Elobeid, A., Libard, S., Leino, M., Popova, S. N. & Alafuzoff, I. Altered proteins in the aging brain. J. Neuropathol. Exp. Neurol.75, 316–325 (2016). PubMedPubMed Central Google Scholar
Dean, D. C., 3rd et al. Brain differences in infants at differential genetic risk for late-onset Alzheimer disease: a cross-sectional imaging study. JAMA Neurol.71, 11–22 (2014). PubMedPubMed Central Google Scholar
Schaefers, A. T. & Teuchert-Noodt, G. Developmental neuroplasticity and the origin of neurodegenerative diseases. World J. Biol. Psychiatry17, 587–599 (2016). PubMed Google Scholar
Nussbaum, R. L. & Ellis, C. E. Alzheimer’s disease and Parkinson’s disease. N. Engl. J. Med.348, 1356–1364 (2003). CASPubMed Google Scholar
Hy, L. X. & Keller, D. M. Prevalence of AD among whites: a summary by levels of severity. Neurology55, 198–204 (2000). CASPubMed Google Scholar
Poewe, W. et al. Parkinson disease. Nat. Rev. Dis. Primers3, 17013 (2017). PubMed Google Scholar
Mehta, P. et al. Prevalence of amyotrophic lateral sclerosis – United States, 2014. MMWR Morb. Mortal. Wkly. Rep.67, 216–218 (2018). PubMedPubMed Central Google Scholar
Robinson, J. L. et al. Neurodegenerative disease concomitant proteinopathies are prevalent, age-related and APOE4-associated. Brain141, 2181–2193 (2018). PubMedPubMed Central Google Scholar
Lopez-Otin, C., Blasco, M. A., Partridge, L., Serrano, M. & Kroemer, G. The hallmarks of aging. Cell153, 1194–1217 (2013). CASPubMedPubMed Central Google Scholar
Chow, H. M. & Herrup, K. Genomic integrity and the ageing brain. Nat. Rev. Neurosci.16, 672–684 (2015). CASPubMed Google Scholar
Jeppesen, D. K., Bohr, V. A. & Stevnsner, T. DNA repair deficiency in neurodegeneration. Prog. Neurobiol.94, 166–200 (2011). CASPubMedPubMed Central Google Scholar
Thanan, R. et al. Oxidative stress and its significant roles in neurodegenerative diseases and cancer. Int. J. Mol. Sci.16, 193–217 (2015). Google Scholar
Maynard, S., Schurman, S. H., Harboe, C., de Souza-Pinto, N. C. & Bohr, V. A. Base excision repair of oxidative DNA damage and association with cancer and aging. Carcinogenesis30, 2–10 (2009). CASPubMed Google Scholar
Tell, G. & Demple, B. Base excision DNA repair and cancer. Oncotarget6, 584–585 (2015). PubMed Google Scholar
Leandro, G. S., Sykora, P. & Bohr, V. A. The impact of base excision DNA repair in age-related neurodegenerative diseases. Mutat. Res.776, 31–39 (2015). CASPubMedPubMed Central Google Scholar
Akbari, M., Morevati, M., Croteau, D. & Bohr, V. A. The role of DNA base excision repair in brain homeostasis and disease. DNA Repair32, 172–179 (2015). CAS Google Scholar
Fang, E. F. et al. NAD(+) in aging: molecular mechanisms and translational implications. Trends Mol. Med.23, 899–916 (2017). CASPubMedPubMed Central Google Scholar
Herrmann, M., Pusceddu, I., Marz, W. & Herrmann, W. Telomere biology and age-related diseases. Clin. Chem. Lab. Med.56, 1210–1222 (2018). CASPubMed Google Scholar
Eitan, E., Hutchison, E. R. & Mattson, M. P. Telomere shortening in neurological disorders: an abundance of unanswered questions. Trends Neurosci.37, 256–263 (2014). CASPubMedPubMed Central Google Scholar
Bradley-Whitman, M. A. & Lovell, M. A. Epigenetic changes in the progression of Alzheimer’s disease. Mech. Ageing Dev.134, 486–495 (2013). CASPubMed Google Scholar
Hwang, J. Y., Aromolaran, K. A. & Zukin, R. S. The emerging field of epigenetics in neurodegeneration and neuroprotection. Nat. Rev. Neurosci.18, 347–361 (2017). CASPubMedPubMed Central Google Scholar
Tanaka, K. & Matsuda, N. Proteostasis and neurodegeneration: the roles of proteasomal degradation and autophagy. Biochim. Biophys. Acta1843, 197–204 (2014). CASPubMed Google Scholar
Johri, A. & Beal, M. F. Mitochondrial dysfunction in neurodegenerative diseases. J. Pharmacol. Exp. Ther.342, 619–630 (2012). CASPubMedPubMed Central Google Scholar
Keogh, M. J. & Chinnery, P. F. Mitochondrial DNA mutations in neurodegeneration. Biochim. Biophys. Acta1847, 1401–1411 (2015). CASPubMed Google Scholar
Greene, J. C. et al. Mitochondrial pathology and apoptotic muscle degeneration in Drosophila parkin mutants. Proc. Natl Acad. Sci. USA100, 4078–4083 (2003). CASPubMedPubMed Central Google Scholar
Pickrell, A. M. & Youle, R. J. The roles of PINK1, parkin, and mitochondrial fidelity in Parkinson’s disease. Neuron85, 257–273 (2015). CASPubMedPubMed Central Google Scholar
Koentjoro, B., Park, J. S. & Sue, C. M. Nix restores mitophagy and mitochondrial function to protect against PINK1/parkin-related Parkinson’s disease. Sci. Rep.7, 44373 (2017). PubMedPubMed Central Google Scholar
Di Rita, A. et al. AMBRA1-mediated mitophagy counteracts oxidative stress and apoptosis induced by neurotoxicity in human neuroblastoma SH-SY5Y cells. Front. Cell. Neurosci.12, 92 (2018). PubMedPubMed Central Google Scholar
Yun, J. et al. MUL1 acts in parallel to the PINK1/parkin pathway in regulating mitofusin and compensates for loss of PINK1/parkin. Elife3, e01958 (2014). PubMedPubMed Central Google Scholar
Haynes, C. M. & Ron, D. The mitochondrial UPR – protecting organelle protein homeostasis. J. Cell Sci.123, 3849–3855 (2010). CASPubMed Google Scholar
Hayflick, L. The limited in vitro lifetime of human diploid cell strains. Exp. Cell Res.37, 614–636 (1965). CASPubMed Google Scholar
Kultz, D. Molecular and evolutionary basis of the cellular stress response. Annu. Rev. Physiol.67, 225–257 (2005). PubMed Google Scholar
Kuilman, T., Michaloglou, C., Mooi, W. J. & Peeper, D. S. The essence of senescence. Genes Dev.24, 2463–2479 (2010). CASPubMedPubMed Central Google Scholar
Loaiza, N. & Demaria, M. Cellular senescence and tumor promotion: is aging the key? Biochim. Biophys. Acta1865, 155–167 (2016). CASPubMed Google Scholar
Coppe, J. P., Desprez, P. Y., Krtolica, A. & Campisi, J. The senescence-associated secretory phenotype: the dark side of tumor suppression. Annu. Rev. Pathol.5, 99–118 (2010). CASPubMedPubMed Central Google Scholar
Wiley, C. D. et al. Mitochondrial dysfunction induces senescence with a distinct secretory phenotype. Cell Metab.23, 303–314 (2016). CASPubMed Google Scholar
Nacarelli, T. et al. NAD(+) metabolism governs the proinflammatory senescence-associated secretome. Nat. Cell Biol.21, 397–407 (2019). CASPubMedPubMed Central Google Scholar
Maynard, S., Fang, E. F., Scheibye-Knudsen, M., Croteau, D. L. & Bohr, V. A. DNA damage, DNA repair, aging, and neurodegeneration. Cold Spring Harb. Perspect. Med. https://doi.org/10.1101/cshperspect.a025130 (2015).
Barrio-Alonso, E., Hernandez-Vivanco, A., Walton, C. C., Perea, G. & Frade, J. M. Cell cycle reentry triggers hyperploidization and synaptic dysfunction followed by delayed cell death in differentiated cortical neurons. Sci. Rep.8, 14316 (2018). CASPubMedPubMed Central Google Scholar
Fielder, E., von Zglinicki, T. & Jurk, D. The DNA damage response in neurons: die by apoptosis or survive in a senescence-like state? J. Alzheimers Dis.60, S107–S131 (2017). CASPubMed Google Scholar
Jurk, D. et al. Postmitotic neurons develop a p21-dependent senescence-like phenotype driven by a DNA damage response. Aging Cell11, 996–1004 (2012). CASPubMed Google Scholar
Vaidya, A. et al. Knock-in reporter mice demonstrate that DNA repair by non-homologous end joining declines with age. PLoS Genet.10, e1004511 (2014). PubMedPubMed Central Google Scholar
Narita, M. et al. Spatial coupling of mTOR and autophagy augments secretory phenotypes. Science332, 966–970 (2011). CASPubMedPubMed Central Google Scholar
Kang, H. T., Lee, K. B., Kim, S. Y., Choi, H. R. & Park, S. C. Autophagy impairment induces premature senescence in primary human fibroblasts. PLoS One6, e23367 (2011). CASPubMedPubMed Central Google Scholar
Kang, C. et al. The DNA damage response induces inflammation and senescence by inhibiting autophagy of GATA4. Science349, aaa5612 (2015). PubMedPubMed Central Google Scholar
Bhatia-Dey, N., Kanherkar, R. R., Stair, S. E., Makarev, E. O. & Csoka, A. B. Cellular senescence as the causal nexus of aging. Front. Genet.7, 13 (2016). PubMedPubMed Central Google Scholar
Fontana, L., Partridge, L. & Longo, V. D. Extending healthy life span – from yeast to humans. Science328, 321–326 (2010). CASPubMedPubMed Central Google Scholar
Babbar, M. & Sheikh, M. S. Metabolic stress and disorders related to alterations in mitochondrial fission or fusion. Mol. Cell. Pharmacol.5, 109–133 (2013). PubMedPubMed Central Google Scholar
Oh, J., Lee, Y. D. & Wagers, A. J. Stem cell aging: mechanisms, regulators and therapeutic opportunities. Nat. Med.20, 870–880 (2014). CASPubMedPubMed Central Google Scholar
Villeda, S. A. et al. Young blood reverses age-related impairments in cognitive function and synaptic plasticity in mice. Nat. Med.20, 659–663 (2014). CASPubMedPubMed Central Google Scholar
Amor, S. & Woodroofe, M. N. Innate and adaptive immune responses in neurodegeneration and repair. Immunology141, 287–291 (2014). CASPubMedPubMed Central Google Scholar
He, F. & Balling, R. The role of regulatory T cells in neurodegenerative diseases. Wiley Interdiscip. Rev. Syst. Biol. Med.5, 153–180 (2013). CASPubMed Google Scholar
Currais, A. Ageing and inflammation – a central role for mitochondria in brain health and disease. Ageing Res. Rev.21, 30–42 (2015). CASPubMed Google Scholar
Lu, T. et al. Gene regulation and DNA damage in the ageing human brain. Nature429, 883–891 (2004). CASPubMed Google Scholar
Hickman, S., Izzy, S., Sen, P., Morsett, L. & El Khoury, J. Microglia in neurodegeneration. Nat. Neurosci.21, 1359–1369 (2018). CASPubMedPubMed Central Google Scholar
Cunningham, C. Microglia and neurodegeneration: the role of systemic inflammation. Glia61, 71–90 (2013). PubMed Google Scholar
Youm, Y. H. et al. Canonical Nlrp3 inflammasome links systemic low-grade inflammation to functional decline in aging. Cell Metab.18, 519–532 (2013). CASPubMedPubMed Central Google Scholar
Halle, A. et al. The NALP3 inflammasome is involved in the innate immune response to amyloid-beta. Nat. Immunol.9, 857–865 (2008). CASPubMedPubMed Central Google Scholar
Codolo, G. et al. Triggering of inflammasome by aggregated alpha-synuclein, an inflammatory response in synucleinopathies. PLoS One8, e55375 (2013). CASPubMedPubMed Central Google Scholar
Ona, V. O. et al. Inhibition of caspase-1 slows disease progression in a mouse model of Huntington’s disease. Nature399, 263–267 (1999). CASPubMed Google Scholar
Johann, S. et al. NLRP3 inflammasome is expressed by astrocytes in the SOD1 mouse model of ALS and in human sporadic ALS patients. Glia63, 2260–2273 (2015). PubMed Google Scholar
Meissner, F., Molawi, K. & Zychlinsky, A. Mutant superoxide dismutase 1-induced IL-1β accelerates ALS pathogenesis. Proc. Natl Acad. Sci. USA107, 13046–13050 (2010). CASPubMedPubMed Central Google Scholar
Wang, W. Y., Tan, M. S., Yu, J. T. & Tan, L. Role of pro-inflammatory cytokines released from microglia in Alzheimer’s disease. Ann. Transl Med.3, 136 (2015). PubMedPubMed Central Google Scholar
Wang, W. et al. Caspase-1 causes truncation and aggregation of the Parkinson’s disease-associated protein α-synuclein. Proc. Natl Acad. Sci. USA113, 9587–9592 (2016). CASPubMedPubMed Central Google Scholar
Uchoa, M. F., Moser, V. A. & Pike, C. J. Interactions between inflammation, sex steroids, and Alzheimer’s disease risk factors. Front. Neuroendocrinol.43, 60–82 (2016). CASPubMedPubMed Central Google Scholar
Grune, T., Jung, T., Merker, K. & Davies, K. J. Decreased proteolysis caused by protein aggregates, inclusion bodies, plaques, lipofuscin, ceroid, and ‘aggresomes’ during oxidative stress, aging, and disease. Int. J. Biochem. Cell Biol.36, 2519–2530 (2004). CASPubMed Google Scholar
Nakahira, K. et al. Autophagy proteins regulate innate immune responses by inhibiting the release of mitochondrial DNA mediated by the NALP3 inflammasome. Nat. Immunol.12, 222–230 (2011). CASPubMed Google Scholar
Baker, D. J. & Petersen, R. C. Cellular senescence in brain aging and neurodegenerative diseases: evidence and perspectives. J. Clin. Invest.128, 1208–1216 (2018). PubMedPubMed Central Google Scholar
Pan, M. R., Li, K., Lin, S. Y. & Hung, W. C. Connecting the dots: from DNA damage and repair to aging. Int. J. Mol. Sci.17, 685 (2016). PubMed Central Google Scholar
Frasca, D. & Blomberg, B. B. Inflammaging decreases adaptive and innate immune responses in mice and humans. Biogerontology17, 7–19 (2016). CASPubMed Google Scholar
Bektas, A., Schurman, S. H., Sen, R. & Ferrucci, L. Aging, inflammation and the environment. Exp. Gerontol.105, 10–18 (2018). CASPubMed Google Scholar
Valera, E. et al. Combination of alpha-synuclein immunotherapy with anti-inflammatory treatment in a transgenic mouse model of multiple system atrophy. Acta Neuropathol. Commun.5, 2 (2017). PubMedPubMed Central Google Scholar
Sevigny, J. et al. The antibody aducanumab reduces Aβ plaques in Alzheimer’s disease. Nature537, 50–56 (2016). CASPubMed Google Scholar
Van Cauwenberghe, C., Vandendriessche, C., Libert, C. & Vandenbroucke, R. E. Caloric restriction: beneficial effects on brain aging and Alzheimer’s disease. Mamm. Genome27, 300–319 (2016). PubMed Google Scholar
Spielman, L. J., Little, J. P. & Klegeris, A. Physical activity and exercise attenuate neuroinflammation in neurological diseases. Brain Res. Bull.125, 19–29 (2016). CASPubMed Google Scholar
Bekris, L. M., Yu, C. E., Bird, T. D. & Tsuang, D. W. Genetics of Alzheimer disease. J. Geriatr. Psychiatry Neurol.23, 213–227 (2010). PubMedPubMed Central Google Scholar
Liu, C. C., Liu, C. C., Kanekiyo, T., Xu, H. & Bu, G. Apolipoprotein E and Alzheimer disease: risk, mechanisms and therapy. Nat. Rev. Neurol.9, 106–118 (2013). CASPubMedPubMed Central Google Scholar
Bloom, G. S. Amyloid-β and tau: the trigger and bullet in Alzheimer disease pathogenesis. JAMA Neurol.71, 505–508 (2014). PubMed Google Scholar
Wang, J., Gu, B. J., Masters, C. L. & Wang, Y. J. A systemic view of Alzheimer disease – insights from amyloid-β metabolism beyond the brain. Nat. Rev. Neurol.13, 612–623 (2017). CASPubMed Google Scholar
Lane, C. A., Hardy, J. & Schott, J. M. Alzheimer’s disease. Eur. J. Neurol.25, 59–70 (2018). CASPubMed Google Scholar
Selkoe, D. J. & Hardy, J. The amyloid hypothesis of Alzheimer’s disease at 25 years. EMBO Mol. Med.8, 595–608 (2016). CASPubMedPubMed Central Google Scholar
Spillantini, M. G. & Goedert, M. Tau pathology and neurodegeneration. Lancet Neurol.12, 609–622 (2013). CASPubMed Google Scholar
Fu, W. Y., Wang, X. & Ip, N. Y. Targeting neuroinflammation as a therapeutic strategy for Alzheimer’s disease: mechanisms, drug candidates, and new opportunities. ACS Chem. Neurosci.10, 872–879 (2019). CASPubMed Google Scholar
Hardy, J. The amyloid hypothesis for Alzheimer’s disease: a critical reappraisal. J. Neurochem.110, 1129–1134 (2009). CASPubMed Google Scholar
Hall, A. M. & Roberson, E. D. Mouse models of Alzheimer’s disease. Brain Res. Bull.88, 3–12 (2012). CASPubMed Google Scholar
Ewald, C. Y. & Li, C. Understanding the molecular basis of Alzheimer’s disease using a Caenorhabditis elegans model system. Brain Struct. Funct.214, 263–283 (2010). CASPubMed Google Scholar
Prussing, K., Voigt, A. & Schulz, J. B. Drosophila melanogaster as a model organism for Alzheimer’s disease. Mol. Neurodegener.8, 35 (2013). PubMedPubMed Central Google Scholar
Tan, F. H. P. & Azzam, G. Drosophila melanogaster: deciphering Alzheimer’s disease. Malays. J. Med. Sci.24, 6–20 (2017). PubMedPubMed Central Google Scholar
Arber, C., Lovejoy, C. & Wray, S. Stem cell models of Alzheimer’s disease: progress and challenges. Alzheimers Res. Ther.9, 42 (2017). PubMedPubMed Central Google Scholar
Teng, E. et al. Dietary DHA supplementation in an APP/PS1 transgenic rat model of AD reduces behavioral and Aβ pathology and modulates Aβ oligomerization. Neurobiol. Dis.82, 552–560 (2015). CASPubMedPubMed Central Google Scholar
Lovell, M. A., Gabbita, S. P. & Markesbery, W. R. Increased DNA oxidation and decreased levels of repair products in Alzheimer’s disease ventricular CSF. J. Neurochem.72, 771–776 (1999). CASPubMed Google Scholar
Weissman, L. et al. Defective DNA base excision repair in brain from individuals with Alzheimer’s disease and amnestic mild cognitive impairment. Nucleic Acids Res.35, 5545–5555 (2007). CASPubMedPubMed Central Google Scholar
Sykora, P. et al. DNA polymerase β deficiency leads to neurodegeneration and exacerbates Alzheimer disease phenotypes. Nucleic Acids Res.43, 943–959 (2015). CASPubMed Google Scholar
Wang, H. Z. et al. Validating GWAS-identified risk loci for Alzheimer’s disease in Han Chinese populations. Mol. Neurobiol.53, 379–390 (2016). CASPubMed Google Scholar
Fang, E. F. et al. NAD(+) replenishment improves lifespan and healthspan in ataxia telangiectasia models via mitophagy and DNA repair. Cell Metab.24, 566–581 (2016). CASPubMedPubMed Central Google Scholar
Hou, Y. et al. NAD(+) supplementation normalizes key Alzheimer’s features and DNA damage responses in a new AD mouse model with introduced DNA repair deficiency. Proc. Natl Acad. Sci. USA115, E1876–E1885 (2018). CASPubMedPubMed Central Google Scholar
Kwon, M. J., Kim, S., Han, M. H. & Lee, S. B. Epigenetic changes in neurodegenerative diseases. Mol. Cells39, 783–789 (2016). CASPubMedPubMed Central Google Scholar
Ow, S. Y. & Dunstan, D. E. A brief overview of amyloids and Alzheimer’s disease. Protein Sci.23, 1315–1331 (2014). CASPubMedPubMed Central Google Scholar
Kerr, J. S. et al. Mitophagy and Alzheimer’s disease: cellular and molecular mechanisms. Trends Neurosci.40, 151–166 (2017). CASPubMedPubMed Central Google Scholar
Fang, E. F. et al. Mitophagy inhibits amyloid-β and tau pathology and reverses cognitive deficits in models of Alzheimer’s disease. Nat. Neurosci.22, 401–412 (2019). CASPubMedPubMed Central Google Scholar
Boccardi, V., Pelini, L., Ercolani, S., Ruggiero, C. & Mecocci, P. From cellular senescence to Alzheimer’s disease: the role of telomere shortening. Ageing Res. Rev.22, 1–8 (2015). CASPubMed Google Scholar
Chinta, S. J. et al. Cellular senescence is induced by the environmental neurotoxin paraquat and contributes to neuropathology linked to Parkinson’s disease. Cell Rep22, 930–940 (2018). CASPubMedPubMed Central Google Scholar
Turnquist, C. et al. p53 isoforms regulate astrocyte-mediated neuroprotection and neurodegeneration. Cell Death Differ.23, 1515–1528 (2016). CASPubMedPubMed Central Google Scholar
He, N. et al. Amyloid-β(1-42) oligomer accelerates senescence in adult hippocampal neural stem/progenitor cells via formylpeptide receptor 2. Cell Death Dis.4, e924 (2013). CASPubMedPubMed Central Google Scholar
Kirkland, J. L. & Tchkonia, T. Cellular senescence: a translational perspective. EBioMedicine21, 21–28 (2017). PubMedPubMed Central Google Scholar
Bussian, T. J. et al. Clearance of senescent glial cells prevents tau-dependent pathology and cognitive decline. Nature562, 578–582 (2018). CASPubMedPubMed Central Google Scholar
Zhang, P. et al. Senolytic therapy alleviates Aβ-associated oligodendrocyte progenitor cell senescence and cognitive deficits in an Alzheimer’s disease model. Nat. Neurosci.22, 719–728 (2019). CASPubMedPubMed Central Google Scholar
Musi, N. et al. Tau protein aggregation is associated with cellular senescence in the brain. Aging Cell17, e12840 (2018). PubMedPubMed Central Google Scholar
Talbot, K. et al. Demonstrated brain insulin resistance in Alzheimer’s disease patients is associated with IGF-1 resistance, IRS-1 dysregulation, and cognitive decline. J. Clin. Invest.122, 1316–1338 (2012). CASPubMedPubMed Central Google Scholar
Oddo, S. The role of mTOR signaling in Alzheimer disease. Front. Biosci. (Schol Ed) 4, 941–952 (2012). Google Scholar
Salminen, A., Kaarniranta, K., Haapasalo, A., Soininen, H. & Hiltunen, M. AMP-activated protein kinase: a potential player in Alzheimer’s disease. J. Neurochem.118, 460–474 (2011). CASPubMed Google Scholar
Camandola, S. & Mattson, M. P. Brain metabolism in health, aging, and neurodegeneration. EMBO J.36, 1474–1492 (2017). CASPubMedPubMed Central Google Scholar
De Felice, F. G. & Lourenco, M. V. Brain metabolic stress and neuroinflammation at the basis of cognitive impairment in Alzheimer’s disease. Front. Aging Neurosci.7, 94 (2015). PubMedPubMed Central Google Scholar
Cai, H. et al. Metabolic dysfunction in Alzheimer’s disease and related neurodegenerative disorders. Curr. Alzheimer Res.9, 5–17 (2012). CASPubMedPubMed Central Google Scholar
Simons, M. et al. Cholesterol depletion inhibits the generation of β-amyloid in hippocampal neurons. Proc. Natl Acad. Sci. USA95, 6460–6464 (1998). CASPubMedPubMed Central Google Scholar
Vivar, C. Adult hippocampal neurogenesis, aging and neurodegenerative diseases: possible strategies to prevent cognitive impairment. Curr. Top. Med. Chem.15, 2175–2192 (2015). CASPubMed Google Scholar
McClean, P. L., Parthsarathy, V., Faivre, E. & Holscher, C. The diabetes drug liraglutide prevents degenerative processes in a mouse model of Alzheimer’s disease. J. Neurosci.31, 6587–6594 (2011). CASPubMedPubMed Central Google Scholar
Ho, L. et al. Diet-induced insulin resistance promotes amyloidosis in a transgenic mouse model of Alzheimer’s disease. FASEB J.18, 902–904 (2004). CASPubMed Google Scholar
Takamatsu, Y. et al. Combined immunotherapy with “anti-insulin resistance” therapy as a novel therapeutic strategy against neurodegenerative diseases. NPJ Parkinsons Dis.3, 4 (2017). PubMedPubMed Central Google Scholar
Heneka, M. T., Reyes-Irisarri, E., Hull, M. & Kummer, M. P. Impact and therapeutic potential of PPARs in Alzheimer’s disease. Curr. Neuropharmacol.9, 643–650 (2011). CASPubMedPubMed Central Google Scholar
Rotermund, C., Machetanz, G. & Fitzgerald, J. C. The therapeutic potential of metformin in neurodegenerative diseases. Front. Endocrinol.9, 400 (2018). Google Scholar
Melki, R. Role of different alpha-synuclein strains in synucleinopathies, similarities with other neurodegenerative diseases. J. Parkinsons Dis.5, 217–227 (2015). CASPubMedPubMed Central Google Scholar
Rocha, E. M., De Miranda, B. & Sanders, L. H. Alpha-synuclein: pathology, mitochondrial dysfunction and neuroinflammation in Parkinson’s disease. Neurobiol. Dis.109, 249–257 (2018). CASPubMed Google Scholar
Dias, V., Junn, E. & Mouradian, M. M. The role of oxidative stress in Parkinson’s disease. J. Parkinsons Dis.3, 461–491 (2013). CASPubMedPubMed Central Google Scholar
Hirsch, E. C. & Hunot, S. Neuroinflammation in Parkinson’s disease: a target for neuroprotection? Lancet Neurol.8, 382–397 (2009). CASPubMed Google Scholar
Sepe, S. et al. Inefficient DNA repair is an aging-related modifier of Parkinson’s disease. Cell Rep.15, 1866–1875 (2016). CASPubMedPubMed Central Google Scholar
Labbe, C., Lorenzo-Betancor, O. & Ross, O. A. Epigenetic regulation in Parkinson’s disease. Acta Neuropathol.132, 515–530 (2016). CASPubMedPubMed Central Google Scholar
Curry, D. W., Stutz, B., Andrews, Z. B. & Elsworth, J. D. Targeting AMPK signaling as a neuroprotective strategy in Parkinson’s disease. J. Parkinsons Dis.8, 161–181 (2018). PubMedPubMed Central Google Scholar
Alecu, I. & Bennett, S. A. L. Dysregulated lipid metabolism and its role in α-synucleinopathy in Parkinson’s disease. Front. Neurosci.13, 328 (2019). PubMedPubMed Central Google Scholar
Regensburger, M., Prots, I. & Winner, B. Adult hippocampal neurogenesis in Parkinson’s disease: impact on neuronal survival and plasticity. Neural Plast.2014, 454696 (2014). PubMedPubMed Central Google Scholar
Kikuchi, T. et al. Human iPS cell-derived dopaminergic neurons function in a primate Parkinson’s disease model. Nature548, 592–596 (2017). CASPubMed Google Scholar
McGeer, P. L., Itagaki, S., Boyes, B. E. & McGeer, E. G. Reactive microglia are positive for HLA-DR in the substantia nigra of Parkinson’s and Alzheimer’s disease brains. Neurology38, 1285–1291 (1988). CASPubMed Google Scholar
Walter, J. T., Alvina, K., Womack, M. D., Chevez, C. & Khodakhah, K. Decreases in the precision of Purkinje cell pacemaking cause cerebellar dysfunction and ataxia. Nat. Neurosci.9, 389–397 (2006). CASPubMed Google Scholar
Guo, Z., Kozlov, S., Lavin, M. F., Person, M. D. & Paull, T. T. ATM activation by oxidative stress. Science330, 517–521 (2010). CASPubMed Google Scholar
Hardiman, O. et al. Amyotrophic lateral sclerosis. Nat. Rev. Dis. Primers3, 17071 (2017). PubMed Google Scholar
Bates, G. P. et al. Huntington disease. Nat. Rev. Dis. Primers1, 15005 (2015). PubMed Google Scholar
Karikkineth, A. C., Scheibye-Knudsen, M., Fivenson, E., Croteau, D. L. & Bohr, V. A. Cockayne syndrome: clinical features, model systems and pathways. Ageing Res. Rev.33, 3–17 (2017). CASPubMed Google Scholar
Penndorf, D., Witte, O. W. & Kretz, A. DNA plasticity and damage in amyotrophic lateral sclerosis. Neural Regen. Res.13, 173–180 (2018). PubMedPubMed Central Google Scholar
Cai, Z., Yan, L. J. & Ratka, A. Telomere shortening and Alzheimer’s disease. Neuromol. Med.15, 25–48 (2013). CASPubMed Google Scholar
Linkus, B. et al. Telomere shortening leads to earlier age of onset in ALS mice. Aging8, 382–393 (2016). CAS Google Scholar
Kota, L. N. et al. Reduced telomere length in neurodegenerative disorders may suggest shared biology. J. Neuropsychiatry Clin. Neurosci.27, e92–e96 (2015). PubMed Google Scholar
Block, R. C., Dorsey, E. R., Beck, C. A., Brenna, J. T. & Shoulson, I. Altered cholesterol and fatty acid metabolism in Huntington disease. J. Clin. Lipidol.4, 17–23 (2010). PubMedPubMed Central Google Scholar
Allen, D. M. et al. Ataxia telangiectasia mutated is essential during adult neurogenesis. Genes Dev.15, 554–566 (2001). CASPubMedPubMed Central Google Scholar
Amariglio, N. et al. Donor-derived brain tumor following neural stem cell transplantation in an ataxia telangiectasia patient. PLoS Med.6, e1000029 (2009). PubMedPubMed Central Google Scholar
Sapp, E. et al. Early and progressive accumulation of reactive microglia in the Huntington disease brain. J. Neuropathol. Exp. Neurol.60, 161–172 (2001). CASPubMed Google Scholar
Henkel, J. S. et al. Presence of dendritic cells, MCP-1, and activated microglia/macrophages in amyotrophic lateral sclerosis spinal cord tissue. Ann. Neurol.55, 221–235 (2004). CASPubMed Google Scholar
Hui, C. W., Song, X., Ma, F., Shen, X. & Herrup, K. Ibuprofen prevents progression of ataxia telangiectasia symptoms in ATM-deficient mice. J. Neuroinflammation15, 308 (2018). CASPubMedPubMed Central Google Scholar
Chow, H. M. et al. ATM is activated by ATP depletion and modulates mitochondrial function through NRF1. J. Cell Biol.218, 909–928 (2019). CASPubMedPubMed Central Google Scholar
Chen, J. et al. The impact of glutamine supplementation on the symptoms of ataxia-telangiectasia: a preclinical assessment. Mol. Neurodegener.11, 60 (2016). PubMedPubMed Central Google Scholar
Trammell, S. A. et al. Nicotinamide riboside is uniquely and orally bioavailable in mice and humans. Nat. Commun.7, 12948 (2016). CASPubMedPubMed Central Google Scholar
Zhang, H. et al. NAD(+) repletion improves mitochondrial and stem cell function and enhances life span in mice. Science352, 1436–1443 (2016). CASPubMed Google Scholar
Gomes, A. P. et al. Declining NAD(+) induces a pseudohypoxic state disrupting nuclear-mitochondrial communication during aging. Cell155, 1624–1638 (2013). CASPubMedPubMed Central Google Scholar
De Jesus-Cortes, H. et al. Neuroprotective efficacy of aminopropyl carbazoles in a mouse model of Parkinson disease. Proc. Natl Acad. Sci. USA109, 17010–17015 (2012). PubMedPubMed Central Google Scholar
Phelan, M. J., Mulnard, R. A., Gillen, D. L. & Schreiber, S. S. Phase II clinical trial of nicotinamide for the treatment of mild to moderate Alzheimer’s disease. J. Geriatr. Med. Gerontol.3, 021 (2017). Google Scholar
Ryu, D. et al. Urolithin A induces mitophagy and prolongs lifespan in C. elegans and increases muscle function in rodents. Nat. Med.22, 879–888 (2016). CASPubMed Google Scholar
Georgakopoulos, N. D., Wells, G. & Campanella, M. The pharmacological regulation of cellular mitophagy. Nat. Chem. Biol.13, 136–146 (2017). CASPubMed Google Scholar
Albani, D., Polito, L., Signorini, A. & Forloni, G. Neuroprotective properties of resveratrol in different neurodegenerative disorders. Biofactors36, 370–376 (2010). CASPubMed Google Scholar
Heilman, J., Andreux, P., Tran, N., Rinsch, C. & Blanco-Bose, W. Safety assessment of urolithin A, a metabolite produced by the human gut microbiota upon dietary intake of plant derived ellagitannins andellagic acid. Food Chem. Toxicol.108, 289–297 (2017). CASPubMed Google Scholar
Moreira, O. C. et al. Mitochondrial function and mitophagy in the elderly: effects of exercise. Oxid. Med. Cell. Longev.2017, 2012798 (2017). PubMedPubMed Central Google Scholar
Herranz, N. et al. mTOR regulates MAPKAPK2 translation to control the senescence-associated secretory phenotype. Nat. Cell Biol.17, 1205–1217 (2015). CASPubMedPubMed Central Google Scholar
Walters, H. E., Deneka-Hannemann, S. & Cox, L. S. Reversal of phenotypes of cellular senescence by pan-mTOR inhibition. Aging8, 231–244 (2016). CAS Google Scholar
Katila, N. et al. Metformin lowers α-synuclein phosphorylation and upregulates neurotrophic factor in the MPTP mouse model of Parkinson’s disease. Neuropharmacology125, 396–407 (2017). CASPubMed Google Scholar
Ou, Z. et al. Metformin treatment prevents amyloid plaque deposition and memory impairment in APP/PS1 mice. Brain. Behav. Immun.69, 351–363 (2018). CASPubMed Google Scholar
Naylor, R. M., Baker, D. J. & van Deursen, J. M. Senescent cells: a novel therapeutic target for aging and age-related diseases. Clin. Pharmacol. Ther.93, 105–116 (2013). CASPubMed Google Scholar
Krimpenfort, P. & Berns, A. Rejuvenation by therapeutic elimination of senescent cells. Cell169, 3–5 (2017). CASPubMed Google Scholar
Chiti, F. & Dobson, C. M. Protein misfolding, amyloid formation, and human disease: a summary of progress over the last decade. Annu. Rev. Biochem86, 27–68 (2017). CASPubMed Google Scholar
Jack, C. R. Jr. et al. NIA-AA research framework: toward a biological definition of Alzheimer’s disease. Alzheimers Dement.14, 535–562 (2018). PubMedPubMed Central Google Scholar
Medina, M. An overview on the clinical development of tau-based therapeutics. Int. J. Mol. Sci.19, 1160 (2018). PubMed Central Google Scholar
Braak, H. & Braak, E. Evolution of the neuropathology of Alzheimer’s disease. Acta Neurol. Scand. Suppl.165, 3–12 (1996). CASPubMed Google Scholar
Cummings, J., Lee, G., Ritter, A. & Zhong, K. Alzheimer’s disease drug development pipeline: 2018. Alzheimers Dement.4, 195–214 (2018). Google Scholar
Cao, B. et al. Comparative efficacy and acceptability of antidiabetic agents for Alzheimer’s disease and mild cognitive impairment: a systematic review and network meta-analysis. Diabetes Obes. Metab.20, 2467–2471 (2018). PubMed Google Scholar
Miguel-Alvarez, M. et al. Non-steroidal anti-inflammatory drugs as a treatment for Alzheimer’s disease: a systematic review and meta-analysis of treatment effect. Drugs Aging32, 139–147 (2015). CASPubMed Google Scholar
Rees, K. et al. Non-steroidal anti-inflammatory drugs as disease-modifying agents for Parkinson’s disease: evidence from observational studies. Cochrane Database of Systematic Reviews9, CD008454 (2011). Google Scholar
Petrov, D., Mansfield, C., Moussy, A. & Hermine, O. ALS clinical trials review: 20 years of failure. are we any closer to registering a new treatment? Front. Aging Neurosci.9, 68 (2017). PubMedPubMed Central Google Scholar
Vaiserman, A. M., Lushchak, O. V. & Koliada, A. K. Anti-aging pharmacology: promises and pitfalls. Ageing Res. Rev.31, 9–35 (2016). PubMed Google Scholar
Hernandez-Camacho, J. D., Bernier, M., Lopez-Lluch, G. & Navas, P. Coenzyme Q10 supplementation in aging and disease. Front. Physiol.9, 44 (2018). PubMedPubMed Central Google Scholar
Li, T. & Chen, Z. J. The cGAS-cGAMP-STING pathway connects DNA damage to inflammation, senescence, and cancer. J. Exp. Med.215, 1287–1299 (2018). CASPubMedPubMed Central Google Scholar
Giraldez-Perez, R., Antolin-Vallespin, M., Munoz, M. & Sanchez-Capelo, A. Models of α-synuclein aggregation in Parkinson’s disease. Acta Neuropathol. Commun.2, 176 (2014). PubMedPubMed Central Google Scholar
Reitz, C. & Mayeux, R. Alzheimer disease: epidemiology, diagnostic criteria, risk factors and biomarkers. Biochem. Pharmacol.88, 640–651 (2014). CASPubMedPubMed Central Google Scholar
Vina, J. & Lloret, A. Why women have more Alzheimer’s disease than men: gender and mitochondrial toxicity of amyloid-β peptide. J. Alzheimers Dis.20, S527–S533 (2010). PubMed Google Scholar
Luchsinger, J. A. et al. Aggregation of vascular risk factors and risk of incident Alzheimer disease. Neurology65, 545–551 (2005). CASPubMed Google Scholar
Grant, W. B., Campbell, A., Itzhaki, R. F. & Savory, J. The significance of environmental factors in the etiology of Alzheimer’s disease. J. Alzheimers Dis.4, 179–189 (2002). PubMed Google Scholar
Kalia, L. V. & Lang, A. E. Parkinson’s disease. Lancet386, 896–912 (2015). CASPubMed Google Scholar
Weintraub, D. & Stern, M. B. Psychiatric complications in Parkinson disease. Am. J. Geriatr. Psychiatry13, 844–851 (2005). PubMed Google Scholar
Mak, E. et al. Cognitive deficits in mild Parkinson’s disease are associated with distinct areas of grey matter atrophy. J. Neurol. Neurosurg. Psychiatry85, 576–580 (2014). PubMed Google Scholar
Talbott, E. O., Malek, A. M. & Lacomis, D. The epidemiology of amyotrophic lateral sclerosis. Handb. Clin. Neurol.138, 225–238 (2016). CASPubMed Google Scholar
Subramaniam, S., Sixt, K. M., Barrow, R. & Snyder, S. H. Rhes, a striatal specific protein, mediates mutant-huntingtin cytotoxicity. Science324, 1327–1330 (2009). CASPubMedPubMed Central Google Scholar
Duff, K. et al. Psychiatric symptoms in Huntington’s disease before diagnosis: the Predict-HD study. Biol. Psychiatry62, 1341–1346 (2007). PubMed Google Scholar
Zweig, Y. R. & Galvin, J. E. Lewy body dementia: the impact on patients and caregivers. Alzheimers Res. Ther.6, 21 (2014). PubMedPubMed Central Google Scholar
Kleijer, W. J. et al. Incidence of DNA repair deficiency disorders in western Europe: xeroderma pigmentosum, Cockayne syndrome and trichothiodystrophy. DNA Repair7, 744–750 (2008). CAS Google Scholar