Selenium in thyroid disorders — essential knowledge for clinicians (original) (raw)
Schwarz, K. & Foltz, C. M. Selenium as an integral part of factor 3 against dietary necrotic liver degeneration. J. Am. Chem. Soc.79, 3292–3293 (1957). CAS Google Scholar
Hatfield, D. L. & Gladyshev, V. N. How selenium has altered our understanding of the genetic code. Mol. Cell Biol.22, 3565–3576 (2002). CASPubMedPubMed Central Google Scholar
Rayman, M. P. Selenium and human health. Lancet379, 1256–1268 (2012). This article presents an overview of the different roles of selenium in relation to human health. CASPubMed Google Scholar
Clark, L. C. et al. Effects of selenium supplementation for cancer prevention in patients with carcinoma of the skin. A randomized controlled trial. Nutritional Prevention of Cancer Study Group. JAMA276, 1957–1963 (1996). CASPubMed Google Scholar
Lippman, S. M. et al. Effect of selenium and vitamin E on risk of prostate cancer and other cancers: the Selenium and Vitamin E Cancer Prevention Trial (SELECT). JAMA301, 39–51 (2009). CASPubMed Google Scholar
Fan, Y. et al. Selenium supplementation for autoimmune thyroiditis: a systematic review and meta-analysis. Int. J. Endocrinol.2014, 904573 (2014). PubMedPubMed Central Google Scholar
Wichman, J., Winther, K. H., Bonnema, S. J. & Hegedus, L. Selenium supplementation significantly reduces thyroid autoantibody levels in patients with chronic autoimmune thyroiditis: a systematic review and meta-analysis. Thyroid26, 1681–1692 (2016). This article is a systematic review of selenium supplementation trials in AIT. CASPubMed Google Scholar
Kohrle, J., Jakob, F., Contempre, B. & Dumont, J. E. Selenium, the thyroid, and the endocrine system. Endocr. Rev.26, 944–984 (2005). This article is a comprehensive review of the roles of different selenoproteins in the endocrine system, including the thyroid. CASPubMed Google Scholar
Labunskyy, V. M., Hatfield, D. L. & Gladyshev, V. N. Selenoproteins: molecular pathways and physiological roles. Physiol. Rev.94, 739–777 (2014). CASPubMedPubMed Central Google Scholar
Schweizer, U. & Fradejas-Villar, N. Why 21? The significance of selenoproteins for human health revealed by inborn errors of metabolism. FASEB J.30, 3669–3681 (2016). CASPubMed Google Scholar
Dumitrescu, A. M. & Refetoff, S. Inherited defects of thyroid hormone metabolism. Ann. Endocrinol.72, 95–98 (2011). CAS Google Scholar
Schmutzler, C. et al. Selenoproteins of the thyroid gland: expression, localization and possible function of glutathione peroxidase 3. Biol. Chem.388, 1053–1059 (2007). CASPubMed Google Scholar
Schomburg, L. Selenium, selenoproteins and the thyroid gland: interactions in health and disease. Nat. Rev. Endocrinol.8, 160–171 (2012). CAS Google Scholar
Panicker, V. et al. Common variation in the DIO2 gene predicts baseline psychological well-being and response to combination thyroxine plus triiodothyronine therapy in hypothyroid patients. J. Clin. Endocrinol. Metab.94, 1623–1629 (2009). CASPubMed Google Scholar
Jo, S. et al. Type 2 deiodinase polymorphism causes ER stress and hypothyroidism in the brain. J. Clin. Invest.129, 230–245 (2019). PubMed Google Scholar
Carlé, A., Faber, J., Steffensen, R., Laurberg, P. & Nygaard, B. Hypothyroid patients encoding combined MCT10 and DIO2 gene polymorphisms may prefer L-T3 + L-T4 combination treatment - data using a blind, randomized, clinical study. Eur. Thyroid J.6, 143–151 (2017). PubMedPubMed Central Google Scholar
Schomburg, L. & Köhrle, J. On the importance of selenium and iodine metabolism for thyroid hormone biosynthesis and human health. Mol. Nutr. Food Res.52, 1235–1246 (2008). CASPubMed Google Scholar
Lin, J. C. et al. Glutathione peroxidase 3 gene polymorphisms and risk of differentiated thyroid cancer. Surgery145, 508–513 (2009). PubMed Google Scholar
Curran, J. E. et al. Genetic variation in selenoprotein S influences inflammatory response. Nat. Genet.37, 1234–1241 (2005). CASPubMed Google Scholar
Santos, L. R. et al. A polymorphism in the promoter region of the selenoprotein S gene (SEPS1) contributes to Hashimoto’s thyroiditis susceptibility. J. Clin. Endocrinol. Metab.99, E719–E723 (2014). This case–control study shows increased risk of AIT with a polymorphism in theSELENOSgene. The polymorphism further increased the risk in males, suggesting sexual dimorphism. CASPubMed Google Scholar
Johnson, C. C., Fordyce, F. M. & Rayman, M. P. Symposium on ‘Geographical and geological influences on nutrition’: factors controlling the distribution of selenium in the environment and their impact on health and nutrition. Proc. Nutr. Soc.69, 119–132 (2010). CASPubMed Google Scholar
Institute of Medicine. Dietary Reference Intakes for Vitamin C, Vitamin E, Selenium, and Carotenoids (National Academies Press, 2000).
EFSA Panel on Dietetic Products, Nutrition and Allergies. Scientific opinion on dietary reference values for selenium. EFSA J.12, 3846 (2014). Google Scholar
Rayman, M. P. Food-chain selenium and human health: emphasis on intake. Br. J. Nutr.100, 254–268 (2008). CASPubMed Google Scholar
Rayman, M. P. The use of high-selenium yeast to raise selenium status: how does it measure up? Br. J. Nutr.92, 557–573 (2004). CASPubMed Google Scholar
Achouba, A., Dumas, P., Ouellet, N., Lemire, M. & Ayotte, P. Plasma levels of selenium-containing proteins in Inuit adults from Nunavik. Environ. Int.96, 8–15 (2016). CASPubMed Google Scholar
Swanson, C. A. et al. Human [74Se]selenomethionine metabolism: a kinetic model. Am. J. Clin. Nutr.54, 917–926 (1991). CASPubMed Google Scholar
Rayman, M. P. et al. Effect of long-term selenium supplementation on mortality: results from a multiple-dose, randomised controlled trial. Free. Radic. Biol. Med.127, 46–54 (2018). This was a randomized, controlled trial that questioned the safety of current selenium upper tolerable intake limits. CASPubMed Google Scholar
Whanger, P. D. Selenocompounds in plants and animals and their biological significance. J. Am. Coll. Nutr.21, 223–232 (2002). CASPubMed Google Scholar
Rayman, M. P., Infante, H. G. & Sargent, M. Food-chain selenium and human health: spotlight on speciation. Br. J. Nutr.100, 238–253 (2008). CASPubMed Google Scholar
Patterson, B. H. et al. Human selenite metabolism: a kinetic model. Am. J. Physiol.257, R556–R567 (1989). CASPubMed Google Scholar
Fairweather-Tait, S. J., Collings, R. & Hurst, R. Selenium bioavailability: current knowledge and future research requirements. Am. J. Clin. Nutr.91, 1484s–1491s (2010). CASPubMed Google Scholar
Francesconi, K. A. & Pannier, F. Selenium metabolites in urine: a critical overview of past work and current status. Clin. Chem.50, 2240–2253 (2004). CASPubMed Google Scholar
Robinson, J. R., Robinson, M. F., Levander, O. A. & Thomson, C. D. Urinary excretion of selenium by New Zealand and North American human subjects on differing intakes. Am. J. Clin. Nutr.41, 1023–1031 (1985). CASPubMed Google Scholar
Ashton, K. et al. Methods of assessment of selenium status in humans: a systematic review. Am. J. Clin. Nutr.89, 2025S–2039S (2009). CASPubMed Google Scholar
Rayman, M. P. et al. Effect of selenium on markers of risk of pre-eclampsia in UK pregnant women: a randomised, controlled pilot trial. Br. J. Nutr.112, 99–111 (2014). CASPubMedPubMed Central Google Scholar
Rayman, M. P., Bode, P. & Redman, C. W. Low selenium status is associated with the occurrence of the pregnancy disease preeclampsia in women from the United Kingdom. Am. J. Obstet. Gynecol.189, 1343–1349 (2003). CASPubMed Google Scholar
Duncan, A., Talwar, D., McMillan, D. C., Stefanowicz, F. & O’Reilly, D. S. Quantitative data on the magnitude of the systemic inflammatory response and its effect on micronutrient status based on plasma measurements. Am. J. Clin. Nutr.95, 64–71 (2012). CASPubMed Google Scholar
Stefanowicz, F. A. et al. Erythrocyte selenium concentration as a marker of selenium status. Clin. Nutr.32, 837–842 (2013). CASPubMed Google Scholar
Mita, Y. et al. Selenoprotein P-neutralizing antibodies improve insulin secretion and glucose sensitivity in type 2 diabetes mouse models. Nat. Commun.8, 1658 (2017). PubMedPubMed Central Google Scholar
Xia, Y., Hill, K. E., Byrne, D. W., Xu, J. & Burk, R. F. Effectiveness of selenium supplements in a low-selenium area of China. Am. J. Clin. Nutr.81, 829–834 (2005). CASPubMed Google Scholar
Yang, G. Q. & Xia, Y. M. Studies on human dietary requirements and safe range of dietary intakes of selenium in China and their application in the prevention of related endemic diseases. Biomed. Environ. Sci.8, 187–201 (1995). CASPubMed Google Scholar
Hughes, D. J. et al. Selenium status is associated with colorectal cancer risk in the European prospective investigation of cancer and nutrition cohort. Int. J. Cancer136, 1149–1161 (2015). CASPubMed Google Scholar
Laclaustra, M., Navas-Acien, A., Stranges, S., Ordovas, J. M. & Guallar, E. Serum selenium concentrations and diabetes in U.S. adults: National Health and Nutrition Examination Survey (NHANES) 2003-2004. Environ. Health Perspect.117, 1409–1413 (2009). CASPubMedPubMed Central Google Scholar
Burek, C. L. & Rose, N. R. Autoimmune thyroiditis and ROS. Autoimmun. Rev.7, 530–537 (2008). CASPubMed Google Scholar
Smith, T. J. & Hegedus, L. Graves’ disease. N. Engl. J. Med.375, 1552–1565 (2016). This comprehensive review on Graves disease includes updates on disease aetiology and pathogenesis. PubMed Google Scholar
Marino, M., Dottore, G. R., Leo, M. & Marcocci, C. Mechanistic pathways of selenium in the treatment of Graves’ disease and Graves’ orbitopathy. Horm. Metab. Res.50, 887–893 (2018). CASPubMed Google Scholar
Rotondo Dottore, G. et al. Antioxidant actions of selenium in orbital fibroblasts: a basis for the effects of selenium in Graves’ orbitopathy. Thyroid27, 271–278 (2017). CASPubMed Google Scholar
Nettore, I. C. et al. Selenium supplementation modulates apoptotic processes in thyroid follicular cells. Biofactors43, 415–423 (2017). CASPubMed Google Scholar
Balázs, C. & Kaczur, V. Effect of selenium on HLA-DR expression of thyrocytes. Autoimmune Dis.2012, 374635 (2012). PubMedPubMed Central Google Scholar
Huang, Z., Rose, A. H. & Hoffmann, P. R. The role of selenium in inflammation and immunity: from molecular mechanisms to therapeutic opportunities. Antioxid. Redox Signal.16, 705–743 (2012). CASPubMedPubMed Central Google Scholar
Avery, J. C. & Hoffmann, P. R. Selenium, selenoproteins, and immunity. Nutrients10, 1203 (2018). A comprehensive review on the roles of selenoproteins in the immune system. PubMed Central Google Scholar
Wang, W. et al. Effects of selenium supplementation on spontaneous autoimmune thyroiditis in NOD.H-2h4 mice. Thyroid25, 1137–1144 (2015). CASPubMed Google Scholar
Xue, H. et al. Selenium upregulates CD4+CD25+ regulatory T cells in iodine-induced autoimmune thyroiditis model of NOD.H-2h4 mice. Endocr. J.57, 595–601 (2010). CASPubMed Google Scholar
McLachlan, S. M., Aliesky, H., Banuelos, B., Hee, S. S. Q. & Rapoport, B. Variable effects of dietary selenium in mice that spontaneously develop a spectrum of thyroid autoantibodies. Endocrinology158, 3754–3764 (2017). This experimental study provided evidence that is consistent with increased risk of AIT with low selenium status. CASPubMedPubMed Central Google Scholar
Contempre, B. et al. Effect of selenium supplementation in hypothyroid subjects of an iodine and selenium deficient area: the possible danger of indiscriminate supplementation of iodine-deficient subjects with selenium. J. Clin. Endocrinol. Metab.73, 213–215 (1991). CASPubMed Google Scholar
Contempre, B. et al. Effect of selenium supplementation on thyroid hormone metabolism in an iodine and selenium deficient population. Clin. Endocrinol.36, 579–583 (1992). CAS Google Scholar
Winther, K. H. et al. Does selenium supplementation affect thyroid function? Results from a randomized, controlled, double-blinded trial in a Danish population. Eur. J. Endocrinol.172, 657–667 (2015). CASPubMed Google Scholar
Duffield, A. J., Thomson, C. D., Hill, K. E. & Williams, S. An estimation of selenium requirements for New Zealanders. Am. J. Clin. Nutr.70, 896–903 (1999). CASPubMed Google Scholar
Thomson, C. D., McLachlan, S. K., Grant, A. M., Paterson, E. & Lillico, A. J. The effect of selenium on thyroid status in a population with marginal selenium and iodine status. Br. J. Nutr.94, 962–968 (2005). CASPubMed Google Scholar
Rayman, M. P. et al. Randomized controlled trial of the effect of selenium supplementation on thyroid function in the elderly in the United Kingdom. Am. J. Clin. Nutr.87, 370–378 (2008). CASPubMed Google Scholar
Hansen, P. S. et al. Genetic and environmental causes of individual differences in thyroid size: a study of healthy Danish twins. J. Clin. Endocrinol. Metab.89, 2071–2077 (2004). CASPubMed Google Scholar
Derumeaux, H. et al. Association of selenium with thyroid volume and echostructure in 35- to 60-year-old French adults. Eur. J. Endocrinol.148, 309–315 (2003). CASPubMed Google Scholar
Rasmussen, L. B. et al. Selenium status, thyroid volume, and multiple nodule formation in an area with mild iodine deficiency. Eur. J. Endocrinol.164, 585–590 (2011). CASPubMed Google Scholar
Wu, Q. et al. Low population selenium status is associated with increased prevalence of thyroid disease. J. Clin. Endocrinol. Metab.100, 4037–4047 (2015). This was a large, community-based study that confirms previously reported associations about increased risk of thyroid disease with low selenium status. CASPubMed Google Scholar
Ajjan, R. A. & Weetman, A. P. The pathogenesis of Hashimoto’s thyroiditis: further developments in our understanding. Horm. Metab. Res.47, 702–710 (2015). A review on AIT pathogenesis, which discusses the importance of selenium. CASPubMed Google Scholar
Brix, T. H., Kyvik, K. O. & Hegedus, L. A population-based study of chronic autoimmune hypothyroidism in Danish twins. J. Clin. Endocrinol. Metab.85, 536–539 (2000). CASPubMed Google Scholar
Hansen, P. S., Brix, T. H., Iachine, I., Kyvik, K. O. & Hegedus, L. The relative importance of genetic and environmental effects for the early stages of thyroid autoimmunity: a study of healthy Danish twins. Eur. J. Endocrinol.154, 29–38 (2006). CASPubMed Google Scholar
Brix, T. H. & Hegedus, L. Twin studies as a model for exploring the aetiology of autoimmune thyroid disease. Clin. Endocrinol.76, 457–464 (2012). CAS Google Scholar
Bulow Pedersen, I. et al. Serum selenium is low in newly diagnosed Graves’ disease: a population-based study. Clin. Endocrinol.79, 584–590 (2013). Google Scholar
Gärtner, R., Gasnier, B. C., Dietrich, J. W., Krebs, B. & Angstwurm, M. W. Selenium supplementation in patients with autoimmune thyroiditis decreases thyroid peroxidase antibodies concentrations. J. Clin. Endocrinol. Metab.87, 1687–1691 (2002). PubMed Google Scholar
Gärtner, R. & Gasnier, B. C. Selenium in the treatment of autoimmune thyroiditis. Biofactors19, 165–170 (2003). PubMed Google Scholar
Duntas, L. H., Mantzou, E. & Koutras, D. A. Effects of a six month treatment with selenomethionine in patients with autoimmune thyroiditis. Eur. J. Endocrinol.148, 389–393 (2003). CASPubMed Google Scholar
Turker, O., Kumanlioglu, K., Karapolat, I. & Dogan, I. Selenium treatment in autoimmune thyroiditis: 9-month follow-up with variable doses. J. Endocrinol.190, 151–156 (2006). CASPubMed Google Scholar
Mazokopakis, E. E. et al. Effects of 12 months treatment with L-selenomethionine on serum anti-TPO levels in patients with Hashimoto’s thyroiditis. Thyroid17, 609–612 (2007). CASPubMed Google Scholar
Balázs, C. The effect of selenium therapy on autoimmune thyroiditis. Orv. Hetil.149, 1227–1232 (2008). PubMed Google Scholar
Karanikas, G. et al. No immunological benefit of selenium in consecutive patients with autoimmune thyroiditis. Thyroid18, 7–12 (2008). CASPubMed Google Scholar
Kvicala, J. et al. Effect of selenium supplementation on thyroid antibodies. J. Radioanal. Nucl. Chem.280, 275–279 (2009). CAS Google Scholar
Nacamulli, D. et al. Influence of physiological dietary selenium supplementation on the natural course of autoimmune thyroiditis. Clin. Endocrinol.73, 535–539 (2010). CAS Google Scholar
Krysiak, R. & Okopien, B. The effect of levothyroxine and selenomethionine on lymphocyte and monocyte cytokine release in women with Hashimoto’s thyroiditis. J. Clin. Endocrinol. Metab.96, 2206–2215 (2011). CASPubMed Google Scholar
Krysiak, R. & Okopien, B. Haemostatic effects of levothyroxine and selenomethionine in euthyroid patients with Hashimoto’s thyroiditis. Thromb. Haemost.108, 973–980 (2012). CASPubMed Google Scholar
Bhuyan, A. K., Sarma, D. & Saikia, U. K. Selenium and the thyroid: a close-knit connection. Indian. J. Endocrinol. Metab.16, S354–S355 (2012). PubMedPubMed Central Google Scholar
Anastasilakis, A. D. et al. Selenomethionine treatment in patients with autoimmune thyroiditis: a prospective, quasi-randomised trial. Int. J. Clin. Pract.66, 378–383 (2012). CASPubMed Google Scholar
Eskes, S. A. et al. Selenite supplementation in euthyroid subjects with thyroid peroxidase antibodies. Clin. Endocrinol.80, 444–451 (2014). CAS Google Scholar
de Farias, C. R. et al. A randomized-controlled, double-blind study of the impact of selenium supplementation on thyroid autoimmunity and inflammation with focus on the GPx1 genotypes. J. Endocrinol. Invest.38, 1065–1074 (2015). PubMed Google Scholar
Pilli, T. et al. IFNγ-inducible chemokines decrease upon selenomethionine supplementation in women with euthyroid autoimmune thyroiditis: comparison between two doses of selenomethionine (80 or 160 mug) versus placebo. Eur. Thyroid J.4, 226–233 (2015). CASPubMedPubMed Central Google Scholar
Pirola, I., Gandossi, E., Agosti, B., Delbarba, A. & Cappelli, C. Selenium supplementation could restore euthyroidism in subclinical hypothyroid patients with autoimmune thyroiditis. Endokrynol. Pol.67, 567–571 (2016). CASPubMed Google Scholar
Esposito, D. et al. Influence of short-term selenium supplementation on the natural course of Hashimoto’s thyroiditis: clinical results of a blinded placebo-controlled randomized prospective trial. J. Endocrinol. Invest.40, 83–89 (2017). CASPubMed Google Scholar
Yu, L. et al. Levothyroxine monotherapy versus levothyroxine and selenium combination therapy in chronic lymphocytic thyroiditis. J. Endocrinol. Invest.40, 1243–1250 (2017). CASPubMed Google Scholar
Wang, W. et al. Decreased thyroid peroxidase antibody titer in response to selenium supplementation in autoimmune thyroiditis and the influence of a SEPP gene polymorphism: a prospective, multicenter study in China. Thyroid28, 1674–1681 (2018). CASPubMed Google Scholar
van Zuuren, E. J., Albusta, A. Y., Fedorowicz, Z., Carter, B. & Pijl, H. Selenium supplementation for Hashimoto’s thyroiditis: summary of a Cochrane systematic review. Eur. Thyroid J.3, 25–31 (2014). PubMed Google Scholar
Toulis, K. A., Anastasilakis, A. D., Tzellos, T. G., Goulis, D. G. & Kouvelas, D. Selenium supplementation in the treatment of Hashimoto’s thyroiditis: a systematic review and a meta-analysis. Thyroid20, 1163–1173 (2010). CASPubMed Google Scholar
Winther, K. H., Wichman, J. E., Bonnema, S. J. & Hegedus, L. Insufficient documentation for clinical efficacy of selenium supplementation in chronic autoimmune thyroiditis, based on a systematic review and meta-analysis. Endocrine55, 376–385 (2017). CASPubMed Google Scholar
Stagnaro-Green, A. Approach to the patient with postpartum thyroiditis. J. Clin. Endocrinol. Metab.97, 334–342 (2012). CASPubMed Google Scholar
Negro, R. et al. The influence of selenium supplementation on postpartum thyroid status in pregnant women with thyroid peroxidase autoantibodies. J. Clin. Endocrinol. Metab.92, 1263–1268 (2007). CASPubMed Google Scholar
Mao, J. et al. Effect of low-dose selenium on thyroid autoimmunity and thyroid function in UK pregnant women with mild-to-moderate iodine deficiency. Eur. J. Nutr.55, 55–61 (2016). CASPubMed Google Scholar
Mantovani, G. et al. Selenium supplementation in the management of thyroid autoimmunity during pregnancy: results of the “SERENA study”, a randomized, double-blind, placebo-controlled trial. Endocrine66, 542–550 (2019). CASPubMed Google Scholar
Brix, T. H., Kyvik, K. O., Christensen, K. & Hegedus, L. Evidence for a major role of heredity in Graves’ disease: a population-based study of two Danish twin cohorts. J. Clin. Endocrinol. Metab.86, 930–934 (2001). CASPubMed Google Scholar
Wertenbruch, T. et al. Serum selenium levels in patients with remission and relapse of Graves’ disease. Med. Chem.3, 281–284 (2007). CASPubMed Google Scholar
Arikan, T. A. Plasma selenium levels in first trimester pregnant women with hyperthyroidism and the relationship with thyroid hormone status. Biol. Trace Elem. Res.167, 194–199 (2015). CASPubMed Google Scholar
Khong, J. J. et al. Serum selenium status in Graves’ disease with and without orbitopathy: a case-control study. Clin. Endocrinol.80, 905–910 (2014). CAS Google Scholar
Dehina, N., Hofmann, P. J., Behrends, T., Eckstein, A. & Schomburg, L. Lack of association between selenium status and disease severity and activity in patients with Graves’ ophthalmopathy. Eur. Thyroid J.5, 57–64 (2016). CASPubMedPubMed Central Google Scholar
Wang, Y. et al. Role of selenium intake for risk and development of hyperthyroidism. J. Clin. Endocrinol. Metab.104, 568–580 (2019). PubMed Google Scholar
Effraimidis, G. & Wiersinga, W. M. Mechanisms in endocrinology: autoimmune thyroid disease: old and new players. Eur. J. Endocrinol.170, R241–R252 (2014). CASPubMed Google Scholar
Calissendorff, J., Mikulski, E., Larsen, E. H. & Moller, M. A prospective investigation of Graves’ disease and selenium: thyroid hormones, auto-antibodies and self-rated symptoms. Eur. Thyroid J.4, 93–98 (2015). CASPubMedPubMed Central Google Scholar
Wang, L. et al. Effect of selenium supplementation on recurrent hyperthyroidism caused by Graves’ disease: a prospective pilot study. Horm. Metab. Res.48, 559–564 (2016). CASPubMed Google Scholar
Leo, M. et al. Effects of selenium on short-term control of hyperthyroidism due to Graves’ disease treated with methimazole: results of a randomized clinical trial. J. Endocrinol. Invest.40, 281–287 (2017). CASPubMed Google Scholar
Kahaly, G. J., Riedl, M., Konig, J., Diana, T. & Schomburg, L. Double-blind, placebo-controlled, randomized trial of selenium in Graves hyperthyroidism. J. Clin. Endocrinol. Metab.102, 4333–4341 (2017). PubMed Google Scholar
Zheng, H. et al. Effects of selenium supplementation on Graves’ disease: a systematic review and meta-analysis. Evid. Based Complement. Alternat. Med.2018, 3763565 (2018). A meta-analysis of trials of selenium supplementation in Graves disease. PubMedPubMed Central Google Scholar
Marcocci, C. et al. Selenium and the course of mild Graves’ orbitopathy. N. Engl. J. Med.364, 1920–1931 (2011). The only study that has investigated the effects of selenium supplementation in Graves ophthalmopathy and led to introduction of selenium supplementation in Graves ophthalmopathy. CASPubMed Google Scholar
Negro, R. et al. A 2016 Italian survey about the clinical use of selenium in thyroid disease. Eur. Thyroid J.5, 164–170 (2016). CASPubMedPubMed Central Google Scholar
Winther, K. H., Papini, E., Attanasio, R., Negro, R. & Hegedüs, L. A 2018 European Thyroid Association survey on the use of selenium supplementation in Hashimoto’s thyroiditis. Eur. Thyroid J.https://doi.org/10.1159/000504781 (2019). ArticlePubMed Google Scholar
Negro, R., Hegedus, L., Attanasio, R., Papini, E. & Winther, K. H. A 2018 European Thyroid Association survey on the use of selenium supplementation in Graves’ hyperthyroidism and Graves’ orbitopathy. Eur. Thyroid J.8, 7–15 (2019). PubMed Google Scholar
Pearce, S. H. et al. 2013 ETA guideline: management of subclinical hypothyroidism. Eur. Thyroid J.2, 215–228 (2013). CASPubMedPubMed Central Google Scholar
Jonklaas, J. et al. Guidelines for the treatment of hypothyroidism: prepared by the American Thyroid Association Task Force on Thyroid Hormone Replacement. Thyroid24, 1670–1751 (2014). PubMedPubMed Central Google Scholar
Lazarus, J. et al. 2014 European Thyroid Association guidelines for the management of subclinical hypothyroidism in pregnancy and in children. Eur. Thyroid J.3, 76–94 (2014). CASPubMedPubMed Central Google Scholar
Alexander, E. K. et al. 2017 guidelines of the American Thyroid Association for the diagnosis and management of thyroid disease during pregnancy and the postpartum. Thyroid27, 315–389 (2017). PubMed Google Scholar
Kahaly, G. J. et al. 2018 European Thyroid Association guideline for the management of Graves’ hyperthyroidism. Eur. Thyroid J.7, 167–186 (2018). CASPubMedPubMed Central Google Scholar
Ross, D. S. et al. 2016 American Thyroid Association guidelines for diagnosis and management of hyperthyroidism and other causes of thyrotoxicosis. Thyroid26, 1343–1421 (2016). PubMed Google Scholar
Bartalena, L. et al. The 2016 European Thyroid Association/European Group on Graves’ Orbitopathy guidelines for the management of Graves’ orbitopathy. Eur. Thyroid J.5, 9–26 (2016). CASPubMedPubMed Central Google Scholar
O’Toole, D., Raisbeck, M., Case, J. C. & Whitson, T. D. Selenium-induced “blind staggers” and related myths. A commentary on the extent of historical livestock losses attributed to selenosis on western US rangelands. Vet. Pathol.33, 104–116 (1996). Google Scholar
Yang, G. Q., Wang, S. Z., Zhou, R. H. & Sun, S. Z. Endemic selenium intoxication of humans in China. Am. J. Clin. Nutr.37, 872–881 (1983). CASPubMed Google Scholar
Yang, G. & Zhou, R. Further observations on the human maximum safe dietary selenium intake in a seleniferous area of China. J. Trace Elem. Electrolytes Health Dis.8, 159–165 (1994). CASPubMed Google Scholar
Kristal, A. R. et al. Baseline selenium status and effects of selenium and vitamin E supplementation on prostate cancer risk. J. Natl Cancer Inst.106, djt456 (2014). PubMedPubMed Central Google Scholar
Stranges, S. et al. Effects of long-term selenium supplementation on the incidence of type 2 diabetes: a randomized trial. Ann. Intern. Med.147, 217–223 (2007). PubMed Google Scholar
Duffield-Lillico, A. J. et al. Selenium supplementation and secondary prevention of nonmelanoma skin cancer in a randomized trial. J. Natl Cancer Inst.95, 1477–1481 (2003). CASPubMed Google Scholar
Kim, J. et al. Association between serum selenium level and the presence of diabetes mellitus: a meta-analysis of observational studies. Diabetes Metab. J.43, 447–460 (2019). PubMedPubMed Central Google Scholar
Kohler, L. N. et al. Selenium and type 2 diabetes: systematic review. Nutrients10, E1924 (2018). PubMed Google Scholar
Jacobs, E. T. et al. Selenium supplementation and insulin resistance in a randomized, clinical trial. BMJ Open. Diabetes Res. Care7, e000613 (2019). PubMedPubMed Central Google Scholar
Stranges, S. et al. Effect of selenium supplementation on changes in HbA1c: results from a multiple-dose, randomized controlled trial. Diabetes Obes. Metab.21, 541–549 (2019). CASPubMed Google Scholar
Steinbrenner, H., Speckmann, B., Pinto, A. & Sies, H. High selenium intake and increased diabetes risk: experimental evidence for interplay between selenium and carbohydrate metabolism. J. Clin. Biochem. Nutr.48, 40–45 (2011). CASPubMed Google Scholar
Speckmann, B. et al. Selenoprotein P expression is controlled through interaction of the coactivator PGC-1α with FoxO1a and hepatocyte nuclear factor 4α transcription factors. Hepatology48, 1998–2006 (2008). CASPubMed Google Scholar
Misu, H. et al. A liver-derived secretory protein, selenoprotein P, causes insulin resistance. Cell Metab.12, 483–495 (2010). CASPubMed Google Scholar
Hellwege, J. N. et al. Genetic variants in selenoprotein P plasma 1 gene (SEPP1) are associated with fasting insulin and first phase insulin response in Hispanics. Gene534, 33–39 (2014). CASPubMed Google Scholar
Zhang, Q. et al. Selenium levels in community dwellers with type 2 diabetes mellitus. Biol. Trace Elem. Res.191, 354–362 (2019). CASPubMed Google Scholar
Scientific Committee on Food & Scientific Panel on Dietetic Products, Nutrition and Allergies. Tolerable upper intake levels for vitamins and minerals. (European Food Safety Authority, 2006).
Kipp, A. P. et al. Revised reference values for selenium intake. J. Trace Elem. Med. Biol.32, 195–199 (2015). CASPubMed Google Scholar
Hurst, R. et al. Establishing optimal selenium status: results of a randomized, double-blind, placebo-controlled trial. Am. J. Clin. Nutr.91, 923–931 (2010). CASPubMedPubMed Central Google Scholar
Winther, K. H., Bonnema, S. J. & Hegedus, L. Is selenium supplementation in autoimmune thyroid diseases justified? Curr. Opin. Endocrinol. Diabetes Obes.24, 348–355 (2017). CASPubMed Google Scholar
Winther, K. H. et al. The chronic autoimmune thyroiditis quality of life selenium trial (CATALYST): study protocol for a randomized controlled trial. Trials15, 115 (2014). PubMedPubMed Central Google Scholar
Watt, T. et al. The thyroid-related quality of life measure ThyPRO has good responsiveness and ability to detect relevant treatment effects. J. Clin. Endocrinol. Metab.99, 3708–3717 (2014). CASPubMed Google Scholar
Watt, T. et al. Development of a short version of the Thyroid-Related Patient-Reported Outcome ThyPRO. Thyroid25, 1069–1079 (2015). PubMed Google Scholar
Winther, K. H. et al. Disease-specific as well as generic quality of life is widely impacted in autoimmune hypothyroidism and improves during the first six months of levothyroxine therapy. PLoS One11, e0156925 (2016). PubMedPubMed Central Google Scholar
Watt, T. et al. Selenium supplementation for patients with Graves’ hyperthyroidism (the GRASS trial): study protocol for a randomized controlled trial. Trials14, 119 (2013). CASPubMedPubMed Central Google Scholar
Seale, L. A., Ogawa-Wong, A. N. & Berry, M. J. Sexual dimorphism in selenium metabolism and selenoproteins. Free. Radic. Biol. Med.127, 198–205 (2018). A review highlighting the importance of considering sex differences in selenium metabolism and selenoprotein action when analysing laboratory and clinical data. CASPubMedPubMed Central Google Scholar
Hybsier, S. et al. Sex-specific and inter-individual differences in biomarkers of selenium status identified by a calibrated ELISA for selenoprotein P. Redox Biol.11, 403–414 (2017). CASPubMed Google Scholar
Prasad, V., Gall, V. & Cifu, A. The frequency of medical reversal. Arch. Intern. Med.171, 1675–1676 (2011). PubMed Google Scholar
Rayman M. P. & Duntas L. H. in The Thyroid and Its Diseases: A Comprehensive Guide for the Clinician (eds Luster, M., Duntas, L. H. & Wartofsky, L.) 109–126 (Springer International, 2019).