Pain and immunity: implications for host defence (original) (raw)
Scholz, J. & Woolf, C. J. Can we conquer pain? Nat. Neurosci.5, 1062–1067 (2002). CASPubMed Google Scholar
Julius, D. & Basbaum, A. I. Molecular mechanisms of nociception. Nature413, 203–210 (2001). CASPubMed Google Scholar
Basbaum, A. I., Bautista, D. M., Scherrer, G. & Julius, D. Cellular and molecular mechanisms of pain. Cell139, 267–284 (2009). CASPubMedPubMed Central Google Scholar
Chiu, I. M., von Hehn, C. A. & Woolf, C. J. Neurogenic inflammation and the peripheral nervous system in host defense and immunopathology. Nat. Neurosci.15, 1063–1067 (2012). CASPubMedPubMed Central Google Scholar
Chiu, I. M., Pinho-Ribeiro, F. A. & Woolf, C. J. Pain and infection: pathogen detection by nociceptors. Pain157, 1192–1193 (2016). PubMedPubMed Central Google Scholar
Pinho-Ribeiro, F. A., Verri, W. A. Jr & Chiu, I. M. Nociceptor sensory neuron-immune interactions in pain and inflammation. Trends Immunol.38, 5–19 (2017). CASPubMed Google Scholar
Baral, P., Mills, K., Pinho-Ribeiro, F. A. & Chiu, I. M. Pain and itch: beneficial or harmful to antimicrobial defense? Cell Host Microbe19, 755–759 (2016). CASPubMed Google Scholar
Riol-Blanco, L. et al. Nociceptive sensory neurons drive interleukin-23-mediated psoriasiform skin inflammation. Nature510, 157–161 (2014).This study demonstrates the importance of nociceptor-immune interactions in driving DC activation and cutaneous inflammation in a mouse model of psoriasis-like inflammation. CASPubMedPubMed Central Google Scholar
Kashem, S. W. et al. Nociceptive sensory fibers drive interleukin-23 production from CD301b+ dermal dendritic cells and drive protective cutaneous immunity. Immunity43, 515–526 (2015).This study shows the protective role of nociceptors in host defence againstC. albicansinfection in skin by activation of DCs and IL-23 production. CASPubMedPubMed Central Google Scholar
Engel, M. A. et al. TRPA1 and substance P mediate colitis in mice. Gastroenterology141, 1346–1358 (2011).This study highlights that the nociceptive ion channel TRPA1 and neuropeptide substance P contribute to the development of inflammation in the gastrointestinal tract in a mouse model of colitis. CASPubMed Google Scholar
Maruyama, K. et al. Nociceptors boost the resolution of fungal osteoinflammation via the TRP channel-CGRP-Jdp2 Axis. Cell Rep.19, 2730–2742 (2017). CASPubMed Google Scholar
Pinho-Ribeiro, F. A. et al. Blocking neuronal signaling to immune cells treats streptococcal invasive infection. Cell173, 1083–1097 (2018).This study shows thatS. pyogenesactivates nociceptors through the pore-forming toxin streptolysin S, which causes neural secretion of CGRP and inhibition of neutrophil killing of bacteria. CASPubMedPubMed Central Google Scholar
Costigan, M., Scholz, J. & Woolf, C. J. Neuropathic pain: a maladaptive response of the nervous system to damage. Annu. Rev. Neurosci.32, 1–32 (2009). CASPubMedPubMed Central Google Scholar
Latremoliere, A. & Woolf, C. J. Central sensitization: a generator of pain hypersensitivity by central neural plasticity. J. Pain10, 895–926 (2009). PubMedPubMed Central Google Scholar
Ji, R. R., Xu, Z. Z. & Gao, Y. J. Emerging targets in neuroinflammation-driven chronic pain. Nat. Rev. Drug Discov.13, 533–548 (2014). CASPubMedPubMed Central Google Scholar
Cook, A. D., Christensen, A. D., Tewari, D., McMahon, S. B. & Hamilton, J. A. Immune cytokines and their receptors in inflammatory pain. Trends Immunol.39, 240–255 (2018).This recent review comprehensively highlights recent advances in the role of cytokine signalling and receptor expression in pain and raises the question of which cytokine mediators are directly signalling to nociceptors to drive pain. CASPubMed Google Scholar
White, F. A., Bhangoo, S. K. & Miller, R. J. Chemokines: integrators of pain and inflammation. Nat. Rev. Drug Discov.4, 834–844 (2005). CASPubMedPubMed Central Google Scholar
Boettger, M. K. et al. Antinociceptive effects of tumor necrosis factor alpha neutralization in a rat model of antigen-induced arthritis: evidence of a neuronal target. Arthritis Rheum.58, 2368–2378 (2008). CASPubMed Google Scholar
Richter, F. et al. Tumor necrosis factor causes persistent sensitization of joint nociceptors to mechanical stimuli in rats. Arthritis Rheum.62, 3806–3814 (2010). CASPubMed Google Scholar
Jin, X. & Gereau, R. W. 4th Acute p38-mediated modulation of tetrodotoxin-resistant sodium channels in mouse sensory neurons by tumor necrosis factor-alpha. J. Neurosci.26, 246–255 (2006).This study demonstrates that TNF-mediated mechanical hypersensitivity involves TNFR1 activity and subsequent p38-dependent modulation of tetrodotoxin-resistant sodium channels in nociceptor neurons. CASPubMed Google Scholar
Cunha, T. M. et al. A cascade of cytokines mediates mechanical inflammatory hypernociception in mice. Proc. Natl Acad. Sci. USA102, 1755–1760 (2005). CASPubMed Google Scholar
Inglis, J. J. et al. Collagen-induced arthritis as a model of hyperalgesia: functional and cellular analysis of the analgesic actions of tumor necrosis factor blockade. Arthritis Rheum.56, 4015–4023 (2007). PubMed Google Scholar
Zhang, L. et al. TNF-α contributes to spinal cord synaptic plasticity and inflammatory pain: distinct role of TNF receptor subtypes 1 and 2. Pain152, 419–427 (2011). CASPubMed Google Scholar
Hess, A. et al. Blockade of TNF-alpha rapidly inhibits pain responses in the central nervous system. Proc. Natl Acad. Sci. USA108, 3731–3736 (2011). CASPubMed Google Scholar
Ferreira, S. H., Lorenzetti, B. B., Bristow, A. F. & Poole, S. Interleukin-1β as a potent hyperalgesic agent antagonized by a tripeptide analogue. Nature334, 698–700 (1988).This is the first definitive study to show the proalgesic role of IL-1β in mice. CASPubMed Google Scholar
Ebbinghaus, M. et al. The role of interleukin-1β in arthritic pain: main involvement in thermal, but not mechanical, hyperalgesia in rat antigen-induced arthritis. Arthritis Rheum.64, 3897–3907 (2012). CASPubMed Google Scholar
Fukuoka, H., Kawatani, M., Hisamitsu, T. & Takeshige, C. Cutaneous hyperalgesia induced by peripheral injection of interleukin-1β in the rat. Brain Res.657, 133–140 (1994). CASPubMed Google Scholar
Xu, X. J. et al. Nociceptive responses in interleukin-6-deficient mice to peripheral inflammation and peripheral nerve section. Cytokine9, 1028–1033 (1997). CASPubMed Google Scholar
Malsch, P. et al. Deletion of interleukin-6 signal transducer gp130 in small sensory neurons attenuates mechanonociception and down-regulates TRPA1 expression. J. Neurosci.34, 9845–9856 (2014). PubMedPubMed Central Google Scholar
Vazquez, E. et al. Spinal interleukin-6 is an amplifier of arthritic pain in the rat. Arthritis Rheum.64, 2233–2242 (2012). CASPubMed Google Scholar
McNamee, K. E. et al. IL-17 induces hyperalgesia via TNF-dependent neutrophil infiltration. Pain152, 1838–1845 (2011). CASPubMed Google Scholar
Pinto, L. G. et al. IL-17 mediates articular hypernociception in antigen-induced arthritis in mice. Pain148, 247–256 (2010). CASPubMed Google Scholar
Richter, F. et al. Interleukin-17 sensitizes joint nociceptors to mechanical stimuli and contributes to arthritic pain through neuronal interleukin-17 receptors in rodents. Arthritis Rheum.64, 4125–4134 (2012). CASPubMed Google Scholar
Krukowski, K. et al. CD8+ T cells and endogenous IL-10 are required for resolution of chemotherapy-induced neuropathic pain. J. Neurosci.36, 11074–11083 (2016). CASPubMedPubMed Central Google Scholar
Milligan, E. D. et al. Controlling pathological pain by adenovirally driven spinal production of the anti-inflammatory cytokine, interleukin-10. Eur. J. Neurosci.21, 2136–2148 (2005). PubMed Google Scholar
Shen, K. F. et al. Interleukin-10 down-regulates voltage gated sodium channels in rat dorsal root ganglion neurons. Exp. Neurol.247, 466–475 (2013). CASPubMed Google Scholar
Schweizerhof, M. et al. Hematopoietic colony-stimulating factors mediate tumor-nerve interactions and bone cancer pain. Nat. Med.15, 802–807 (2009). CASPubMed Google Scholar
Cook, A. D. et al. Granulocyte-macrophage colony-stimulating factor is a key mediator in inflammatory and arthritic pain. Ann. Rheum. Dis.72, 265–270 (2013). CASPubMed Google Scholar
Saleh, R. et al. CSF-1 in inflammatory and arthritic pain development. J. Immunol.201, 2042–2053 (2018). CASPubMed Google Scholar
Achuthan, A. et al. Granulocyte macrophage colony-stimulating factor induces CCL17 production via IRF4 to mediate inflammation. J. Clin. Invest.126, 3453–3466 (2016). PubMedPubMed Central Google Scholar
Talbot, S., Foster, S. L. & Woolf, C. J. Neuroimmunity: physiology and pathology. Annu. Rev. Immunol.34, 421–447 (2016). CASPubMed Google Scholar
Chen, L., Yang, G. & Grosser, T. Prostanoids and inflammatory pain. Prostaglandins Other Lipid Mediat.104–105, 58–66 (2013). PubMed Google Scholar
Ferreira, S. H. Prostaglandins, aspirin-like drugs and analgesia. Nat. New Biol.240, 200–203 (1972). CASPubMed Google Scholar
Samad, T. A. et al. Interleukin-1β-mediated induction of Cox-2 in the CNS contributes to inflammatory pain hypersensitivity. Nature410, 471–475 (2001). CASPubMed Google Scholar
Baba, H., Kohno, T., Moore, K. A. & Woolf, C. J. Direct activation of rat spinal dorsal horn neurons by prostaglandin E2. J. Neurosci.21, 1750–1756 (2001). CASPubMed Google Scholar
Levine, J. D., Lau, W., Kwiat, G. & Goetzl, E. J. Leukotriene B4 produces hyperalgesia that is dependent on polymorphonuclear leukocytes. Science225, 743–745 (1984).This paper demonstrates that LTB 4 directly excites nociceptors to cause hyperalgesia, which is dependent upon leukocytes but is independent of prostaglandin signalling pathways. CASPubMed Google Scholar
Zinn, S. et al. The leukotriene B4 receptors BLT1 and BLT2 form an antagonistic sensitizing system in peripheral sensory neurons. J. Biol. Chem.292, 6123–6134 (2017). CASPubMedPubMed Central Google Scholar
Denk, F., Bennett, D. L. & McMahon, S. B. Nerve growth factor and pain mechanisms. Annu. Rev. Neurosci.40, 307–325 (2017). CASPubMed Google Scholar
Mizumura, K. & Murase, S. Role of nerve growth factor in pain. Handb. Exp. Pharmacol.227, 57–77 (2015). CASPubMed Google Scholar
Halliday, D. A., Zettler, C., Rush, R. A., Scicchitano, R. & McNeil, J. D. Elevated nerve growth factor levels in the synovial fluid of patients with inflammatory joint disease. Neurochem. Res.23, 919–922 (1998). CASPubMed Google Scholar
Lane, N. E. et al. Tanezumab for the treatment of pain from osteoarthritis of the knee. N. Engl. J. Med.363, 1521–1531 (2010).This human study demonstrates that targeting NGF with a neutralizing antibody, tanezumab, significantly improves pain outcomes in patients with knee osteoarthritis. CASPubMed Google Scholar
Bannwarth, B. & Kostine, M. Nerve growth factor antagonists: is the future of monoclonal antibodies becoming clearer? Drugs77, 1377–1387 (2017). CASPubMed Google Scholar
Ji, R. R., Samad, T. A., Jin, S. X., Schmoll, R. & Woolf, C. J. p38 MAPK activation by NGF in primary sensory neurons after inflammation increases TRPV1 levels and maintains heat hyperalgesia. Neuron36, 57–68 (2002). CASPubMed Google Scholar
Zhang, X., Huang, J. & McNaughton, P. A. NGF rapidly increases membrane expression of TRPV1 heat-gated ion channels. EMBO J.24, 4211–4223 (2005). CASPubMedPubMed Central Google Scholar
Kerr, B. J., Souslova, V., McMahon, S. B. & Wood, J. N. A role for the TTX-resistant sodium channel Nav 1.8 in NGF-induced hyperalgesia, but not neuropathic pain. Neuroreport12, 3077–3080 (2001). CASPubMed Google Scholar
Coull, J. A. et al. BDNF from microglia causes the shift in neuronal anion gradient underlying neuropathic pain. Nature438, 1017–1021 (2005).This study demonstrates that signalling from microglia to neurons via BDNF is a crucial contributor to neuropathic pain by driving a shift in the anion gradient. CASPubMed Google Scholar
Sorge, R. E. et al. Different immune cells mediate mechanical pain hypersensitivity in male and female mice. Nat. Neurosci.18, 1081–1083 (2015). CASPubMedPubMed Central Google Scholar
Julius, D. TRP channels and pain. Annu. Rev. Cell Dev. Biol.29, 355–384 (2013). CASPubMed Google Scholar
Cheng, J. K. & Ji, R. R. Intracellular signaling in primary sensory neurons and persistent pain. Neurochem. Res.33, 1970–1978 (2008). CASPubMedPubMed Central Google Scholar
Chuang, H. H. et al. Bradykinin and nerve growth factor release the capsaicin receptor from PtdIns(4,5)P2-mediated inhibition. Nature411, 957–962 (2001).This study demonstrates that TRPV1, the capsaicin receptor, is sensitized by bradykinin and NGF through their activation of PLC, which mediates PtdIns(4,5)P2hydrolysis and release of inhibition of TRPV1 signalling. CASPubMed Google Scholar
Prescott, E. D. & Julius, D. A modular PIP2 binding site as a determinant of capsaicin receptor sensitivity. Science300, 1284–1288 (2003). CASPubMed Google Scholar
Bandell, M. et al. Noxious cold ion channel TRPA1 is activated by pungent compounds and bradykinin. Neuron41, 849–857 (2004). CASPubMed Google Scholar
Premkumar, L. S. & Ahern, G. P. Induction of vanilloid receptor channel activity by protein kinase C. Nature408, 985–990 (2000). CASPubMed Google Scholar
Zhang, X., Li, L. & McNaughton, P. A. Proinflammatory mediators modulate the heat-activated ion channel TRPV1 via the scaffolding protein AKAP79/150. Neuron59, 450–461 (2008). PubMed Google Scholar
Khan, A. A. et al. Tumor necrosis factor alpha enhances the sensitivity of rat trigeminal neurons to capsaicin. Neuroscience155, 503–509 (2008). CASPubMed Google Scholar
Fang, D. et al. Interleukin-6-mediated functional upregulation of TRPV1 receptors in dorsal root ganglion neurons through the activation of JAK/PI3K signaling pathway: roles in the development of bone cancer pain in a rat model. Pain156, 1124–1144 (2015). CASPubMed Google Scholar
Viana, F. TRPA1 channels: molecular sentinels of cellular stress and tissue damage. J. Physiol.594, 4151–4169 (2016). CASPubMedPubMed Central Google Scholar
Obata, K. et al. TRPA1 induced in sensory neurons contributes to cold hyperalgesia after inflammation and nerve injury. J. Clin. Invest.115, 2393–2401 (2005). CASPubMedPubMed Central Google Scholar
Schmidt, M., Dubin, A. E., Petrus, M. J., Earley, T. J. & Patapoutian, A. Nociceptive signals induce trafficking of TRPA1 to the plasma membrane. Neuron64, 498–509 (2009). CASPubMedPubMed Central Google Scholar
Alessandri-Haber, N. et al. Hypotonicity induces TRPV4-mediated nociception in rat. Neuron39, 497–511 (2003). CASPubMed Google Scholar
Alessandri-Haber, N., Dina, O. A., Joseph, E. K., Reichling, D. & Levine, J. D. A transient receptor potential vanilloid 4-dependent mechanism of hyperalgesia is engaged by concerted action of inflammatory mediators. J. Neurosci.26, 3864–3874 (2006). CASPubMed Google Scholar
Alessandri-Haber, N. et al. Transient receptor potential vanilloid 4 is essential in chemotherapy-induced neuropathic pain in the rat. J. Neurosci.24, 4444–4452 (2004). CASPubMed Google Scholar
Todaka, H., Taniguchi, J., Satoh, J., Mizuno, A. & Suzuki, M. Warm temperature-sensitive transient receptor potential vanilloid 4 (TRPV4) plays an essential role in thermal hyperalgesia. J. Biol. Chem.279, 35133–35138 (2004). CASPubMed Google Scholar
Dib-Hajj, S. D., Cummins, T. R., Black, J. A. & Waxman, S. G. Sodium channels in normal and pathological pain. Annu. Rev. Neurosci.33, 325–347 (2010). CASPubMed Google Scholar
Black, J. A., Liu, S., Tanaka, M., Cummins, T. R. & Waxman, S. G. Changes in the expression of tetrodotoxin-sensitive sodium channels within dorsal root ganglia neurons in inflammatory pain. Pain108, 237–247 (2004). CASPubMed Google Scholar
Strickland, I. T. et al. Changes in the expression of NaV1.7, NaV1.8 and NaV1.9 in a distinct population of dorsal root ganglia innervating the rat knee joint in a model of chronic inflammatory joint pain. Eur. J. Pain12, 564–572 (2008). CASPubMed Google Scholar
Chiu, I. M. et al. Bacteria activate sensory neurons that modulate pain and inflammation. Nature501, 52–57 (2013).This study demonstrates activation of nociceptor neurons by the bacterial pathogenS. aureusvia the microbial components αHL andN-formyl peptides, which contribute to mechanical and thermal hyperalgesia. CASPubMedPubMed Central Google Scholar
Blake, K. J. et al. Staphylococcus aureus produces pain through pore-forming toxins and neuronal TRPV1 that is silenced by QX-314. Nat. Commun.9, 37 (2018). PubMedPubMed Central Google Scholar
Diogenes, A., Ferraz, C. C., Akopian, A. N., Henry, M. A. & Hargreaves, K. M. LPS sensitizes TRPV1 via activation of TLR4 in trigeminal sensory neurons. J. Dent. Res.90, 759–764 (2011). CASPubMed Google Scholar
Meseguer, V. et al. TRPA1 channels mediate acute neurogenic inflammation and pain produced by bacterial endotoxins. Nat. Commun.5, 3125 (2014). PubMedPubMed Central Google Scholar
Rudick, C. N. et al. Host-pathogen interactions mediating pain of urinary tract infection. J. Infect. Dis.201, 1240–1249 (2010). CASPubMedPubMed Central Google Scholar
Alpizar, Y. A. et al. TRPV4 activation triggers protective responses to bacterial lipopolysaccharides in airway epithelial cells. Nat. Commun.8, 1059 (2017). PubMedPubMed Central Google Scholar
Xu, Z. Z. et al. Inhibition of mechanical allodynia in neuropathic pain by TLR5-mediated A-fiber blockade. Nat. Med.21, 1326–1331 (2015).This study demonstrates that TLR5, a TLR that binds to bacterial flagellin, is specifically expressed by a subset of A-fibre neurons that mediate neuropathic pain, which is silenced via delivery of the charged analgesic compound QX-314 with flagellin. CASPubMedPubMed Central Google Scholar
Yissachar, N. et al. An intestinal organ culture system uncovers a role for the nervous system in microbe-immune crosstalk. Cell168, 1135–1148 (2017). CASPubMedPubMed Central Google Scholar
Maruyama, K. et al. The ATP transporter VNUT mediates induction of dectin-1-triggered candida nociception. iScience6, 306–318 (2018). CASPubMedPubMed Central Google Scholar
Fields, H. L., Rowbotham, M. & Baron, R. Postherpetic neuralgia: irritable nociceptors and deafferentation. Neurobiol. Dis.5, 209–227 (1998). CASPubMed Google Scholar
Steiner, I., Kennedy, P. G. & Pachner, A. R. The neurotropic herpes viruses: herpes simplex and varicella-zoster. Lancet Neurol.6, 1015–1028 (2007). CASPubMed Google Scholar
Marion, E. et al. Mycobacterial toxin induces analgesia in buruli ulcer by targeting the angiotensin pathways. Cell157, 1565–1576 (2014).This paper demonstrates the analgesic action of aM. ulceransmycolactone via activation of the type II angiotensin signalling pathway in sensory neurons to drive potassium-dependent neuronal hyperpolarization. CASPubMed Google Scholar
Lotz, M., Vaughan, J. H. & Carson, D. A. Effect of neuropeptides on production of inflammatory cytokines by human monocytes. Science241, 1218–1221 (1988). CASPubMed Google Scholar
Sun, J., Ramnath, R. D., Zhi, L., Tamizhselvi, R. & Bhatia, M. Substance P enhances NF-κB transactivation and chemokine response in murine macrophages via ERK1/2 and p38 MAPK signaling pathways. Am. J. Physiol. Cell Physiol.294, C1586–C1596 (2008). CASPubMed Google Scholar
Lim, J. E., Chung, E. & Son, Y. A neuropeptide, substance-P, directly induces tissue-repairing M2 like macrophages by activating the PI3K/Akt/mTOR pathway even in the presence of IFNgamma. Sci. Rep.7, 9417 (2017). PubMedPubMed Central Google Scholar
Hong, H. S. & Son, Y. Substance P ameliorates collagen II-induced arthritis in mice via suppression of the inflammatory response. Biochem. Biophys. Res. Commun.453, 179–184 (2014). CASPubMed Google Scholar
Baliu-Pique, M., Jusek, G. & Holzmann, B. Neuroimmunological communication via CGRP promotes the development of a regulatory phenotype in TLR4-stimulated macrophages. Eur. J. Immunol.44, 3708–3716 (2014). CASPubMed Google Scholar
Nong, Y. H., Titus, R. G., Ribeiro, J. M. & Remold, H. G. Peptides encoded by the calcitonin gene inhibit macrophage function. J. Immunol.143, 45–49 (1989). CASPubMed Google Scholar
Yaraee, R., Ebtekar, M., Ahmadiani, A. & Sabahi, F. Effect of neuropeptides (SP and CGRP) on antigen presentation by macrophages. Immunopharmacol. Immunotoxicol.27, 395–404 (2005). CASPubMed Google Scholar
Russell, F. A., King, R., Smillie, S. J., Kodji, X. & Brain, S. D. Calcitonin gene-related peptide: physiology and pathophysiology. Physiol. Rev.94, 1099–1142 (2014). CASPubMedPubMed Central Google Scholar
Harzenetter, M. D. et al. Negative regulation of TLR responses by the neuropeptide CGRP is mediated by the transcriptional repressor ICER. J. Immunol.179, 607–615 (2007).This study demonstrates that CGRP signals through PKA and ICER to block TLR-dependent induction of TNF and CCL4 in macrophages. CASPubMed Google Scholar
Gomes, R. N. et al. Calcitonin gene-related peptide inhibits local acute inflammation and protects mice against lethal endotoxemia. Shock24, 590–594 (2005). CASPubMed Google Scholar
Jusek, G., Reim, D., Tsujikawa, K. & Holzmann, B. Deficiency of the CGRP receptor component RAMP1 attenuates immunosuppression during the early phase of septic peritonitis. Immunobiology217, 761–767 (2012). CASPubMed Google Scholar
Delgado, M. et al. Vasoactive intestinal peptide and pituitary adenylate cyclase-activating polypeptide inhibit tumor necrosis factor alpha transcriptional activation by regulating nuclear factor-kB and cAMP response element-binding protein/c-Jun. J. Biol. Chem.273, 31427–31436 (1998). CASPubMed Google Scholar
Martinez, C. et al. Vasoactive intestinal peptide and pituitary adenylate cyclase-activating polypeptide modulate endotoxin-induced IL-6 production by murine peritoneal macrophages. J. Leukoc. Biol.63, 591–601 (1998). CASPubMed Google Scholar
Fernandes, E. S. et al. TRPV1 deletion enhances local inflammation and accelerates the onset of systemic inflammatory response syndrome. J. Immunol.188, 5741–5751 (2012). CASPubMed Google Scholar
Strausbaugh, H. J. et al. Painful stimulation suppresses joint inflammation by inducing shedding of L-selectin from neutrophils. Nat. Med.5, 1057–1061 (1999).This study shows the importance of nociceptive pathways in limiting joint inflammation by enhancing the shedding of L-selectin from circulating neutrophils, leading to reduced neutrophil recruitment. CASPubMed Google Scholar
Baral, P. et al. Nociceptor sensory neurons suppress neutrophil and gammadelta T cell responses in bacterial lung infections and lethal pneumonia. Nat. Med.24, 417–426 (2018). CASPubMedPubMed Central Google Scholar
Lei, J. et al. Transient receptor potential vanilloid subtype 1 inhibits inflammation and apoptosis via the release of calcitonin gene-related peptide in the heart after myocardial infarction. Cardiology134, 436–443 (2016). CASPubMed Google Scholar
Huang, J., Stohl, L. L., Zhou, X., Ding, W. & Granstein, R. D. Calcitonin gene-related peptide inhibits chemokine production by human dermal microvascular endothelial cells. Brain Behav. Immun.25, 787–799 (2011). CASPubMedPubMed Central Google Scholar
Zimmerman, B. J., Anderson, D. C. & Granger, D. N. Neuropeptides promote neutrophil adherence to endothelial cell monolayers. Am. J. Physiol.263, G678–G682 (1992). CASPubMed Google Scholar
Richter, J., Andersson, R., Edvinsson, L. & Gullberg, U. Calcitonin gene-related peptide (CGRP) activates human neutrophils—inhibition by chemotactic peptide antagonist BOC-MLP. Immunology77, 416–421 (1992). CASPubMedPubMed Central Google Scholar
Mulderry, P. K. et al. Differential expression of alpha-CGRP and beta-CGRP by primary sensory neurons and enteric autonomic neurons of the rat. Neuroscience25, 195–205 (1988). CASPubMed Google Scholar
Sui, P. et al. Pulmonary neuroendocrine cells amplify allergic asthma responses. Science360, eaan8546 (2018). PubMedPubMed Central Google Scholar
Alving, K. et al. Association between histamine-containing mast cells and sensory nerves in the skin and airways of control and capsaicin-treated pigs. Cell Tissue Res.264, 529–538 (1991). CASPubMed Google Scholar
Arizono, N. et al. Anatomical variation in mast cell nerve associations in the rat small intestine, heart, lung, and skin. Similarities of distances between neural processes and mast cells, eosinophils, or plasma cells in the jejunal lamina propria. Lab. Invest.62, 626–634 (1990). CASPubMed Google Scholar
Stead, R. H. et al. Intestinal mucosal mast cells in normal and nematode-infected rat intestines are in intimate contact with peptidergic nerves. Proc. Natl Acad. Sci. USA84, 2975–2979 (1987). CASPubMed Google Scholar
Furuno, T. et al. Cell adhesion molecule 1 (CADM1) on mast cells promotes interaction with dorsal root ganglion neurites by heterophilic binding to nectin-3. J. Neuroimmunol.250, 50–58 (2012). CASPubMed Google Scholar
Jarvikallio, A., Harvima, I. T. & Naukkarinen, A. Mast cells, nerves and neuropeptides in atopic dermatitis and nummular eczema. Arch. Dermatol. Res.295, 2–7 (2003). PubMed Google Scholar
Mollanazar, N. K., Smith, P. K. & Yosipovitch, G. Mediators of chronic pruritus in atopic dermatitis: getting the itch out? Clin. Rev. Allergy Immunol.51, 263–292 (2016). CASPubMed Google Scholar
Azimi, E. et al. Dual action of neurokinin-1 antagonists on Mas-related GPCRs. JCI Insight1, e89362 (2016). PubMedPubMed Central Google Scholar
McNeil, B. D. et al. Identification of a mast-cell-specific receptor crucial for pseudo-allergic drug reactions. Nature519, 237–241 (2015).This study identifies MRGPRB2, the orthologue of human MRGPRX2, as a critical receptor in mast cells that responds to major secretagogues including the nociceptive neuropeptide substance P. CASPubMed Google Scholar
Bulut, K. et al. Sensory neuropeptides and epithelial cell restitution: the relevance of SP- and CGRP-stimulated mast cells. Int. J. Colorectal Dis.23, 535–541 (2008). PubMed Google Scholar
Kim, J. H. et al. CGRP, a neurotransmitter of enteric sensory neurons, contributes to the development of food allergy due to the augmentation of microtubule reorganization in mucosal mast cells. Biomed. Res.35, 285–293 (2014). CASPubMed Google Scholar
Russo, A. F. CGRP as a neuropeptide in migraine: lessons from mice. Br. J. Clin. Pharmacol.80, 403–414 (2015). PubMedPubMed Central Google Scholar
Eftekhari, S., Warfvinge, K., Blixt, F. W. & Edvinsson, L. Differentiation of nerve fibers storing CGRP and CGRP receptors in the peripheral trigeminovascular system. J. Pain14, 1289–1303 (2013). CASPubMed Google Scholar
Mikami, N. et al. Calcitonin gene-related peptide regulates type IV hypersensitivity through dendritic cell functions. PLOS ONE9, e86367 (2014). PubMedPubMed Central Google Scholar
Ding, W., Stohl, L. L., Wagner, J. A. & Granstein, R. D. Calcitonin gene-related peptide biases Langerhans cells toward Th2-type immunity. J. Immunol.181, 6020–6026 (2008). CASPubMedPubMed Central Google Scholar
Delgado, M., Gonzalez-Rey, E. & Ganea, D. VIP/PACAP preferentially attract Th2 effectors through differential regulation of chemokine production by dendritic cells. FASEB J.18, 1453–1455 (2004). CASPubMed Google Scholar
Delgado, M., Reduta, A., Sharma, V. & Ganea, D. VIP/PACAP oppositely affects immature and mature dendritic cell expression of CD80/CD86 and the stimulatory activity for CD4+ T cells. J. Leukoc. Biol.75, 1122–1130 (2004). CASPubMed Google Scholar
Ding, W. et al. Pituitary adenylate cyclase-activating peptide and vasoactive intestinal polypeptide bias Langerhans cell Ag presentation toward Th17 cells. Eur. J. Immunol.42, 901–911 (2012). CASPubMed Google Scholar
de Jong, P. R. et al. TRPM8 on mucosal sensory nerves regulates colitogenic responses by innate immune cells via CGRP. Mucosal Immunol.8, 491–504 (2015). PubMed Google Scholar
Voedisch, S., Rochlitzer, S., Veres, T. Z., Spies, E. & Braun, A. Neuropeptides control the dynamic behavior of airway mucosal dendritic cells. PLOS ONE7, e45951 (2012). CASPubMedPubMed Central Google Scholar
Wallrapp, A. et al. The neuropeptide NMU amplifies ILC2-driven allergic lung inflammation. Nature549, 351–356 (2017). CASPubMedPubMed Central Google Scholar
Cardoso, V. et al. Neuronal regulation of type 2 innate lymphoid cells via neuromedin U. Nature549, 277–281 (2017). CASPubMedPubMed Central Google Scholar
Mikami, N. et al. Calcitonin gene-related peptide is an important regulator of cutaneous immunity: effect on dendritic cell and T cell functions. J. Immunol.186, 6886–6893 (2011). CASPubMed Google Scholar
Ding, W. et al. Calcitonin gene-related peptide-exposed endothelial cells bias antigen presentation to CD4+ T cells toward a Th17 response. J. Immunol.196, 2181–2194 (2016). CASPubMedPubMed Central Google Scholar
Delgado, M. VIP: a very important peptide in T helper differentiation. Trends Immunol.24, 221–224 (2003). CASPubMed Google Scholar
Weinstock, J. V. et al. Substance P regulates Th1-type colitis in IL-10 knockout mice. J. Immunol.171, 3762–3767 (2003). CASPubMed Google Scholar
Cunin, P. et al. The tachykinins substance P and hemokinin-1 favor the generation of human memory Th17 cells by inducing IL-1β, IL-23, and TNF-like 1A expression by monocytes. J. Immunol.186, 4175–4182 (2011). CASPubMed Google Scholar
Walters, N., Trunkle, T., Sura, M. & Pascual, D. W. Enhanced immunoglobulin A response and protection against Salmonella enterica serovar Typhimurium in the absence of the substance P receptor. Infect. Immun.73, 317–324 (2005). CASPubMedPubMed Central Google Scholar
Li, W. W. et al. Neuropeptide regulation of adaptive immunity in the tibia fracture model of complex regional pain syndrome. J. Neuroinflamm.15, 105 (2018). Google Scholar
McGillis, J. P., Humphreys, S., Rangnekar, V. & Ciallella, J. Modulation of B lymphocyte differentiation by calcitonin gene-related peptide (CGRP). I. Characterization of high-affinity CGRP receptors on murine 70Z/3 cells. Cell. Immunol.150, 391–404 (1993). CASPubMed Google Scholar
McGillis, J. P., Humphreys, S. & Reid, S. Characterization of functional calcitonin gene-related peptide receptors on rat lymphocytes. J. Immunol.147, 3482–3489 (1991). CASPubMed Google Scholar
Payan, D. G., Brewster, D. R., Missirian-Bastian, A. & Goetzl, E. J. Substance P recognition by a subset of human T lymphocytes. J. Clin. Invest.74, 1532–1539 (1984). CASPubMedPubMed Central Google Scholar
Reubi, J. C., Horisberger, U., Kappeler, A. & Laissue, J. A. Localization of receptors for vasoactive intestinal peptide, somatostatin, and substance P in distinct compartments of human lymphoid organs. Blood92, 191–197 (1998). CASPubMed Google Scholar
Moran, M. M. & Szallasi, A. Targeting nociceptive transient receptor potential channels to treat chronic pain: current state of the field. Br. J. Pharmacol.175, 2185–2203 (2018). CASPubMed Google Scholar
Grace, P. M., Hutchinson, M. R., Maier, S. F. & Watkins, L. R. Pathological pain and the neuroimmune interface. Nat. Rev. Immunol.14, 217–231 (2014). CASPubMedPubMed Central Google Scholar
Qin, X., Wan, Y. & Wang, X. CCL2 and CXCL1 trigger calcitonin gene-related peptide release by exciting primary nociceptive neurons. J. Neurosci. Res.82, 51–62 (2005). CASPubMed Google Scholar
Cao, D. L., Qian, B., Zhang, Z. J., Gao, Y. J. & Wu, X. B. Chemokine receptor CXCR2 in dorsal root ganglion contributes to the maintenance of inflammatory pain. Brain Res. Bull.127, 219–225 (2016). CASPubMed Google Scholar
Miller, R. E. et al. CCR2 chemokine receptor signaling mediates pain in experimental osteoarthritis. Proc. Natl Acad. Sci. USA109, 20602–20607 (2012). CASPubMed Google Scholar
Gao, Y. J. et al. JNK-induced MCP-1 production in spinal cord astrocytes contributes to central sensitization and neuropathic pain. J. Neurosci.29, 4096–4108 (2009). CASPubMedPubMed Central Google Scholar
Zhang, Z. J., Cao, D. L., Zhang, X., Ji, R. R. & Gao, Y. J. Chemokine contribution to neuropathic pain: respective induction of CXCL1 and CXCR2 in spinal cord astrocytes and neurons. Pain154, 2185–2197 (2013). CASPubMedPubMed Central Google Scholar
Jiang, B. C. et al. CXCL13 drives spinal astrocyte activation and neuropathic pain via CXCR5. J. Clin. Invest.126, 745–761 (2016). PubMedPubMed Central Google Scholar
Biber, K. et al. Neuronal CCL21 up-regulates microglia P2X4 expression and initiates neuropathic pain development. EMBO J.30, 1864–1873 (2011). CASPubMedPubMed Central Google Scholar
Milligan, E. D. et al. Evidence that exogenous and endogenous fractalkine can induce spinal nociceptive facilitation in rats. Eur. J. Neurosci.20, 2294–2302 (2004). CASPubMed Google Scholar
Verge, G. M. et al. Fractalkine (CX3CL1) and fractalkine receptor (CX3CR1) distribution in spinal cord and dorsal root ganglia under basal and neuropathic pain conditions. Eur. J. Neurosci.20, 1150–1160 (2004). PubMed Google Scholar