Electron ptychography of 2D materials to deep sub-ångström resolution (original) (raw)
Meyer, J. C., Girit, C. O., Crommie, M. F. & Zettl, A. Imaging and dynamics of light atoms and molecules on graphene. Nature454, 319–322 (2008). ArticleADSPubMedCAS Google Scholar
Krivanek, O. L. et al. Atom-by-atom structural and chemical analysis by annular dark-field electron microscopy. Nature464, 571–574 (2010). ArticleADSPubMedCAS Google Scholar
Huang, P. Y. et al. Grains and grain boundaries in single-layer graphene atomic patchwork quilts. Nature469, 389–392 (2011). ArticleADSPubMedCAS Google Scholar
Sparrow, C. M. On spectroscopic resolving power. Astrophys. J. 44, 76–86 (1916). ArticleADS Google Scholar
Black, G. & Linfoot, E. H. Spherical aberration and the information content of optical images. Proc. R. Soc. Lond. A239, 522–540 (1957). ArticleADSMATHCAS Google Scholar
Batson, P. E., Dellby, N. & Krivanek, O. L. Sub-ångström resolution using aberration corrected electron optics. Nature418, 617–620 (2002). ArticleADSPubMedCAS Google Scholar
Erni, R., Rossell, M. D., Kisielowski, C. & Dahmen, U. Atomic-resolution imaging with a sub-50-pm electron probe. Phys. Rev. Lett. 102, 096101 (2009). ArticleADSPubMedCAS Google Scholar
Sawada, H. et al. STEM imaging of 47-pm-separated atomic columns by a spherical aberration-corrected electron microscope with a 300-kV cold field emission gun. J. Electron Microsc. 58, 357–361 (2009). ArticleCAS Google Scholar
Kaiser, U. et al. Transmission electron microscopy at 20kV for imaging and spectroscopy. Ultramicroscopy111, 1239–1246 (2011). ArticlePubMedCAS Google Scholar
Meyer, J. C. et al. Accurate measurement of electron beam induced displacement cross sections for single-layer graphene. Phys. Rev. Lett. 108, 196102 (2012). ArticleADSPubMedCAS Google Scholar
Sawada, H., Sasaki, T., Hosokawa, F. & Suenaga, K. Atomic-resolution STEM imaging of graphene at low voltage of 30 kV with resolution enhancement by using large convergence angle. Phys. Rev. Lett. 114, 166102 (2015). ArticleADSPubMedCAS Google Scholar
Linck, M. et al. Chromatic aberration correction for atomic resolution TEM imaging from 20 to 80 kV. Phys. Rev. Lett. 117, 076101 (2016). ArticleADSPubMedCAS Google Scholar
Henderson, R. The potential and limitations of neutrons, electrons and X-rays for atomic resolution microscopy of unstained biological molecules. Q. Rev. Biophys. 28, 171–193 (1995). ArticlePubMedCAS Google Scholar
Hoppe, W. Beugung im inhomogenen Primärstrahlwellenfeld. I. Prinzip einer Phasenmessung von Elektronenbeungungsinterferenzen. Acta Crystallogr. A25, 495–501 (1969). ArticleADS Google Scholar
Nellist, P. D., McCallum, B. C. & Rodenburg, J. M. Resolution beyond the ‘information limit’ in transmission electron microscopy. Nature374, 630–632 (1995). ArticleADSCAS Google Scholar
Nellist, P. D. & Rodenburg, J. M. Electron ptychography. I. Experimental demonstration beyond the conventional resolution limits. Acta Crystallogr. A54, 49–60 (1998). Article Google Scholar
Thibault, P. et al. High-resolution scanning X-ray diffraction microscopy. Science321, 379–382 (2008). ArticleADSPubMedCAS Google Scholar
Maiden, A. M. & Rodenburg, J. M. An improved ptychographical phase retrieval algorithm for diffractive imaging. Ultramicroscopy109, 1256–1262 (2009). ArticlePubMedCAS Google Scholar
Thibault, P. & Menzel, A. Reconstructing state mixtures from diffraction measurements. Nature494, 68–71 (2013). ArticleADSPubMedCAS Google Scholar
Li, P., Edo, T. B. & Rodenburg, J. M. Ptychographic inversion via Wigner distribution deconvolution: noise suppression and probe design. Ultramicroscopy147, 106–113 (2014). ArticlePubMedCAS Google Scholar
Yang, H. et al. Simultaneous atomic-resolution electron ptychography and Z-contrast imaging of light and heavy elements in complex nanostructures. Nat. Commun. 7, 12532 (2016). ArticleADSPubMedPubMed CentralCAS Google Scholar
Pelz, P. M., Qiu, W. X., Bücker, R., Kassier, G. & Miller, R. J. D. Low-dose cryo electron ptychography via non-convex Bayesian optimization. Sci. Rep. 7, 9883 (2017). ArticleADSPubMedPubMed Central Google Scholar
Maiden, A. M., Humphry, M. J. & Rodenburg, J. M. Ptychographic transmission microscopy in three dimensions using a multi-slice approach. J. Opt. Soc. Am. A29, 1606–1614 (2012). ArticleADSCAS Google Scholar
Rodenburg, J. M., Hurst, A. C. & Cullis, A. G. Transmission microscopy without lenses for objects of unlimited size. Ultramicroscopy107, 227–231 (2007). ArticlePubMedCAS Google Scholar
Rodenburg, J. M. et al. Hard-X-ray lensless imaging of extended objects. Phys. Rev. Lett. 98, 034801 (2007). ArticleADSPubMedCAS Google Scholar
Hüe, F., Rodenburg, J. M., Maiden, A. M., Sweeney, F. & Midgley, P. A. Wave-front phase retrieval in transmission electron microscopy via ptychography. Phys. Rev. B82, 121415 (2010). ArticleADSCAS Google Scholar
Hüe, F., Rodenburg, J. M., Maiden, A. M. & Midgley, P. A. Extended ptychography in the transmission electron microscope: possibilities and limitations. Ultramicroscopy111, 1117–1123 (2011). ArticlePubMedCAS Google Scholar
Putkunz, C. T. et al. Atom-scale ptychographic electron diffractive imaging of boron nitride cones. Phys. Rev. Lett. 108, 073901 (2012). ArticleADSPubMedCAS Google Scholar
D’Alfonso, A. J. et al. Deterministic electron ptychography at atomic resolution. Phys. Rev. B89, 064101 (2014). ArticleADSCAS Google Scholar
Pennycook, T. J. et al. Efficient phase contrast imaging in STEM using a pixelated detector. Part 1: experimental demonstration at atomic resolution. Ultramicroscopy151, 160–167 (2015). ArticlePubMedCAS Google Scholar
Yang, H. et al. Electron ptychographic phase imaging of light elements in crystalline materials using Wigner distribution deconvolution. Ultramicroscopy180, 173–179 (2017). ArticlePubMedCAS Google Scholar
Wang, P., Zhang, F., Gao, S., Zhang, M. & Kirkland, A. I. Electron ptychographic diffractive imaging of boron atoms in LaB6 crystals. Sci. Rep. 7, 2857 (2017). ArticleADSPubMedPubMed CentralCAS Google Scholar
Humphry, M. J., Kraus, B., Hurst, A. C., Maiden, A. M. & Rodenburg, J. M. Ptychographic electron microscopy using high-angle dark-field scattering for sub-nanometre resolution imaging. Nat. Commun. 3, 730 (2012). ArticleADSPubMedPubMed CentralCAS Google Scholar
Frojdh, E. et al. Count rate linearity and spectral response of the Medipix3RX chip coupled to a 300μm silicon sensor under high flux conditions. J. Instrum. 9, C04028 (2014). Article Google Scholar
Rose, A. Vision Human and Electronic Ch. 1 (Plenum Press, New York, 1949). Google Scholar
Tate, M. W. et al. High dynamic range pixel array detector for scanning transmission electron microscopy. Microsc. Microanal. 22, 237–249 (2016). ArticleADSPubMedCAS Google Scholar
Close, R., Chen, Z., Shibata, N. & Findlay, S. D. Towards quantitative, atomic-resolution reconstruction of the electrostatic potential via differential phase contrast using electrons. Ultramicroscopy159, 124–137 (2015). ArticlePubMedCAS Google Scholar
Lazić, I., Bosch, E. G. T. & Lazar, S. Phase contrast STEM for thin samples: integrated differential phase contrast. Ultramicroscopy160, 265–280 (2016). ArticlePubMedCAS Google Scholar
Maiden, A. M., Humphry, M. J., Zhang, F. & Rodenburg, J. M. Superresolution imaging via ptychography. J. Opt. Soc. Am. A28, 604–612 (2011). ArticleADS Google Scholar
Rodenburg, J. M. & Bates, R. H. T. The theory of super-resolution electron microscopy via Wigner-distribution deconvolution. Philos. Trans. R. Soc. Lond. A339, 521–553 (1992). ArticleADS Google Scholar
Lee, J. & Barbastathis, G. Denoised Wigner distribution deconvolution via low-rank matrix completion. Opt. Express24, 20069–20079 (2016). ArticleADSPubMed Google Scholar
Abbe, E. The relation of aperture and power in the microscope. J. R. Microsc. Soc. 2, 300–309 (1882). Article Google Scholar
van der Zande, A. M. et al. Tailoring the electronic structure in bilayer molybdenum disulfide via interlayer twist. Nano Lett. 14, 3869–3875 (2014). ArticleADSPubMedCAS Google Scholar
Hovden, R. & Muller, D. A. Efficient elastic imaging of single atoms on ultrathin supports in a scanning transmission electron microscope. Ultramicroscopy123, 59–65 (2012). ArticlePubMedCAS Google Scholar
Zuo, C., Sun, J. & Chen, Q. Adaptive step-size strategy for noise-robust Fourier ptychographic microscopy. Opt. Express24, 20724–20744 (2016). ArticleADSPubMed Google Scholar
Maiden, A., Johnson, D. & Li, P. Further improvements to the ptychographical iterative engine. Optica4, 736–745 (2017). Article Google Scholar
Suzuki, A. et al. High-resolution multislice X-ray ptychography of extended thick objects. Phys. Rev. Lett. 112, 053903 (2014). ArticleADSPubMedCAS Google Scholar
Hovden, R., Jiang, Y., Xin, H. L. & Kourkoutis, L. F. Periodic artifact reduction in Fourier transforms of full field atomic resolution images. Microsc. Microanal. 21, 436–441 (2015). ArticleADSPubMedCAS Google Scholar
Allen, L. J., D’Alfonso, A. J. & Findlay, S. D. Modelling the inelastic scattering of fast electrons. Ultramicroscopy151, 11–22 (2015). ArticlePubMedCAS Google Scholar
Waasmaier, D. & Kirfel, A. New analytical scattering-factor functions for free atoms and ions. Acta Crystallogr. A51, 416–431 (1995). Article Google Scholar
Nellist, P. D. & Rodenburg, J. M. Beyond the conventional information limit: the relevant coherence function. Ultramicroscopy54, 61–74 (1994). Article Google Scholar