced immune system activation and arterial inflammation accelerates atherosclerosis in lupus-prone mice. Arterioscler. Thromb. Vasc. Biol.27, 1625–1631 (2007). CASPubMed Google Scholar
Stanic, A. K. et al. Immune dysregulation accelerates atherosclerosis and modulates plaque composition in systemic lupus erythematosus. Proc. Natl Acad. Sci. USA103, 7018–7023 (2006). CASPubMed Google Scholar
Lewis, M. J. et al. Distinct roles for complement in glomerulonephritis and atherosclerosis revealed in mice with a combination of lupus and hyperlipidemia. Arthritis Rheum.64, 2707–2718 (2012). CASPubMedPubMed Central Google Scholar
Temmerman, L. et al. Leukocyte Bim deficiency does not impact atherogenesis in Ldlr −/− mice, despite a pronounced induction of autoimmune inflammation. Sci. Rep.7, 3086 (2017). PubMedPubMed Central Google Scholar
Konstantinov, I. E., Mejevoi, N. & Anichkov, N. M. Nikolai, N. Anichkov and his theory of atherosclerosis. Tex. Heart Inst. J.33, 417–423 (2006). PubMedPubMed Central Google Scholar
Hollander, W., Colombo, M. A., Kirkpatrick, B. & Paddock, J. Soluble proteins in the human atheroschlerotic plaque with spectral reference to immunoglobulins, C3-complement component, α1-antitrypsin and α2-macroglobulin. Atherosclerosis34, 391–405 (1979). CASPubMed Google Scholar
Hansson, G. K., Bondjers, G., Bylock, A. & Hjalmarsson, L. Ultrastructural studies on the localization of IgG in the aortic endothelium and subendothelial intima of atherosclerotic and nonatherosclerotic rabbits. Exp. Mol. Pathol.33, 302–315 (1980). CASPubMed Google Scholar
Parums, D. & Mitchinson, M. J. Demonstration of immunoglobulin in the neighbourhood of advanced atherosclerotic plaques. Atherosclerosis38, 211–216 (1981). CASPubMed Google Scholar
Vlaicu, R., Rus, H. G., Niculescu, F. & Cristea, A. Immunoglobulins and complement components in human aortic atherosclerotic intima. Atherosclerosis55, 35–50 (1985). CASPubMed Google Scholar
Ylä-Herttuala, S. et al. Rabbit and human atherosclerotic lesions contain IgG that recognizes epitopes of oxidized LDL. Arterioscler. Thromb. Vasc. Biol.14, 32–40 (1994). Google Scholar
Tsiantoulas, D. et al. Circulating microparticles carry oxidation-specific epitopes and are recognized by natural IgM antibodies. J. Lipid Res.56, 440–448 (2015). CASPubMedPubMed Central Google Scholar
Palinski, W. et al. Cloning of monoclonal autoantibodies to epitopes of oxidized lipoproteins from apolipoprotein E-deficient mice. Demonstration of epitopes of oxidized low density lipoprotein in human plasma. J. Clin. Invest.98, 800–814 (1996). CASPubMedPubMed Central Google Scholar
Boullier, A. et al. The binding of oxidized low density lipoprotein to mouse CD36 is mediated in part by oxidized phospholipids that are associated with both the lipid and protein moieties of the lipoprotein. J. Biol. Chem.275, 9163–9169 (2000). CASPubMed Google Scholar
Friedman, P., Hörkkö, S., Steinberg, D., Witztum, J. L. & Dennis, E. A. Correlation of antiphospholipid antibody recognition with the structure of synthetic oxidized phospholipids: importance of schiff base formation and aldol condensation. J. Biol. Chem.277, 7010–7020 (2002). CASPubMed Google Scholar
Hamze, M. et al. Characterization of resident B cells of vascular walls in human atherosclerotic patients. J. Immunol.191, 3006–3016 (2013). CASPubMed Google Scholar
Winkels, H. et al. Atlas of the immune cell repertoire in mouse atherosclerosis defined by single-cell RNA-sequencing and mass cytometry. Circ. Res.122, 1675–1688 (2018). CASPubMed Google Scholar
Huan, T. et al. A systems biology framework identifies molecular underpinnings of coronary heart disease significance. Arterioscler. Thromb. Vasc. Biol.33, 1427–1434 (2013). CASPubMedPubMed Central Google Scholar
Mantani, P. T. et al. Circulating CD40+ and CD86+ B cell subsets demonstrate opposing associations with risk of stroke. Arterioscler. Thromb. Vasc. Biol.34, 211–218 (2014). CASPubMed Google Scholar
Meeuwsen, J. A. L. et al. High levels of (Un)switched memory B cells are associated with better outcome in patients with advanced atherosclerotic disease. J. Am. Heart Assoc.6, e005747 (2017). PubMedPubMed Central Google Scholar
Caligiuri, G., Nicoletti, A., Poirier, B. & Hansson, G. K. Protective immunity against atherosclerosis carried by B cells of hypercholesterolemic mice. J. Clin. Invest.109, 745–753 (2002). CASPubMedPubMed Central Google Scholar
Major, A. S., Fazio, S. & Linton, M. F. B-lymphocyte deficiency increases atherosclerosis in LDL receptor-null mice. Arterioscler. Thromb. Vasc. Biol.22, 1892–1898 (2002). CASPubMed Google Scholar
Muscari, A. et al. Association of serum IgA and C4 with severe atherosclerosis. Atherosclerosis74, 179–186 (1988). CASPubMed Google Scholar
Hu, D. et al. Artery tertiary lymphoid organs control aorta immunity and protect against atherosclerosis via vascular smooth muscle cell lymphotoxin β receptors. Immunity42, 1100–1115 (2015). CASPubMedPubMed Central Google Scholar
Srikakulapu, P. et al. Artery tertiary lymphoid organs control multilayered territorialized atherosclerosis B-cell responses in aged ApoE−/− mice. Arterioscler. Thromb. Vasc. Biol.36, 1174–1185 (2016). CASPubMedPubMed Central Google Scholar
Dunér, P. et al. Increased aldehyde-modification of collagen type IV in symptomatic plaques – a possible cause of endothelial dysfunction. Atherosclerosis240, 26–32 (2015). PubMed Google Scholar
Vallejo, J., Duner, P., Fredrikson, G. N., Nilsson, J. & Bengtsson, E. Autoantibodies against aldehyde-modified collagen type IV are associated with risk of development of myocardial infarction. J. Intern. Med.282, 496–507 (2017). CASPubMed Google Scholar
Engelbertsen, D. et al. Low levels of IgM antibodies against an advanced glycation endproduct-modified apolipoprotein B100 peptide predict cardiovascular events in nondiabetic subjects. J. Immunol.195, 3020–3025 (2015). CASPubMed Google Scholar
Miller, Y. I. et al. Oxidation-specific epitopes are danger-associated molecular patterns recognized by pattern recognition receptors of innate immunity. Circ. Res.108, 235–248 (2011). CASPubMedPubMed Central Google Scholar
Kortelainen, M.-L. & Porvari, K. Adventitial macrophage and lymphocyte accumulation accompanying early stages of human coronary atherogenesis. Cardiovasc. Pathol.23, 193–197 (2014). CASPubMed Google Scholar
Liang, K. P. et al. Autoantibodies and the risk of cardiovascular events. J. Rheumatol36, 2462–2469 (2009). PubMedPubMed Central Google Scholar
Cambridge, G., Acharya, J., Cooper, J. A., Edwards, J. C. & Humphries, S. E. Antibodies to citrullinated peptides and risk of coronary heart disease. Atherosclerosis228, 243–246 (2013). CASPubMed Google Scholar
Montecucco, F. et al. Anti-apoA-1 auto-antibodies increase mouse atherosclerotic plaque vulnerability, myocardial necrosis and mortality triggering TLR2 and TLR4. Thromb. Haemost.114, 410–422 (2015). CASPubMed Google Scholar
Pagano, S. et al. Anti-apolipoprotein A-1 IgG in patients with myocardial infarction promotes inflammation through TLR2/CD14 complex. J. Intern. Med.272, 344–357 (2012). CASPubMed Google Scholar
George, J., Afek, A., Gilburd, B., Shoenfeld, Y. & Harats, D. Cellular and humoral immune responses to heat shock protein 65 are both involved in promoting fatty-streak formation in LDL-receptor deficient mice. J. Am. Coll. Cardiol.38, 900–905 (2001). CASPubMed Google Scholar
Merched, A. J., Daret, D., Li, L., Franzl, N. & Sauvage-Merched, M. Specific autoantigens in experimental autoimmunity-associated atherosclerosis. FASEB J.30, 2123–2134 (2016). CASPubMed Google Scholar
Brenner, D. et al. Toso controls encephalitogenic immune responses by dendritic cells and regulatory T cells. Proc. Natl Acad. Sci. USA111, 1060–1065 (2014). CASPubMed Google Scholar
Tsiantoulas, D. et al. Secreted IgM deficiency leads to increased BCR signaling that results in abnormal splenic B cell development. Sci. Rep.7, 3540 (2017). PubMedPubMed Central Google Scholar
Notley, C. A., Baker, N. & Ehrenstein, M. R. Secreted IgM enhances B cell receptor signaling and promotes splenic but impairs peritoneal B cell survival. J. Immunol.184, 3386–3393 (2010). CASPubMed Google Scholar
Gonen, A. et al. Atheroprotective immunization with malondialdehyde-modified LDL is hapten specific and dependent on advanced MDA adducts: implications for development of an atheroprotective vaccine. J. Lipid Res.55, 2137–2155 (2014). CASPubMedPubMed Central Google Scholar
Binder, C. J. et al. IL-5 links adaptive and natural immunity specific for epitopes of oxidized LDL and protects from atherosclerosis. J. Clin. Invest.114, 427–437 (2004). CASPubMedPubMed Central Google Scholar
Khoo, L., Thiam, C., Soh, S. & Angeli, V. Splenic extrafollicular reactions and BM plasma cells sustain IgM response associated with hypercholesterolemia. Eur. J. Immunol.45, 1300–1312 (2015). CASPubMed Google Scholar
Chou, M.-Y. et al. Oxidation-specific epitopes are dominant targets of innate natural antibodies in mice and humans. J. Clin. Invest.119, 1335–1349 (2009). CASPubMedPubMed Central Google Scholar
Stewart, C. R. et al. CD36 ligands promote sterile inflammation through assembly of a Toll-like receptor 4 and 6 heterodimer. Nat. Immunol.11, 155–161 (2009). PubMedPubMed Central Google Scholar
Imai, Y. et al. Identification of oxidative stress and Toll-like receptor 4 signaling as a key pathway of acute lung injury. Cell133, 235–249 (2007). Google Scholar
Iseme, R. A. et al. A role for autoantibodies in atherogenesis. Cardiovasc. Res.113, 1102–1112 (2017). CASPubMed Google Scholar
Shaw, P. X. et al. Natural antibodies with the T15 idiotype may act in atherosclerosis, apoptotic clearance, and protective immunity. J. Clin. Invest.105, 1731–1740 (2000). CASPubMedPubMed Central Google Scholar
Binder, C. J. et al. Pneumococcal vaccination decreases atherosclerotic lesion formation: molecular mimicry between Streptococcus pneumoniae and oxidized LDL. Nat. Med.9, 736 (2003). CASPubMed Google Scholar
Faria-Neto, J. R. et al. Passive immunization with monoclonal IgM antibodies against phosphorylcholine reduces accelerated vein graft atherosclerosis in apolipoprotein E-null mice. Atherosclerosis189, 83–90 (2006). CASPubMed Google Scholar
Cesena, F. H. et al. Immune-modulation by polyclonal IgM treatment reduces atherosclerosis in hypercholesterolemic apoE−/− mice. Atherosclerosis220, 59–65 (2012). CASPubMed Google Scholar
Busch, C. J. et al. Malondialdehyde epitopes are sterile mediators of hepatic inflammation in hypercholesterolemic mice. Hepatology65, 1181–1195 (2017). CASPubMedPubMed Central Google Scholar
Centa, M. et al. Atherosclerosis susceptibility in mice is independent of the V1 immunoglobulin heavy chain gene. Arterioscler. Thromb. Vasc. Biol.36, 25–36 (2016). CASPubMed Google Scholar
Que, X. et al. Oxidized phospholipids are proinflammatory and proatherogenic in hypercholesterolaemic mice. Nature558, 301–306 (2018). CASPubMedPubMed Central Google Scholar
Gruber, S. et al. Sialic acid-binding immunoglobulin-like Lectin G promotes atherosclerosis and liver inflammation by suppressing the protective functions of B-1 cells. Cell Rep.14, 2348–2361 (2016). CASPubMedPubMed Central Google Scholar
Grasset, E. K. et al. Sterile inflammation in the spleen during atherosclerosis provides oxidation-specific epitopes that induce a protective B cell response. Proc. Natl Acad. Sci. USA112, E2030–E2038 (2015). CASPubMed Google Scholar
Hosseini, H. et al. Phosphatidylserine liposomes mimic apoptotic cells to attenuate atherosclerosis by expanding polyreactive IgM producing B1a lymphocytes. Cardiovasc. Res.106, 443–452 (2015). CASPubMed Google Scholar
Kyaw, T. et al. B1a B lymphocytes are atheroprotective by secreting natural IgM that increases IgM deposits and reduces necrotic cores in atherosclerotic lesions. Circ. Res.109, 830–840 (2011). CASPubMed Google Scholar
Khamis, R. Y. et al. High serum immunoglobulin G and M levels predict freedom from adverse cardiovascular events in hypertension: a nested case-control substudy of the anglo-scandinavian cardiac outcomes trial. EBioMedicine9, 372–380 (2016). PubMedPubMed Central Google Scholar
Lewis, M. J. et al. Immunoglobulin M is required for protection against atherosclerosis in low-density lipoprotein receptor-deficient mice. Circulation120, 417–426 (2009). CASPubMedPubMed Central Google Scholar
Tsiantoulas, D. et al. Increased plasma IgE accelerate atherosclerosis in secreted IgM deficiency. Circ. Res.120, 78–84 (2017). CASPubMed Google Scholar
Perry, H. M. et al. Helix-loop-helix factor inhibitor of differentiation 3 regulates interleukin-5 expression and B-1a B cell proliferation. Arterioscler. Thromb. Vasc. Biol.33, 2771–2779 (2013). CASPubMedPubMed Central Google Scholar
Newland, S. A. et al. Type-2 innate lymphoid cells control the development of atherosclerosis in mice. Nat. Commun.8, 15781 (2017). CASPubMedPubMed Central Google Scholar
Martin, P. et al. Atherosclerosis severity is not affected by a deficiency in IL-33/ST2 signaling. Immun. Inflamm. Dis.3, 239–246 (2015). CASPubMedPubMed Central Google Scholar
Sämpi, M. et al. Plasma interleukin-5 levels are related to antibodies binding to oxidized low-density lipoprotein and to decreased subclinical atherosclerosis. J. Am. Coll. Cardiol.52, 1370–1378 (2008). PubMed Google Scholar
Engelbertsen, D. et al. T-helper 2 immunity is associated with reduced risk of myocardial infarction and stroke. Arterioscler. Thromb. Vasc. Biol.33, 637–644 (2013). CASPubMed Google Scholar
Sage, A. P. et al. X-box binding protein-1 dependent plasma cell responses limit the development of atherosclerosis. Circ. Res.121, 270–281 (2017). CASPubMed Google Scholar
Rahman, M. et al. IgM antibodies against malondialdehyde and phosphorylcholine are together strong protection markers for atherosclerosis in systemic lupus erythematosus: regulation and underlying mechanisms. Clin. Immunol.166–167, 27–37 (2016). PubMed Google Scholar
Engelbertsen, D. et al. Induction of T helper 2 responses against human apolipoprotein B100 does not affect atherosclerosis in ApoE −/− mice. Cardiovasc. Res.103, 304–312 (2014). CASPubMed Google Scholar
Gould, H. J. & Sutton, B. J. IgE in allergy and asthma today. Nat. Rev. Immunol.8, 205–217 (2008). CASPubMed Google Scholar
Bot, I. et al. Perivascular mast cells promote atherogenesis and induce plaque destabilization in apolipoprotein E–deficient mice. Circulation115, 2516–2525 (2007). CASPubMed Google Scholar
Sun, J. et al. Mast cells promote atherosclerosis by releasing proinflammatory cytokines. Nat. Med.13, 719–724 (2007). CASPubMed Google Scholar
Wezel, A. et al. Mast cells mediate neutrophil recruitment during atherosclerotic plaque progression. Atherosclerosis241, 289–296 (2015). CASPubMed Google Scholar
Wang, K.-Y. et al. Histamine deficiency decreases atherosclerosis and inflammatory response in apolipoprotein E knockout mice independently of serum cholesterol level. Arterioscler. Thromb. Vasc. Biol.31, 800–807 (2011). CASPubMed Google Scholar
Wang, J. et al. IgE stimulates human and mouse arterial cell apoptosis and cytokine expression and promotes atherogenesis in Apoe −/− mice. J. Clin. Invest.121, 3564–3577 (2011). CASPubMedPubMed Central Google Scholar
Kalesnikoff, J. et al. Monomeric IgE stimulates signaling pathways in mast cells that lead to cytokine production and cell survival. Immunity14, 801–811 (2001). CASPubMed Google Scholar
Pandey, V., Mihara, S., Fensome-Green, A., Bolsover, S. & Cockcroft, S. Monomeric IgE stimulates NFAT translocation into the nucleus, a rise in cytosol Ca2+, degranulation, and membrane ruffling in the cultured rat basophilic leukemia-2H3 mast cell line. J. Immunol.172, 4048–4058 (2004). CASPubMed Google Scholar
Prasad, A. et al. Relationship of autoantibodies to MDA-LDL and ApoB-immune complexes to sex, ethnicity, subclinical atherosclerosis, and cardiovascular events. Arterioscler. Thromb. Vasc. Biol.37, 1213–1221 (2017). CASPubMedPubMed Central Google Scholar
Mayr, M. et al. Oxidized low-density lipoprotein autoantibodies, chronic infections, and carotid atherosclerosis in a population-based study. J. Am. Coll. Cardiol.47, 2436–2443 (2006). CASPubMed Google Scholar
Saad, A. F., Virella, G., Chassereau, C., Boackle, R. J. & Lopes-Virella, M. F. OxLDL immune complexes activate complement and induce cytokine production by MonoMac 6 cells and human macrophages. J. Lipid Res.47, 1975–1983 (2006). CASPubMed Google Scholar
Lennartz, M. R. et al. Ligation of macrophage Fcγ receptors recapitulates the gene expression pattern of vulnerable human carotid plaques. PLOS ONE6, e21803 (2011). CASPubMedPubMed Central Google Scholar
Rhoads, J. P. et al. Oxidized low-density lipoprotein immune complex priming of the Nlrp3 inflammasome involves TLR and FcγR cooperation and is dependent on CARD9. J. Immunol.198, 2105–2114 (2017). CASPubMedPubMed Central Google Scholar
Ravandi, A. et al. Relationship of IgG and IgM autoantibodies and immune complexes to oxidized LDL with markers of oxidation and inflammation and cardiovascular events: results from the EPIC-Norfolk Study. J. Lipid Res.52, 1829–1836 (2011). CASPubMedPubMed Central Google Scholar
Schiopu, A. et al. Recombinant human antibodies against aldehyde-modified apolipoprotein B-100 peptide sequences inhibit atherosclerosis. Circulation110, 2047–2052 (2004). CASPubMed Google Scholar
Klimov, A. N. et al. Lipoprotein-antibody immune complexes their catabolism and role in foam cell formation. Atherosclerosis58, 1–15 (1985). CASPubMed Google Scholar
Jackson, S. W. et al. Cutting edge: BAFF overexpression reduces atherosclerosis via TACI-dependent B cell activation. J. Immunol.197, 4529–4534 (2016). CASPubMedPubMed Central Google Scholar
Tsimikas, S. et al. High-dose atorvastatin reduces total plasma levels of oxidized phospholipids and immune complexes present on apolipoprotein B-100 in patients with acute coronary syndromes in the MIRACL trial. Circulation110, 1406–1412 (2004). CASPubMed Google Scholar
Palinski, W., Miller, E. & Witztum, J. L. Immunization of low density lipoprotein (LDL) receptor-deficient rabbits with homologous malondialdehyde-modified LDL reduces atherogenesis. Proc. Natl Acad. Sci. USA92, 821–825 (1995). CASPubMed Google Scholar
Freigang, S., Horkko, S., Miller, E., Witztum, J. L. & Palinski, W. Immunization of LDL receptor deficient mice with homologous malondialdehyde-modified and native LDL reduces progression of atherosclerosis by mechanisms other than induction of high titers of antibodies to oxidative neoepitopes. Arterioscler. Thromb. Vasc. Biol.18, 1972–1982 (1998). CASPubMed Google Scholar
Klingenberg, R. et al. Intranasal immunization with an apolipoprotein B-100 fusion protein induces antigen-specific regulatory T cells and reduces atherosclerosis. Arterioscler. Thromb. Vasc. Biol.30, 946–952 (2010). CASPubMed Google Scholar
Herbin, O. et al. Regulatory T cell response to apolipoprotein B100-derived peptides reduces the development and progression of atherosclerosis in mice. Arterioscler. Thromb. Vasc. Biol.32, 605–612 (2012). CASPubMed Google Scholar
Tay, C. et al. Follicular B cells promote atherosclerosis via T cell-mediated differentiation into plasma cells and secreting pathogenic immunoglobulin G. Arterioscler. Thromb. Vasc. Biol.38, e71–e84 (2018). CASPubMed Google Scholar
Clement, M. et al. Control of the T follicular helper-germinal center B cell axis by CD8+ regulatory T cells limits atherosclerosis and tertiary lymphoid organ development. Circulation131, 560–570 (2015). CASPubMed Google Scholar
Nus, M. et al. Marginal zone B cells control the response of follicular helper T cells to a high-cholesterol diet. Nat. Med.23, 601–610 (2017). CASPubMed Google Scholar
Gaddis, D. E. et al. Apolipoprotein AI prevents regulatory to follicular helper T cell switching during atherosclerosis. Nat. Commun.9, 1095 (2018). PubMedPubMed Central Google Scholar
Centa, M. et al. Acute loss of apolipoprotein E triggers an autoimmune response that accelerates atherosclerosis. Arterioscler. Thromb. Vasc. Biol.38, e145–e158 (2018). CASPubMedPubMed Central Google Scholar
Kelly, J. A. et al. Inhibition of arterial lesion progression in CD16-deficient mice: evidence for altered immunity and the role of IL-10. Cardiovasc. Res.85, 224–231 (2010). CASPubMed Google Scholar
Zhu, X. et al. Scavenger receptor function of mouse Fcγ receptor III contributes to progression of atherosclerosis in apolipoprotein E hyperlipidemic mice. J. Immunol.193, 2483–2495 (2014). CASPubMedPubMed Central Google Scholar
Ng, H. P., Burris, R. L. & Nagarajan, S. Attenuated atherosclerotic lesions in apoE-Fcγ-chain-deficient hyperlipidemic mouse model is associated with inhibition of Th17 cells and promotion of regulatory T cells. J. Immunol.187, 6082–6093 (2011). CASPubMed Google Scholar
Mallavia, B. et al. Gene deficiency in activating Fcγ receptors influences the macrophage phenotypic balance and reduces atherosclerosis in mice. PLOS ONE8, e66754 (2013). CASPubMedPubMed Central Google Scholar
Clement, M. et al. Necrotic cell sensor Clec4e promotes a proatherogenic macrophage phenotype through activation of the unfolded protein response. Circulation134, 1039–1051 (2016). CASPubMed Google Scholar
Smith, K. G. C. & Clatworthy, M. R. FcγRIIB in autoimmunity and infection: evolutionary and therapeutic implications. Nat. Rev. Immunol.10, 328–343 (2010). CASPubMedPubMed Central Google Scholar
Jonsson, S. et al. Identification of sequence variants influencing immunoglobulin levels. Nat. Genet.49, 1182–1191 (2017). CASPubMed Google Scholar
Harmon, E. Y. et al. Anti-inflammatory immune skewing is atheroprotective: Apoe−/−FcgammaRIIb−/− mice develop fibrous carotid plaques. J. Am. Heart Assoc.3, e001232 (2014). PubMedPubMed Central Google Scholar
Ait-Oufella, H. et al. B cell depletion reduces the development of atherosclerosis in mice. J. Exp. Med.207, 1579–1587 (2010). CASPubMedPubMed Central Google Scholar
Kyaw, T. et al. Conventional B2 B cell depletion ameliorates whereas its adoptive transfer aggravates atherosclerosis. J. Immunol.185, 4410–4419 (2010). CASPubMed Google Scholar
Kyaw, T. et al. Depletion of B2 but not B1a B cells in BAFF receptor-deficient ApoE−/− mice attenuates atherosclerosis by potently ameliorating arterial inflammation. PLOS ONE7, e29371 (2012). CASPubMedPubMed Central Google Scholar
Sage, A. P. et al. BAFF receptor deficiency reduces the development of atherosclerosis in mice—brief report. Arterioscler. Thromb. Vasc. Biol.32, 1573–1576 (2012). CASPubMed Google Scholar
Ponnuswamy, P. et al. Angiotensin II synergizes with BAFF to promote atheroprotective regulatory B cells. Sci. Rep.7, 4111 (2017). PubMedPubMed Central Google Scholar
Misumi, I. & Whitmire, J. K. B. Cell depletion curtails CD4+ T cell memory and reduces protection against disseminating virus infection. J. Immunol.192, 1597–1608 (2014). CASPubMedPubMed Central Google Scholar
Zeng, Q. et al. B cells mediate chronic allograft rejection independently of antibody production. J. Clin. Invest.124, 1052–1056 (2014). CASPubMedPubMed Central Google Scholar
Hilgendorf, I. et al. Innate response activator B cells aggravate atherosclerosis by stimulating T helper-1 adaptive immunity. Circulation129, 1677–1687 (2014). CASPubMedPubMed Central Google Scholar
Clement, M. et al. Deletion of IRF8 (interferon regulatory factor 8)-dependent dendritic cells abrogates proatherogenic adaptive immunity. Circ. Res.122, 813–820 (2018). CASPubMed Google Scholar
Allman, W. R. et al. TACI deficiency leads to alternatively activated macrophage phenotype and susceptibility to Leishmania infection. Proc. Natl Acad. Sci. USA112, E4094–E4103 (2015). CASPubMed Google Scholar
Tay, C. et al. B cell-specific depletion of tumour necrosis factor alpha inhibits atherosclerosis development and plaque vulnerability to rupture by reducing cell death and inflammation. Cardiovasc. Res.111, 385–397 (2016). CASPubMed Google Scholar
Rosser, E. C. & Mauri, C. Regulatory B cells: origin, phenotype, and function. Immunity42, 607–612 (2015). CASPubMed Google Scholar
Gjurich, B. N., Taghavie-Moghadam, P. L., Ley, K. & Galkina, E. V. L-Selectin deficiency decreases aortic B1a and Breg subsets and promotes atherosclerosis. Thromb. Haemost.112, 803–811 (2014). PubMedPubMed Central Google Scholar
Sage, A. P. et al. Regulatory B cell-specific interleukin-10 is dispensable for atherosclerosis development in mice. Arterioscler. Thromb. Vasc. Biol.35, 1770–1773 (2015). CASPubMed Google Scholar
Strom, A. C. et al. B regulatory cells are increased in hypercholesterolaemic mice and protect from lesion development via IL-10. Thromb. Haemost.114, 835–847 (2015). PubMed Google Scholar
Schiemann, B. et al. An essential role for BAFF in the normal development of B cells through a BCMA-independent pathway. Science293, 2111–2114 (2001). CASPubMed Google Scholar
Chang, S. K., Arendt, B. K., Darce, J. R., Wu, X. & Jelinek, D. F. A role for BLyS in the activation of innate immune cells. Blood108, 2687–2694 (2006). CASPubMedPubMed Central Google Scholar
Yan, M. et al. Activation and accumulation of B cells in TACI-deficient mice. Nat. Immunol.2, 638–643 (2001). CASPubMed Google Scholar
Bossen, C. et al. TACI, unlike BAFF-R, is solely activated by oligomeric BAFF and APRIL to support survival of activated B cells and plasmablasts. Blood111, 1004–1012 (2008). CASPubMed Google Scholar
Mackay, F. & Schneider, P. Cracking the BAFF code. Nat. Rev. Immunol.9, 491–502 (2009). CASPubMed Google Scholar
Castigli, E. et al. Impaired IgA class switching in APRIL-deficient mice. Proc. Natl Acad. Sci. USA101, 3903–3908 (2004). CASPubMed Google Scholar
McCarron, M. J., Park, P. & Fooksman, D. R. CD138 mediates selection of mature plasma cells by regulating their survival. Blood129, 2749–2759 (2017). CASPubMedPubMed Central Google Scholar
Moens, S. J. et al. Impact of the B cell growth factor APRIL on the qualitative and immunological characteristics of atherosclerotic plaques. PLOS ONE11, e0164690 (2016). Google Scholar
Browning, J. L. B cells move to centre stage: novel opportunities for autoimmune disease treatment. Nat. Rev. Drug Discov.5, 564–576 (2006). CASPubMed Google Scholar
Sage, A. P. & Mallat, Z. Readapting the adaptive immune response – therapeutic strategies for atherosclerosis. Br. J. Pharmacol.174, 3926–3939 (2017). CASPubMedPubMed Central Google Scholar
Ketelhuth, D. F. J. & Hansson, G. K. Modulation of autoimmunity and atherosclerosis – common targets and promising translational approaches against disease. Circ. J.79, 924–933 (2015). CASPubMed Google Scholar
Scott, S. D. Rituximab: a new therapeutic monoclonal antibody for non-Hodgkin’s lymphoma. Cancer Pract.6, 195–197 (1998). CASPubMed Google Scholar
Edwards, J. et al. Efficacy of B-cell–targeted therapy with rituximab in patients with rheumatoid arthritis. N. Engl. J. Med.350, 2572–2581 (2004). CASPubMed Google Scholar
Uchida, J. et al. The innate mononuclear phagocyte network depletes B lymphocytes through Fc receptor–dependent mechanisms during anti-CD20 antibody immunotherapy. J. Exp. Med.199, 1659–1669 (2004). CASPubMedPubMed Central Google Scholar
Zouggari, Y. et al. B lymphocytes trigger monocyte mobilization and impair heart function after acute myocardial infarction. Nat. Med.19, 1273–1280 (2013). CASPubMedPubMed Central Google Scholar
Morris-Rosenfeld, S., Lipinski, M. J. & McNamara, C. A. Understanding the role of B cells in atherosclerosis: potential clinical implications. Expert Rev. Clin. Immunol.10, 77–89 (2013). PubMedPubMed Central Google Scholar
Novikova, D. S. et al. The effects of rituximab on lipids, arterial stiffness and carotid intima-media thickness in rheumatoid arthritis. J. Kor. Med. Sci.31, 202–207 (2015). Google Scholar
Kerekes, G. et al. Effects of rituximab treatment on endothelial dysfunction, carotid atherosclerosis, and lipid profile in rheumatoid arthritis. Clin. Rheumatol.28, 705–710 (2009). PubMed Google Scholar
Manzi, S. et al. Effects of belimumab, a B lymphocyte stimulator-specific inhibitor, on disease activity across multiple organ domains in patients with systemic lupus erythematosus: combined results from two phase III trials. Ann. Rheum. Dis.71, 1833–1838 (2012). CASPubMedPubMed Central Google Scholar
Hahn, B. Belimumab for systemic lupus erythematosus. N. Engl. J. Med.368, 1528–1535 (2013). CASPubMed Google Scholar
Wallace, D. J. et al. A phase II, randomized, double-blind, placebo-controlled, dose-ranging study of belimumab in patients with active systemic lupus erythematosus. Arthritis Rheum.61, 1168–1178 (2009). CASPubMedPubMed Central Google Scholar
Tattersall, M. C. et al. Late-onset asthma predicts cardiovascular disease events: the Wisconsin Sleep Cohort. J. Am. Heart Assoc.5, e003448 (2016). PubMedPubMed Central Google Scholar
Tattersall, M. C. et al. Asthma predicts cardiovascular disease events: the multi-ethnic study of atherosclerosis. Arterioscler. Thromb. Vasc. Biol.35, 1520–1525 (2015). CASPubMedPubMed Central Google Scholar
Knoflach, M. et al. Allergic rhinitis, asthma, and atherosclerosis in the Bruneck and ARMY Studies. Arch. Intern. Med.165, 2521–2526 (2005). PubMed Google Scholar
Dema, B. et al. Autoreactive IgE is prevalent in systemic lupus erythematosus and is associated with increased disease activity and nephritis. PLOS ONE9, e90424 (2014). PubMedPubMed Central Google Scholar
Schiopu, A. et al. Recombinant antibodies to an oxidized low-density lipoprotein epitope induce rapid regression of atherosclerosis in apobec-1−/−/low-density lipoprotein receptor−/− mice. J. Am. Coll. Cardiol.50, 2313–2318 (2007). CASPubMed Google Scholar
Poulsen, C. B. et al. Treatment with a human recombinant monoclonal IgG antibody against oxidized LDL in atherosclerosis-prone pigs reduces cathepsin S in coronary lesions. Int. J. Cardiol.215, 506–515 (2016). PubMed Google Scholar
Lehrer-Graiwer, J. et al. FDG-PET imaging for oxidized LDL in stable atherosclerotic disease: a phase ii study of safety, tolerability, and anti-inflammatory activity. JACC Cardiovasc. Imag.8, 493–494 (2015). Google Scholar
Chyu, K.-Y., Dimayuga, P. C. & Shah, P. K. Vaccine against arteriosclerosis: an update. Ther. Adv. Vaccines5, 39–47 (2017). PubMedPubMed Central Google Scholar
Caligiuri, G. et al. Phosphorylcholine-targeting immunization reduces atherosclerosis. J. Am. Coll. Cardiol.50, 540–546 (2007). CASPubMed Google Scholar
Ren, S. et al. Effect of the adult pneumococcal polysaccharide vaccine on cardiovascular disease: a systematic review and meta-analysis. Open Heart2, e000247 (2015). PubMedPubMed Central Google Scholar
Nutt, S. L., Hodgkin, P. D., Tarlinton, D. M. & Corcoran, L. M. The generation of antibody-secreting plasma cells. Nat. Rev. Immunol.15, 160–171 (2015). CASPubMed Google Scholar
Taubenheim, N. et al. High rate of antibody secretion is not integral to plasma cell differentiation as revealed by XBP-1 deficiency. J. Immunol.189, 3328–3338 (2012). CASPubMed Google Scholar
Bromage, E., Stephens, R. & Hassoun, L. The third dimension of ELISPOTs: quantifying antibody secretion from individual plasma cells. J. Immunol. Methods346, 75–79 (2009). CASPubMed Google Scholar
Shi, W. et al. Transcriptional profiling of mouse B cell terminal differentiation defines a signature for antibody-secreting plasma cells. Nat. Immunol.16, 663–673 (2015). CASPubMed Google Scholar
Chu, V. T. & Berek, C. The establishment of the plasma cell survival niche in the bone marrow. Immunol. Rev.251, 177–188 (2013). PubMed Google Scholar
Xiang, Z. et al. FcγRIIb controls bone marrow plasma cell persistence and apoptosis. Nat. Immunol.8, 419–429 (2007). CASPubMed Google Scholar
Doran, A. C. et al. B cell aortic homing and atheroprotection depend on Id3. Circ. Res.110, e1–e12 (2012). CASPubMed Google Scholar
Kyaw, T. et al. BAFF receptor mAb treatment ameliorates development and progression of atherosclerosis in hyperlipidemic ApoE−/− mice. PLOS ONE8, e60430 (2013). CASPubMedPubMed Central Google Scholar
Rosenfeld, S. M. et al. B-1b cells secrete atheroprotective IgM and attenuate atherosclerosis. Circ. Res.117, e28–e39 (2015). CASPubMedPubMed Central Google Scholar
Meiler, S. et al. Constitutive GITR activation reduces atherosclerosis by promoting regulatory CD4+ T-cell responses-brief report. Arterioscler. Thromb. Vasc. Biol.36, 1748–1752 (2016). CASPubMed Google Scholar
Karvonen, J., Päivänsalo, M., Kesäniemi, A. Y. & Hörkkö, S. Immunoglobulin M type of autoantibodies to oxidized low-density lipoprotein has an inverse relation to carotid artery atherosclerosis. Circulation108, 2107–2112 (2003). CASPubMed Google Scholar
Wilson, P. W. F. et al. Autoantibodies to oxidized LDL and cardiovascular risk: the Framingham Offspring Study. Atherosclerosis189, 364–368 (2006). CASPubMed Google Scholar
Bjorkbacka, H. et al. Low levels of apolipoprotein B-100 autoantibodies are associated with increased risk of coronary events. Arterioscler. Thromb. Vasc. Biol.36, 765–771 (2016). PubMed Google Scholar
Tsimikas, S. et al. Increased plasma oxidized phospholipid:apolipoprotein B-100 ratio with concomitant depletion of oxidized phospholipids from atherosclerotic lesions after dietary lipid-lowering. Arterioscler. Thromb. Vasc. Biol.27, 175–181 (2007). CASPubMed Google Scholar
Fredrikson, G. N. et al. Association between IgM against an aldehyde-modified peptide in apolipoprotein B-100 and progression of carotid disease. Stroke38, 1495–1500 (2007). CASPubMed Google Scholar
Kankaanpaa, J. et al. IgA antibodies to phosphocholine associate with long-term cardiovascular disease risk. Atherosclerosis269, 294–300 (2018). CASPubMed Google Scholar
de Faire, U. et al. Low levels of IgM antibodies to phosphorylcholine predict cardiovascular disease in 60-year old men: effects on uptake of oxidized LDL in macrophages as a potential mechanism. J. Autoimmun.34, 73–79 (2010). PubMed Google Scholar
Caidahl, K. et al. IgM-phosphorylcholine autoantibodies and outcome in acute coronary syndromes. Int. J. Cardiol.167, 464–469 (2013). PubMed Google Scholar
Imhof, A. et al. Long-term prognostic value of IgM antibodies against phosphorylcholine for adverse cardiovascular events in patients with stable coronary heart disease. Atherosclerosis243, 414–420 (2015). CASPubMed Google Scholar
Anania, C. et al. Increased prevalence of vulnerable atherosclerotic plaques and low levels of natural IgM antibodies against phosphorylcholine in patients with systemic lupus erythematosus. Arthrit. Res. Ther.12, 1–8 (2010). Google Scholar
Fernández-Gutiérrez, B. et al. Cardiovascular disease in immune-mediated inflammatory diseases: a cross-sectional analysis of 6 cohorts. Medicine96, e7308 (2017). PubMedPubMed Central Google Scholar
Berendsen, M. L. T. et al. Anticyclic citrullinated peptide antibodies and rheumatoid factor as risk factors for 10-year cardiovascular morbidity in patients with rheumatoid arthritis: a large inception cohort study. J. Rheumatol44, 1325–1330 (2017). CASPubMed Google Scholar
Antiochos, P. et al. Impact of CD14 polymorphisms on anti-apolipoprotein A-1 IgG-related coronary artery disease prediction in the general population. Arterioscler. Thromb. Vasc. Biol.37, 2342–2349 (2017). CASPubMed Google Scholar
Kounis, N. G. & Hahalis, G. Serum IgE levels in coronary artery disease. Atherosclerosis251, 498–500 (2016). CASPubMed Google Scholar
Lippi, G., Cervellin, G. & Sanchis-Gomar, F. Immunoglobulin E (IgE) and ischemic heart disease. Which came first, the chicken or the egg? Ann. Med.46, 456–463 (2014). CASPubMed Google Scholar