The regulation of hepatic fatty acid synthesis and partitioning: the effect of nutritional state (original) (raw)
Kmieć, Z. Cooperation of liver cells in health and disease. Adv. Anat. Embryol. Cell Biol.161, III–XIII, 1–151 (2001). Google Scholar
Brinkmann, A., Katz, N., Sasse, D. & Jungermann, K. Increase of the gluconeogenic and decrease of the glycolytic capacity of rat liver with a change of the metabolic zonation after partial hepatectomy. Hoppe Seylers Z. Physiol. Chem.359, 1561–1571 (1978). CASPubMed Google Scholar
Schleicher, J., Dahmen, U., Guthke, R. & Schuster, S. Zonation of hepatic fat accumulation: insights from mathematical modelling of nutrient gradients and fatty acid uptake. J. R. Soc. Interface14, 20170443 (2017). PubMedPubMed Central Google Scholar
Hodson, L. & Frayn, K. N. Hepatic fatty acid partitioning. Curr. Opin. Lipidol.22, 216–224 (2011). CASPubMed Google Scholar
Havel, R. J., Kane, J. P., Balasse, E. O., Segel, N. & Basso, L. V. Splanchnic metabolism of free fatty acids and production of triglycerides of very low density lipoproteins in normotriglyceridemic and hypertriglyceridemic humans. J. Clin. Invest.49, 2017–2035 (1970). CASPubMedPubMed Central Google Scholar
Ontko, J. A. Metabolism of free fatty acids in isolated liver cells. Factors affecting the partition between esterification and oxidation. J. Biol. Chem.247, 1788–1800 (1972). CASPubMed Google Scholar
Babin, P. J. & Gibbons, G. F. The evolution of plasma cholesterol: direct utility or a “spandrel” of hepatic lipid metabolism? Prog. Lipid Res.48, 73–91 (2009). CASPubMed Google Scholar
Diraison, F. & Beylot, M. Role of human liver lipogenesis and reesterification in triglycerides secretion and in FFA reesterification. Am. J. Physiol.274, E321–E327 (1998). CASPubMed Google Scholar
Sidossis, L. S., Mittendorfer, B., Walser, E., Chinkes, D. & Wolfe, R. R. Hyperglycemia-induced inhibition of splanchnic fatty acid oxidation increases hepatic triacylglycerol secretion. Am. J. Physiol.275, E798–E805 (1998). CASPubMed Google Scholar
Adams, L. A., Sanderson, S., Lindor, K. D. & Angulo, P. The histological course of nonalcoholic fatty liver disease: a longitudinal study of 103 patients with sequential liver biopsies. J. Hepatol.42, 132–138 (2005). PubMed Google Scholar
Angulo, P. Long-term mortality in nonalcoholic fatty liver disease: is liver histology of any prognostic significance? Hepatology51, 373–375 (2010). PubMedPubMed Central Google Scholar
Ekstedt, M. et al. Long-term follow-up of patients with NAFLD and elevated liver enzymes. Hepatology44, 865–873 (2006). CASPubMed Google Scholar
Bang, K. B. & Cho, Y. K. Comorbidities and metabolic derangement of NAFLD. J. Lifestyle Med.5, 7–13 (2015). PubMedPubMed Central Google Scholar
European Association for the Study of the Liver, European Association for the Study of Diabetes & European Association for the Study of Obesity. EASL-EASD-EASO Clinical Practice Guidelines for the management of non-alcoholic fatty liver disease. J. Hepatol.64, 1388–1402 (2016). Google Scholar
Romero-Gomez, M., Zelber-Sagi, S. & Trenell, M. Treatment of NAFLD with diet, physical activity and exercise. J. Hepatol.67, 829–846 (2017). PubMed Google Scholar
Anstee, Q. M., Targher, G. & Day, C. P. Progression of NAFLD to diabetes mellitus, cardiovascular disease or cirrhosis. Nat. Rev. Gastroenterol. Hepatol.10, 330–344 (2013). CASPubMed Google Scholar
Sahini, N. & Borlak, J. Recent insights into the molecular pathophysiology of lipid droplet formation in hepatocytes. Prog. Lipid Res.54, 86–112 (2014). CASPubMed Google Scholar
Severson, T. J., Besur, S. & Bonkovsky, H. L. Genetic factors that affect nonalcoholic fatty liver disease: a systematic clinical review. World J. Gastroenterol.22, 6742–6756 (2016). CASPubMedPubMed Central Google Scholar
Piche, M. E., Parry, S. A., Karpe, F. & Hodson, L. Chylomicron-derived fatty acid spillover in adipose tissue: a signature of metabolic health? J. Clin. Endocrinol. Metab.103, 25–34 (2018). PubMed Google Scholar
Zechner, R. et al. FAT SIGNALS–lipases and lipolysis in lipid metabolism and signaling. Cell Metab.15, 279–291 (2012). CASPubMedPubMed Central Google Scholar
McQuaid, S. E. et al. Downregulation of adipose tissue fatty acid trafficking in obesity: a driver for ectopic fat deposition? Diabetes60, 47–55 (2011). CASPubMed Google Scholar
Ruge, T. et al. Fasted to fed trafficking of fatty acids in human adipose tissue reveals a novel regulatory step for enhanced fat storage. J. Clin. Endocrinol. Metab.94, 1781–1788 (2009). CASPubMed Google Scholar
Hodson, L. et al. The contribution of splanchnic fat to VLDL triglyceride is greater in insulin-resistant than insulin-sensitive men and women: studies in the postprandial state. Diabetes56, 2433–2441 (2007). CASPubMed Google Scholar
Pramfalk, C. et al. Fasting plasma insulin concentrations are associated with changes in hepatic fatty acid synthesis and partitioning prior to changes in liver fat content in healthy adults. Diabetes65, 1858–1867 (2016). CASPubMed Google Scholar
Donnelly, K. L. et al. Sources of fatty acids stored in liver and secreted via lipoproteins in patients with nonalcoholic fatty liver disease. J. Clin. Invest.115, 1343–1351 (2005). CASPubMedPubMed Central Google Scholar
Barrows, B. R. & Parks, E. J. Contributions of different fatty acid sources to very low-density lipoprotein-triacylglycerol in the fasted and fed states. J. Clin. Endocrinol. Metab.91, 1446–1452 (2006). CASPubMed Google Scholar
Hodson, L. et al. Greater dietary fat oxidation in obese compared with lean men: an adaptive mechanism to prevent liver fat accumulation? Am. J. Physiol. Endocrinol. Metab.299, E584–E592 (2010). CASPubMedPubMed Central Google Scholar
Vedala, A., Wang, W., Neese, R. A., Christiansen, M. P. & Hellerstein, M. K. Delayed secretory pathway contributions to VLDL-triglycerides from plasma NEFA, diet, and de novo lipogenesis in humans. J. Lipid Res.47, 2562–2574 (2006). CASPubMed Google Scholar
Nestel, P. J. Relationship between FFA flux and TGFA influx in plasma before and during the infusion of insulin. Metabolism16, 1123–1132 (1967). CASPubMed Google Scholar
Holt, H. B. et al. Non-esterified fatty acid concentrations are independently associated with hepatic steatosis in obese subjects. Diabetologia49, 141–148 (2006). CASPubMed Google Scholar
Karpe, F., Dickmann, J. R. & Frayn, K. N. Fatty acids, obesity, and insulin resistance: time for a reevaluation. Diabetes60, 2441–2449 (2011). CASPubMedPubMed Central Google Scholar
Langin, D. & Arner, P. Importance of TNFalpha and neutral lipases in human adipose tissue lipolysis. Trends Endocrinol. Metab.17, 314–320 (2006). CASPubMed Google Scholar
Stern, J. H., Rutkowski, J. M. & Scherer, P. E. Adiponectin, leptin, and fatty acids in the maintenance of metabolic homeostasis through adipose tissue crosstalk. Cell Metab.23, 770–784 (2016). CASPubMedPubMed Central Google Scholar
Luukkonen, P. K. et al. Saturated fat is more metabolically harmful for the human liver than unsaturated fat or simple sugars. Diabetes Care41, 1732–1739 (2018). CASPubMedPubMed Central Google Scholar
Howe, H. R. 3rd et al. Increased adipose tissue lipolysis after a 2-week high-fat diet in sedentary overweight/obese men. Metabolism60, 976–981 (2011). CASPubMed Google Scholar
Immonen, H. et al. Increased liver fatty acid uptake is partly reversed and liver fat content normalized after bariatric surgery. Diabetes Care41, 368–371 (2018). CASPubMed Google Scholar
Iozzo, P. et al. Fatty acid metabolism in the liver, measured by positron emission tomography, is increased in obese individuals. Gastroenterology139, 846–856 (2010). CASPubMed Google Scholar
Grundy, S. M. & Mok, H. Y. Chylomicron clearance in normal and hyperlipidemic man. Metabolism25, 1225–1239 (1976). CASPubMed Google Scholar
Hultin, M., Savonen, R. & Olivecrona, T. Chylomicron metabolism in rats: lipolysis, recirculation of triglyceride-derived fatty acids in plasma FFA, and fate of core lipids as analyzed by compartmental modelling. J. Lipid Res.37, 1022–1036 (1996). CASPubMed Google Scholar
Cooper, A. D. Hepatic uptake of chylomicron remnants. J. Lipid Res.38, 2173–2192 (1997). CASPubMed Google Scholar
Havel, R. J. & Hamilton, R. L. Hepatic catabolism of remnant lipoproteins: where the action is. Arterioscler. Thromb. Vasc. Biol.24, 213–215 (2004). CASPubMed Google Scholar
Craig, W. Y. & Cooper, A. D. Effects of chylomicron remnants and beta-VLDL on the class and composition of newly secreted lipoproteins by HepG2 cells. J. Lipid Res.29, 299–308 (1988). CASPubMed Google Scholar
Wu, X., Sakata, N., Dixon, J. & Ginsberg, H. N. Exogenous VLDL stimulates apolipoprotein B secretion from HepG2 cells by both pre- and post-translational mechanisms. J. Lipid Res.35, 1200–1210 (1994). CASPubMed Google Scholar
Suppli, M. P. et al. Hepatic transcriptome signatures in patients with varying degrees of nonalcoholic fatty liver disease compared with healthy normal-weight individuals. Am. J. Physiol. Gastrointest. Liver Physiol.316, G462–G472 (2019). CASPubMed Google Scholar
Mamo, J. C. et al. Postprandial dyslipidemia in men with visceral obesity: an effect of reduced LDL receptor expression? Am. J. Physiol. Endocrinol. Metab.281, E626–E632 (2001). CASPubMed Google Scholar
Min, H. K. et al. Increased hepatic synthesis and dysregulation of cholesterol metabolism is associated with the severity of nonalcoholic fatty liver disease. Cell Metab.15, 665–674 (2012). CASPubMedPubMed Central Google Scholar
Bieghs, V. et al. LDL receptor knock-out mice are a physiological model particularly vulnerable to study the onset of inflammation in non-alcoholic fatty liver disease. PLOS ONE7, e30668 (2012). CASPubMedPubMed Central Google Scholar
Woollett, L. A., Spady, D. K. & Dietschy, J. M. Saturated and unsaturated fatty acids independently regulate low density lipoprotein receptor activity and production rate. J. Lipid Res.33, 77–88 (1992). CASPubMed Google Scholar
Hazarika, A., Kalita, H., Kalita, M. C. & Devi, R. Withdrawal from high-carbohydrate, high-saturated-fat diet changes saturated fat distribution and improves hepatic low-density-lipoprotein receptor expression to ameliorate metabolic syndrome in rats. Nutrition38, 95–101 (2017). CASPubMed Google Scholar
Sanders, F. W. & Griffin, J. L. De novo lipogenesis in the liver in health and disease: more than just a shunting yard for glucose. Biol. Rev. Camb. Philos. Soc.91, 452–468 (2016). PubMed Google Scholar
Foster, D. W. Malonyl-CoA: the regulator of fatty acid synthesis and oxidation. J. Clin. Invest.122, 1958–1959 (2012). CASPubMedPubMed Central Google Scholar
McGarry, J. D., Takabayashi, Y. & Foster, D. W. The role of malonyl-CoA in the coordination of fatty acid synthesis and oxidation in isolated rat hepatocytes. J. Biol. Chem.253, 8294–8300 (1978). CASPubMed Google Scholar
Raichur, S. et al. CerS2 haploinsufficiency inhibits β-oxidation and confers susceptibility to diet-induced steatohepatitis and insulin resistance. Cell Metab.20, 687–695 (2014). CASPubMed Google Scholar
Xia, J. Y. et al. Targeted induction of ceramide degradation leads to improved systemic metabolism and reduced hepatic steatosis. Cell Metab.22, 266–278 (2015). CASPubMedPubMed Central Google Scholar
Law, B. A. et al. Lipotoxic very-long-chain ceramides cause mitochondrial dysfunction, oxidative stress, and cell death in cardiomyocytes. FASEB J.32, 1403–1416 (2018). CASPubMedPubMed Central Google Scholar
Field, C. J., Ryan, E. A., Thomson, A. B. & Clandinin, M. T. Diet fat composition alters membrane phospholipid composition, insulin binding, and glucose metabolism in adipocytes from control and diabetic animals. J. Biol. Chem.265, 11143–11150 (1990). CASPubMed Google Scholar
Leamy, A. K. et al. Enhanced synthesis of saturated phospholipids is associated with ER stress and lipotoxicity in palmitate treated hepatic cells. J. Lipid Res.55, 1478–1488 (2014). CASPubMedPubMed Central Google Scholar
Listenberger, L. L. et al. Triglyceride accumulation protects against fatty acid-induced lipotoxicity. Proc. Natl Acad. Sci. USA100, 3077–3082 (2003). CASPubMed Google Scholar
Shimano, H. & Sato, R. SREBP-regulated lipid metabolism: convergent physiology - divergent pathophysiology. Nat. Rev. Endocrinol.13, 710–730 (2017). CASPubMed Google Scholar
Filhoulaud, G., Guilmeau, S., Dentin, R., Girard, J. & Postic, C. Novel insights into ChREBP regulation and function. Trends Endocrinol. Metab.24, 257–268 (2013). CASPubMed Google Scholar
Repa, J. J. et al. Regulation of mouse sterol regulatory element-binding protein-1c gene (SREBP-1c) by oxysterol receptors, LXRalpha and LXRbeta. Genes Dev.14, 2819–2830 (2000). CASPubMedPubMed Central Google Scholar
Linden, A. G. et al. Interplay between ChREBP and SREBP-1c coordinates postprandial glycolysis and lipogenesis in livers of mice. J. Lipid Res.59, 475–487 (2018). CASPubMedPubMed Central Google Scholar
Chen, G., Liang, G., Ou, J., Goldstein, J. L. & Brown, M. S. Central role for liver X receptor in insulin-mediated activation of Srebp-1c transcription and stimulation of fatty acid synthesis in liver. Proc. Natl Acad. Sci. USA101, 11245–11250 (2004). CASPubMed Google Scholar
Lambert, J. E., Ramos-Roman, M. A., Browning, J. D. & Parks, E. J. Increased de novo lipogenesis is a distinct characteristic of individuals with nonalcoholic fatty liver disease. Gastroenterology146, 726–735 (2014). CASPubMed Google Scholar
Diraison, F., Moulin, P. & Beylot, M. Contribution of hepatic de novo lipogenesis and reesterification of plasma non esterified fatty acids to plasma triglyceride synthesis during non-alcoholic fatty liver disease. Diabetes Metab.29, 478–485 (2003). CASPubMed Google Scholar
Lee, J. J. et al. Palmitoleic acid is elevated in fatty liver disease and reflects hepatic lipogenesis. Am. J. Clin. Nutr.101, 34–43 (2015). CASPubMed Google Scholar
Marques-Lopes, I., Ansorena, D., Astiasaran, I., Forga, L. & Martinez, J. A. Postprandial de novo lipogenesis and metabolic changes induced by a high-carbohydrate, low-fat meal in lean and overweight men. Am. J. Clin. Nutr.73, 253–261 (2001). CASPubMed Google Scholar
Schwarz, J. M., Linfoot, P., Dare, D. & Aghajanian, K. Hepatic de novo lipogenesis in normoinsulinemic and hyperinsulinemic subjects consuming high-fat, low-carbohydrate and low-fat, high-carbohydrate isoenergetic diets. Am. J. Clin. Nutr.77, 43–50 (2003). CASPubMed Google Scholar
Higuchi, N. et al. Liver X receptor in cooperation with SREBP-1c is a major lipid synthesis regulator in nonalcoholic fatty liver disease. Hepatol. Res.38, 1122–1129 (2008). CASPubMed Google Scholar
Kohjima, M. et al. SREBP-1c, regulated by the insulin and AMPK signaling pathways, plays a role in nonalcoholic fatty liver disease. Int. J. Mol. Med.21, 507–511 (2008). CASPubMed Google Scholar
Lima-Cabello, E. et al. Enhanced expression of pro-inflammatory mediators and liver X-receptor-regulated lipogenic genes in non-alcoholic fatty liver disease and hepatitis C. Clin. Sci.120, 239–250 (2011). CASPubMed Google Scholar
Hudgins, L. C. et al. Relationship between carbohydrate-induced hypertriglyceridemia and fatty acid synthesis in lean and obese subjects. J. Lipid Res.41, 595–604 (2000). CASPubMed Google Scholar
Wilke, M. S. et al. Synthesis of specific fatty acids contributes to VLDL-triacylglycerol composition in humans with and without type 2 diabetes. Diabetologia52, 1628–1637 (2009). CASPubMed Google Scholar
Janevski, M. et al. Fructose containing sugars modulate mRNA of lipogenic genes ACC and FAS and protein levels of transcription factors ChREBP and SREBP1c with no effect on body weight or liver fat. Food Funct.3, 141–149 (2012). CASPubMed Google Scholar
Chong, M. F., Fielding, B. A. & Frayn, K. N. Mechanisms for the acute effect of fructose on postprandial lipemia. Am. J. Clin. Nutr.85, 1511–1520 (2007). CASPubMed Google Scholar
Sun, S. Z. & Empie, M. W. Fructose metabolism in humans - what isotopic tracer studies tell us. Nutr. Metab.9, 89 (2012). Google Scholar
Cox, C. L. et al. Consumption of fructose-sweetened beverages for 10 weeks reduces net fat oxidation and energy expenditure in overweight/obese men and women. Eur J. Clin. Nutr.66, 201–208 (2012). CASPubMed Google Scholar
Jensen, T. et al. Fructose and sugar: a major mediator of non-alcoholic fatty liver disease. J. Hepatol.68, 1063–1075 (2018). CASPubMedPubMed Central Google Scholar
Moore, J. B., Gunn, P. J. & Fielding, B. A. The role of dietary sugars and de novo lipogenesis in non-alcoholic fatty liver disease. Nutrients6, 5679–5703 (2014). CASPubMedPubMed Central Google Scholar
Le, K. A. et al. Fructose overconsumption causes dyslipidemia and ectopic lipid deposition in healthy subjects with and without a family history of type 2 diabetes. Am. J. Clin. Nutr.89, 1760–1765 (2009). CASPubMed Google Scholar
Sobrecases, H. et al. Effects of short-term overfeeding with fructose, fat and fructose plus fat on plasma and hepatic lipids in healthy men. Diabetes Metab.36, 244–246 (2010). CASPubMed Google Scholar
Stanhope, K. L. et al. Consuming fructose-sweetened, not glucose-sweetened, beverages increases visceral adiposity and lipids and decreases insulin sensitivity in overweight/obese humans. J. Clin. Invest.119, 1322–1334 (2009). CASPubMedPubMed Central Google Scholar
Chiavaroli, L. et al. Effect of fructose on established lipid targets: a systematic review and meta-analysis of controlled feeding trials. J. Am. Heart Assoc.4, e001700 (2015). PubMedPubMed Central Google Scholar
Chiu, S. et al. Effect of fructose on markers of non-alcoholic fatty liver disease (NAFLD): a systematic review and meta-analysis of controlled feeding trials. Eur. J. Clin. Nutr.68, 416–423 (2014). CASPubMedPubMed Central Google Scholar
Chung, M. et al. Fructose, high-fructose corn syrup, sucrose, and nonalcoholic fatty liver disease or indexes of liver health: a systematic review and meta-analysis. Am. J. Clin. Nutr.100, 833–849 (2014). CASPubMedPubMed Central Google Scholar
Asgari-Taee, F. et al. Association of sugar sweetened beverages consumption with non-alcoholic fatty liver disease: a systematic review and meta-analysis. Eur. J. Nutr.58, 1759–1769 (2019). CASPubMed Google Scholar
Wijarnpreecha, K., Thongprayoon, C., Edmonds, P. J. & Cheungpasitporn, W. Associations of sugar- and artificially sweetened soda with nonalcoholic fatty liver disease: a systematic review and meta-analysis. QJM109, 461–466 (2016). CASPubMed Google Scholar
Kanerva, N., Sandboge, S., Kaartinen, N. E., Mannisto, S. & Eriksson, J. G. Higher fructose intake is inversely associated with risk of nonalcoholic fatty liver disease in older Finnish adults. Am. J. Clin. Nutr.100, 1133–1138 (2014). CASPubMed Google Scholar
Coleman, R. A. & Lee, D. P. Enzymes of triacylglycerol synthesis and their regulation. Prog. Lipid Res.43, 134–176 (2004). CASPubMed Google Scholar
Nguyen, P. et al. Liver lipid metabolism. J. Anim. Physiol. Anim. Nutr.92, 272–283 (2008). CAS Google Scholar
Wang, H., Airola, M. V. & Reue, K. How lipid droplets “TAG” along: glycerolipid synthetic enzymes and lipid storage. Biochim. Biophys. Acta Mol. Cell Biol. Lipids1862, 1131–1145 (2017). CASPubMed Google Scholar
Lewin, T. M. et al. Mice deficient in mitochondrial glycerol-3-phosphate acyltransferase-1 have diminished myocardial triacylglycerol accumulation during lipogenic diet and altered phospholipid fatty acid composition. Biochim. Biophys. Acta1781, 352–358 (2008). CASPubMedPubMed Central Google Scholar
Yen, C. L., Nelson, D. W. & Yen, M. I. Intestinal triacylglycerol synthesis in fat absorption and systemic energy metabolism. J. Lipid Res.56, 489–501 (2015). CASPubMedPubMed Central Google Scholar
Ohsaki, Y. et al. PML isoform II plays a critical role in nuclear lipid droplet formation. J. Cell Biol.212, 29–38 (2016). CASPubMedPubMed Central Google Scholar
Brunt, E. M. Pathology of fatty liver disease. Mod Pathol.20 (Suppl. 1), S40–S48 (2007). CASPubMed Google Scholar
Tandra, S. et al. Presence and significance of microvesicular steatosis in nonalcoholic fatty liver disease. J. Hepatol.55, 654–659 (2011). PubMed Google Scholar
Yersiz, H. et al. Assessment of hepatic steatosis by transplant surgeon and expert pathologist: a prospective, double-blind evaluation of 201 donor livers. Liver Transpl.19, 437–449 (2013). PubMed Google Scholar
Fromenty, B., Berson, A. & Pessayre, D. Microvesicular steatosis and steatohepatitis: role of mitochondrial dysfunction and lipid peroxidation. J. Hepatol.26 (Suppl. 1), 13–22 (1997). CASPubMed Google Scholar
Fromenty, B. & Pessayre, D. Impaired mitochondrial function in microvesicular steatosis. Effects of drugs, ethanol, hormones and cytokines. J. Hepatol.26 (Suppl. 2), 43–53 (1997). CASPubMed Google Scholar
Takahashi, Y. & Fukusato, T. Histopathology of nonalcoholic fatty liver disease/nonalcoholic steatohepatitis. World J. Gastroenterol.20, 15539–15548 (2014). PubMedPubMed Central Google Scholar
Walther, T. C., Chung, J. & Farese, R. V. Jr Lipid droplet biogenesis. Annu. Rev. Cell Dev. Biol.33, 491–510 (2017). CASPubMedPubMed Central Google Scholar
Mashek, D. G., Khan, S. A., Sathyanarayan, A., Ploeger, J. M. & Franklin, M. P. Hepatic lipid droplet biology: getting to the root of fatty liver. Hepatology62, 964–967 (2015). PubMedPubMed Central Google Scholar
Cartwright, B. R. & Goodman, J. M. Seipin: from human disease to molecular mechanism. J. Lipid Res.53, 1042–1055 (2012). CASPubMedPubMed Central Google Scholar
Pawella, L. M. et al. Perilipin discerns chronic from acute hepatocellular steatosis. J. Hepatol.60, 633–642 (2014). CASPubMed Google Scholar
Okumura, T. Role of lipid droplet proteins in liver steatosis. J. Physiol. Biochem.67, 629–636 (2011). CASPubMed Google Scholar
Straub, B. K., Stoeffel, P., Heid, H., Zimbelmann, R. & Schirmacher, P. Differential pattern of lipid droplet-associated proteins and de novo perilipin expression in hepatocyte steatogenesis. Hepatology47, 1936–1946 (2008). CASPubMed Google Scholar
Fujii, H. et al. Expression of perilipin and adipophilin in nonalcoholic fatty liver disease; relevance to oxidative injury and hepatocyte ballooning. J. Atheroscler. Thromb.16, 893–901 (2009). CASPubMed Google Scholar
Carr, R. M. et al. Perilipin staining distinguishes between steatosis and nonalcoholic steatohepatitis in adults and children. Clin. Gastroenterol. Hepatol.15, 145–147 (2017). PubMed Google Scholar
Missaglia, S., Coleman, R. A., Mordente, A. & Tavian, D. Neutral lipid storage diseases as cellular model to study lipid droplet function. Cells8, E187 (2019). PubMed Google Scholar
Schulze, R. J., Drizyte, K., Casey, C. A. & McNiven, M. A. Hepatic lipophagy: new insights into autophagic catabolism of lipid droplets in the liver. Hepatol. Commun.1, 359–369 (2017). PubMedPubMed Central Google Scholar
Zechner, R., Madeo, F. & Kratky, D. Cytosolic lipolysis and lipophagy: two sides of the same coin. Nat. Rev. Mol. Cell Biol.18, 671–684 (2017). CASPubMed Google Scholar
Zubiete-Franco, I. et al. Methionine and S-adenosylmethionine levels are critical regulators of PP2A activity modulating lipophagy during steatosis. J. Hepatol.64, 409–418 (2016). CASPubMed Google Scholar
Tanaka, S. et al. Rubicon inhibits autophagy and accelerates hepatocyte apoptosis and lipid accumulation in nonalcoholic fatty liver disease in mice. Hepatology64, 1994–2014 (2016). CASPubMed Google Scholar
Schrader, M., Costello, J., Godinho, L. F. & Islinger, M. Peroxisome-mitochondria interplay and disease. J. Inherit. Metab. Dis.38, 681–702 (2015). CASPubMed Google Scholar
Houten, S. M., Violante, S., Ventura, F. V. & Wanders, R. J. The biochemistry and physiology of mitochondrial fatty acid beta-oxidation and its genetic disorders. Annu. Rev. Physiol.78, 23–44 (2016). CASPubMed Google Scholar
Sassa, T. & Kihara, A. Metabolism of very long-chain fatty acids: genes and pathophysiology. Biomol. Ther.22, 83–92 (2014). CAS Google Scholar
Laffel, L. Ketone bodies: a review of physiology, pathophysiology and application of monitoring to diabetes. Diabetes Metab. Res. Rev.15, 412–426 (1999). CASPubMed Google Scholar
Pawlak, M., Lefebvre, P. & Staels, B. Molecular mechanism of PPARalpha action and its impact on lipid metabolism, inflammation and fibrosis in non-alcoholic fatty liver disease. J. Hepatol.62, 720–733 (2015). CASPubMed Google Scholar
Gibbons, G. F., Islam, K. & Pease, R. J. Mobilisation of triacylglycerol stores. Biochim. Biophys. Acta1483, 37–57 (2000). CASPubMed Google Scholar
Kimmel, A. R. & Sztalryd, C. The perilipins: Major cytosolic lipid droplet-associated proteins and their roles in cellular lipid storage, mobilization, and systemic homeostasis. Annu. Rev. Nutr.36, 471–509 (2016). CASPubMed Google Scholar
Sunny, N. E., Parks, E. J., Browning, J. D. & Burgess, S. C. Excessive hepatic mitochondrial TCA cycle and gluconeogenesis in humans with nonalcoholic fatty liver disease. Cell Metab.14, 804–810 (2011). CASPubMedPubMed Central Google Scholar
Petersen, K. F., Befroy, D. E., Dufour, S., Rothman, D. L. & Shulman, G. I. Assessment of hepatic mitochondrial oxidation and pyruvate cycling in NAFLD by (13)C magnetic resonance spectroscopy. Cell Metab.24, 167–171 (2016). CASPubMedPubMed Central Google Scholar
Croci, I. et al. Whole-body substrate metabolism is associated with disease severity in patients with non-alcoholic fatty liver disease. Gut62, 1625–1633 (2013). CASPubMed Google Scholar
Kotronen, A. et al. Liver fat and lipid oxidation in humans. Liver Int.29, 1439–1446 (2009). CASPubMed Google Scholar
Bugianesi, E. et al. Insulin resistance in non-diabetic patients with non-alcoholic fatty liver disease: sites and mechanisms. Diabetologia48, 634–642 (2005). CASPubMed Google Scholar
Sanyal, A. J. et al. Nonalcoholic steatohepatitis: association of insulin resistance and mitochondrial abnormalities. Gastroenterology120, 1183–1192 (2001). CASPubMed Google Scholar
Palmieri, V. O., Grattagliano, I., Portincasa, P. & Palasciano, G. Systemic oxidative alterations are associated with visceral adiposity and liver steatosis in patients with metabolic syndrome. J. Nutr.136, 3022–3026 (2006). CASPubMed Google Scholar
Del Ben, M. et al. Serum cytokeratin-18 is associated with NOX2-generated oxidative stress in patients with nonalcoholic fatty liver. Int. J. Hepatol.2014, 784985 (2014). PubMedPubMed Central Google Scholar
Del Ben, M. et al. NOX2-generated oxidative stress is associated with severity of ultrasound liver steatosis in patients with non-alcoholic fatty liver disease. BMC Gastroenterol.14, 81 (2014). PubMedPubMed Central Google Scholar
Peng, K. Y. et al. Mitochondrial dysfunction-related lipid changes occur in nonalcoholic fatty liver disease progression. J. Lipid Res.59, 1977–1986 (2018). CASPubMedPubMed Central Google Scholar
Koliaki, C. et al. Adaptation of hepatic mitochondrial function in humans with non-alcoholic fatty liver is lost in steatohepatitis. Cell Metab.21, 739–746 (2015). CASPubMed Google Scholar
DeLany, J. P., Windhauser, M. M., Champagne, C. M. & Bray, G. A. Differential oxidation of individual dietary fatty acids in humans. Am. J. Clin. Nutr.72, 905–911 (2000). CASPubMed Google Scholar
Jones, P. J., Pencharz, P. B. & Clandinin, M. T. Whole body oxidation of dietary fatty acids: implications for energy utilization. Am. J. Clin. Nutr.42, 769–777 (1985). CASPubMed Google Scholar
Schmidt, D. E., Allred, J. B. & Kien, C. L. Fractional oxidation of chylomicron-derived oleate is greater than that of palmitate in healthy adults fed frequent small meals. J. Lipid Res.40, 2322–2332 (1999). CASPubMed Google Scholar
Hodson, L., Rosqvist, F. & Parry, S. A. The influence of dietary fatty acids on liver fat content and metabolism. Proc. Nutr. Soc. https://doi.org/10.1017/S0029665119000569 (2019).
Rosqvist, F. et al. Overfeeding polyunsaturated and saturated fat causes distinct effects on liver and visceral fat accumulation in humans. Diabetes63, 2356–2368 (2014). PubMed Google Scholar
Gibbons, G. F., Wiggins, D., Brown, A. M. & Hebbachi, A. M. Synthesis and function of hepatic very-low-density lipoprotein. Biochem. Soc. Trans.32, 59–64 (2004). CASPubMed Google Scholar
Lehner, R., Lian, J. & Quiroga, A. D. Lumenal lipid metabolism: implications for lipoprotein assembly. Arterioscler. Thromb. Vasc. Biol.32, 1087–1093 (2012). CASPubMed Google Scholar
Gibbons, G. F., Bartlett, S. M., Sparks, C. E. & Sparks, J. D. Extracellular fatty acids are not utilized directly for the synthesis of very-low-density lipoprotein in primary cultures of rat hepatocytes. Biochem. J.287, 749–753 (1992). CASPubMedPubMed Central Google Scholar
Ohsaki, Y., Cheng, J., Suzuki, M., Fujita, A. & Fujimoto, T. Lipid droplets are arrested in the ER membrane by tight binding of lipidated apolipoprotein B-100. J. Cell Sci.121, 2415–2422 (2008). CASPubMed Google Scholar
Hossain, T., Riad, A., Siddiqi, S., Parthasarathy, S. & Siddiqi, S. A. Mature VLDL triggers the biogenesis of a distinct vesicle from the trans-Golgi network for its export to the plasma membrane. Biochem. J.459, 47–58 (2014). CASPubMedPubMed Central Google Scholar
Tiwari, S. & Siddiqi, S. A. Intracellular trafficking and secretion of VLDL. Arterioscler. Thromb. Vasc. Biol.32, 1079–1086 (2012). CASPubMedPubMed Central Google Scholar
Adiels, M. et al. Overproduction of VLDL1 driven by hyperglycemia is a dominant feature of diabetic dyslipidemia. Arterioscler. Thromb. Vasc. Biol.25, 1697–1703 (2005). CASPubMed Google Scholar
Fabbrini, E. et al. Alterations in adipose tissue and hepatic lipid kinetics in obese men and women with nonalcoholic fatty liver disease. Gastroenterology134, 424–431 (2008). CASPubMed Google Scholar
Adiels, M., Olofsson, S. O., Taskinen, M. R. & Boren, J. Overproduction of very low-density lipoproteins is the hallmark of the dyslipidemia in the metabolic syndrome. Arterioscler. Thromb. Vasc. Biol.28, 1225–1236 (2008). CASPubMed Google Scholar
Malmstrom, R. et al. Effects of insulin and acipimox on VLDL1 and VLDL2 apolipoprotein B production in normal subjects. Diabetes47, 779–787 (1998). CASPubMed Google Scholar
Adiels, M. et al. Acute suppression of VLDL1 secretion rate by insulin is associated with hepatic fat content and insulin resistance. Diabetologia50, 2356–2365 (2007). CASPubMed Google Scholar
Adiels, M. et al. Overproduction of large VLDL particles is driven by increased liver fat content in man. Diabetologia49, 755–765 (2006). CASPubMed Google Scholar
Higuchi, N. et al. Effects of insulin resistance and hepatic lipid accumulation on hepatic mRNA expression levels of apoB, MTP and L-FABP in non-alcoholic fatty liver disease. Exp. Ther. Med.2, 1077–1081 (2011). CASPubMedPubMed Central Google Scholar
Mahdessian, H. et al. TM6SF2 is a regulator of liver fat metabolism influencing triglyceride secretion and hepatic lipid droplet content. Proc. Natl Acad. Sci. USA111, 8913–8918 (2014). CASPubMed Google Scholar
Sliz, E. et al. NAFLD risk alleles in PNPLA3, TM6SF2, GCKR and LYPLAL1 show divergent metabolic effects. Hum. Mol. Genet.27, 2214–2223 (2018). CASPubMedPubMed Central Google Scholar
Umpleby, A. M. et al. Impact of liver fat on the differential partitioning of hepatic triacylglycerol into VLDL subclasses on high and low sugar diets. Clin. Sci.131, 2561–2573 (2017). CASPubMedPubMed Central Google Scholar
Parks, E. J., Krauss, R. M., Christiansen, M. P., Neese, R. A. & Hellerstein, M. K. Effects of a low-fat, high-carbohydrate diet on VLDL-triglyceride assembly, production, and clearance. J. Clin. Invest.104, 1087–1096 (1999). CASPubMedPubMed Central Google Scholar
Gill, J. M. et al. Effects of dietary monounsaturated fatty acids on lipoprotein concentrations, compositions, and subfraction distributions and on VLDL apolipoprotein B kinetics: dose-dependent effects on LDL. Am. J. Clin. Nutr.78, 47–56 (2003). CASPubMed Google Scholar
Hazlehurst, J. M., Woods, C., Marjot, T., Cobbold, J. F. & Tomlinson, J. W. Non-alcoholic fatty liver disease and diabetes. Metabolism65, 1096–1108 (2016). CASPubMedPubMed Central Google Scholar
Green, C. J., Marjot, T., Tomlinson, J. W. & Hodson, L. Of mice and men: is there a future for metformin in the treatment of hepatic steatosis? Diabetes Obes. Metab.21, 749–760 (2019). PubMed Google Scholar
Cussons, A. J., Watts, G. F., Mori, T. A. & Stuckey, B. G. Omega-3 fatty acid supplementation decreases liver fat content in polycystic ovary syndrome: a randomized controlled trial employing proton magnetic resonance spectroscopy. J. Clin. Endocrinol. Metab.94, 3842–3848 (2009). CASPubMed Google Scholar
de Castro, G. S. & Calder, P. C. Non-alcoholic fatty liver disease and its treatment with n-3 polyunsaturated fatty acids. Clin. Nutr.37, 37–55 (2018). PubMed Google Scholar
Musa-Veloso, K. et al. Systematic review and meta-analysis of controlled intervention studies on the effectiveness of long-chain omega-3 fatty acids in patients with nonalcoholic fatty liver disease. Nutr. Rev.76, 581–602 (2018). PubMedPubMed Central Google Scholar
Tanaka, N. et al. Highly purified eicosapentaenoic acid treatment improves nonalcoholic steatohepatitis. J. Clin. Gastroenterol.42, 413–418 (2008). CASPubMed Google Scholar
Hodson, L. et al. Docosahexaenoic acid enrichment in NAFLD is associated with improvements in hepatic metabolism and hepatic insulin sensitivity: a pilot study. Eur J. Clin. Nutr.71, 1251 (2017). CASPubMedPubMed Central Google Scholar
Kim, C. W. et al. Acetyl CoA carboxylase inhibition reduces hepatic steatosis but elevates plasma triglycerides in mice and humans: a bedside to bench investigation. Cell Metab.26, 394–406 (2017). CASPubMedPubMed Central Google Scholar
Zhu, L. et al. Lipid in the livers of adolescents with nonalcoholic steatohepatitis: combined effects of pathways on steatosis. Metabolism60, 1001–1011 (2011). CASPubMed Google Scholar
Greco, D. et al. Gene expression in human NAFLD. Am. J. Physiol. Gastrointest. Liver Physiol.294, G1281–G1287 (2008). CASPubMed Google Scholar
Zhou, J. et al. Hepatic fatty acid transporter Cd36 is a common target of LXR, PXR, and PPARgamma in promoting steatosis. Gastroenterology134, 556–567 (2008). CASPubMed Google Scholar
Li, Y. et al. CD36 plays a negative role in the regulation of lipophagy in hepatocytes through an AMPK-dependent pathway. J. Lipid Res.60, 844–855 (2019). CASPubMedPubMed Central Google Scholar
Fernandez-Rojo, M. A. & Ramm, G. A. Caveolin-1 function in liver physiology and disease. Trends Mol. Med.22, 889–904 (2016). CASPubMed Google Scholar
Patni, N. & Garg, A. Congenital generalized lipodystrophies-new insights into metabolic dysfunction. Nat. Rev. Endocrinol.11, 522–534 (2015). CASPubMed Google Scholar
Wang, G., Bonkovsky, H. L., de Lemos, A. & Burczynski, F. J. Recent insights into the biological functions of liver fatty acid binding protein 1. J. Lipid Res.56, 2238–2247 (2015). CASPubMedPubMed Central Google Scholar
Charlton, M. et al. Differential expression of lumican and fatty acid binding protein-1: new insights into the histologic spectrum of nonalcoholic fatty liver disease. Hepatology49, 1375–1384 (2009). CASPubMedPubMed Central Google Scholar
Westerbacka, J. et al. Genes involved in fatty acid partitioning and binding, lipolysis, monocyte/macrophage recruitment, and inflammation are overexpressed in the human fatty liver of insulin-resistant subjects. Diabetes56, 2759–2765 (2007). CASPubMed Google Scholar
Quiroga, A. D. & Lehner, R. Pharmacological intervention of liver triacylglycerol lipolysis: the good, the bad and the ugly. Biochem. Pharmacol.155, 233–241 (2018). CASPubMed Google Scholar
Ruby, M. A. et al. Human carboxylesterase 2 reverses obesity-induced diacylglycerol accumulation and glucose intolerance. Cell Rep.18, 636–646 (2017). CASPubMedPubMed Central Google Scholar
Lord, C. C. & Brown, J. M. Distinct roles for alpha-beta hydrolase domain 5 (ABHD5/CGI-58) and adipose triglyceride lipase (ATGL/PNPLA2) in lipid metabolism and signaling. Adipocyte1, 123–131 (2012). CASPubMedPubMed Central Google Scholar
Carr, R. M. & Ahima, R. S. Pathophysiology of lipid droplet proteins in liver diseases. Exp. Cell Res.340, 187–192 (2016). CASPubMed Google Scholar
Li, C. et al. Roles of acyl-CoA:diacylglycerol acyltransferases 1 and 2 in triacylglycerol synthesis and secretion in primary hepatocytes. Arterioscler. Thromb. Vasc. Biol.35, 1080–1091 (2015). PubMed Google Scholar
Goh, V. J. & Silver, D. L. The lipid droplet as a potential therapeutic target in NAFLD. Semin. Liver Dis.33, 312–320 (2013). CASPubMed Google Scholar
Jump, D. B., Torres-Gonzalez, M. & Olson, L. K. Soraphen A, an inhibitor of acetyl CoA carboxylase activity, interferes with fatty acid elongation. Biochem. Pharmacol.81, 649–660 (2011). CASPubMed Google Scholar
Harriman, G. et al. Acetyl-CoA carboxylase inhibition by ND-630 reduces hepatic steatosis, improves insulin sensitivity, and modulates dyslipidemia in rats. Proc. Natl Acad. Sci. USA113, E1796–E1805 (2016). CASPubMed Google Scholar
Lally, J. S. V. et al. Inhibition of acetyl-CoA carboxylase by phosphorylation or the inhibitor ND-654 suppresses lipogenesis and hepatocellular carcinoma. Cell Metab.29, 174–182 (2019). CASPubMed Google Scholar
Loomba, R. et al. GS-0976 reduces hepatic steatosis and fibrosis markers in patients with nonalcoholic fatty liver disease. Gastroenterology155, 1463–1473 (2018). CASPubMedPubMed Central Google Scholar
Stiede, K. et al. Acetyl-coenzyme A carboxylase inhibition reduces de novo lipogenesis in overweight male subjects: a randomized, double-blind, crossover study. Hepatology66, 324–334 (2017). CASPubMedPubMed Central Google Scholar
McLaren, D. G. et al. DGAT2 inhibition alters aspects of triglyceride metabolism in rodents but not in non-human primates. Cell Metab.27, 1236–1248 (2018). CASPubMed Google Scholar