Climate and air-quality benefits of a realistic phase-out of fossil fuels (original) (raw)
Myhre, G. et al. in Climate Change 2013: The Physical Science Basis (eds Stocker, T. F. et al.) (Cambridge Univ. Press, 2013).
Cohen, A. J. et al. Estimates and 25-year trends of the global burden of disease attributable to ambient air pollution: an analysis of data from the Global Burden of Diseases Study 2015. Lancet389, 1907–1918 (2017). Article Google Scholar
Butt, E. W. et al. Global and regional trends in particulate air pollution and attributable health burden over the past 50 years. Environ. Res. Lett. 12, 104017 (2017). ArticleADS Google Scholar
Samset, B. H. et al. Climate impacts from a removal of anthropogenic aerosol emissions. Geophys. Res. Lett. 45, 1020–1029 (2018). ArticleCASADS Google Scholar
Raes, F. & Seinfeld, J. H. New directions: climate change and air pollution abatement: a bumpy road. Atmos. Environ. 43, 5132–5133 (2009). ArticleCASADS Google Scholar
Andreae, M. O., Jones, C. D. & Cox, P. M. Strong present-day aerosol cooling implies a hot future. Nature435, 1187–1190 (2005). ArticleCASADS Google Scholar
Li, B. et al. The contribution of China’s emissions to global climate forcing. Nature531, 357–361 (2016). ArticleCASADS Google Scholar
Arneth, A., Unger, N., Kulmala, M. & Andreae, M. O. Clean the air, heat the planet? Science326, 672–673 (2009). ArticleCAS Google Scholar
Lelieveld, J., Klingmüller, K., Pozzer, A., Burnett, R. T., Haines, A. & Ramanathan, V. Effects of fossil fuel and total anthropogenic emission removal on public health and climate. Proc. Natl Acad. Sci. USA116, 7192–7197 (2019). ArticleCASADS Google Scholar
Kloster, S. et al. A GCM study of future climate response to aerosol pollution reductions. Clim. Dyn. 34, 1177–1194 (2010). Article Google Scholar
Schellnhuber, H. J. Global warming: stop worrying, start panicking? Proc. Natl Acad. Sci. USA105, 14239–14240 (2008). ArticleCASADS Google Scholar
Ramanathan, V. & Feng, Y. On avoiding dangerous anthropogenic interference with the climate system: formidable challenges ahead. Proc. Natl Acad. Sci. USA105, 14245–14250 (2008). ArticleCASADS Google Scholar
Brasseur, G. P. & Roeckner, E. Impact of improved air quality on the future evolution of climate. Geophys. Res. Lett. 32, L23704 (2005). ArticleADS Google Scholar
Collins, M. et al. in Climate Change 2013: The Physical Science Basis (eds Stocker, T. F. et al.) (Cambridge Univ. Press, 2013).
Matthews, H. D. & Zickfeld, K. Climate response to zeroed emissions of greenhouse gases and aerosols. Nat. Clim. Change2, 338–341 (2012). ArticleCASADS Google Scholar
Hare, B. & Meinshausen, M. How much warming are we committed to and how much can be avoided? Clim. Change75, 111–149 (2006). ArticleCASADS Google Scholar
Smith, C. J. et al. Current fossil fuel infrastructure does not yet commit us to 1.5 °C warming. Nat. Commun. 10, 101 (2019). ArticleADS Google Scholar
Rogelj, J. et al. in Global Warming of 1.5 °C (eds Masson-Delmotte, V. et al.) (Cambridge Univ. Press, 2018).
de Coninck, H. et al. in Global Warming of 1.5 °C (eds Masson-Delmotte, V. et al.) (Cambridge Univ. Press, 2018).
Haegel, N. M. et al. Terawatt-scale photovoltaics: trajectories and challenges. Science356, 141–143 (2017). ArticleCASADS Google Scholar
Smith, C. J. et al. FAIR v1.3: a simple emissions-based impulse response and carbon cycle model. Geosci. Model Dev. 11, 2273–2297 (2018). ArticleCASADS Google Scholar
Millar, R. J., Nicholls, Z. R., Friedlingstein, P. & Allen, M. R. A modified impulse-response representation of the global near-surface air temperature and atmospheric concentration response to carbon dioxide emissions. Atmos. Chem. Phys. 2017, 7213–7228 (2017). ArticleADS Google Scholar
Philipona, R., Behrens, K. & Ruckstuhl, C. How declining aerosols and rising greenhouse gases forced rapid warming in Europe since the 1980s. Geophys. Res. Lett. 36, L02806 (2009). ArticleADS Google Scholar
Leibensperger, E. et al. Climatic effects of 1950–2050 changes in US anthropogenic aerosols—Part 2: climate response. Atmos. Chem. Phys. 12, 3349–3362 (2012). ArticleCASADS Google Scholar
Zheng, B. et al. Trends in China’s anthropogenic emissions since 2010 as the consequence of clean air actions. Atmos. Chem. Phys. 18, 14095–14111 (2018). ArticleCASADS Google Scholar
Silva, R. A. et al. The effect of future ambient air pollution on human premature mortality to 2100 using output from the ACCMIP model ensemble. Atmos. Chem. Phys. 16, 9847–9862 (2016). ArticleCASADS Google Scholar
Shindell, D., Faluvegi, G., Seltzer, K. & Shindell, C. Quantified, localized health benefits of accelerated carbon dioxide emissions reductions. Nat. Clim. Change8, 291–295 (2018). ArticleCASADS Google Scholar
Landrigan, P. J. et al. The Lancet Commission on pollution and health. Lancet391, 462–512 (2018). Article Google Scholar
The Economic Consequences of Outdoor Air Pollution (OECD, 2016)
Huppmann, D., Rogelj, J., Kriegler, E., Krey, V. & Riahi, K. A new scenario resource for integrated 1.5 °C research. Nat. Clim. Change8, 1027–1030 (2018). ArticleADS Google Scholar
Huppmann, D. et al. IAMC 1.5 °C Scenario Explorer and Data hosted by IIASA (Integrated Assessment Modeling Consortium & International Institute for Applied Systems Analysis, 2018).
Clarke, L. et al. in Climate Change 2014: Mitigation of Climate Change (eds Edenhofer, O. et al.) (Cambridge Univ. Press, 2014).
Raupach, M. R. et al. Global and regional drivers of accelerating CO2 emissions. Proc. Natl Acad. Sci. USA104, 10288–10293 (2007). ArticleCASADS Google Scholar
Andrews, T., Gregory, J. M., Webb, M. J. & Taylor, K. E. Forcing, feedbacks and climate sensitivity in CMIP5 coupled atmosphere-ocean climate models. Geophys. Res. Lett. 39, L09712 (2012). ADS Google Scholar
Etminan, M., Myhre, G., Highwood, E. J. & Shine, K. P. Radiative forcing of carbon dioxide, methane, and nitrous oxide: a significant revision of the methane radiative forcing. Geophys. Res. Lett. 43, 12614–12623 (2016). ArticleCASADS Google Scholar
Myhre, G. et al. Radiative forcing of the direct aerosol effect from AeroCom Phase II simulations. Atmos. Chem. Phys. 13, 1853–1877 (2013). ArticleCASADS Google Scholar
Ghan, S. J. et al. A simple model of global aerosol indirect effects. J. Geophys. Res. Atmos. 118, 6688–6707 (2013). ArticleADS Google Scholar
Joos, F. et al. Carbon dioxide and climate impulse response functions for the computation of greenhouse gas metrics: a multi-model analysis. Atmos. Chem. Phys. 13, 2793–2825 (2013). ArticleADS Google Scholar
Thompson, D. W. J., Barnes, E. A., Deser, C., Foust, W. E. & Phillips, A. S. Quantifying the role of internal climate variability in future climate trends. J. Clim. 28, 6443–6456 (2015). ArticleADS Google Scholar
Morice, C. P., Kennedy, J. J., Rayner, N. A. & Jones, P. D. Quantifying uncertainties in global and regional temperature change using an ensemble of observational estimates: the HadCRUT4 dataset. J. Geophys. Res. 117, D08101 (2012). ArticleADS Google Scholar
Hansen, J., Ruedy, R., Sato, M. & Lo, K. Global surface temperature change. Rev. Geophys. 48, RG4004 (2010). ArticleADS Google Scholar
Vose, R. S. et al. NOAA’s merged land–ocean surface temperature analysis. Bull. Am. Meteorol. Soc. 93, 1677–1685 (2012). ArticleADS Google Scholar
Meinshausen, M., Raper, S. C. B. & Wigley, T. M. L. Emulating coupled atmosphere-ocean and carbon cycle models with a simpler model, MAGICC6—Part 1: Model description and calibration. Atmos. Chem. Phys. 11, 1417–1456 (2011). ArticleCASADS Google Scholar
Leach, N. J. et al. Current level and rate of warming determine emissions budgets under ambitious mitigation. Nat. Geosci. 11, 574–579 (2018). ArticleCASADS Google Scholar
Forster, P. M. et al. Evaluating adjusted forcing and model spread for historical and future scenarios in the CMIP5 generation of climate models. J. Geophys. Res. Atmos. 118, 1139–1150 (2013). ArticleADS Google Scholar
Millar, R. J. et al. Model structure in observational constraints on transient climate response. Clim. Change131, 199–211 (2015). ArticleADS Google Scholar
Shindell, D., Lee, Y. & Faluvegi, G. Climate and health impacts of US emissions reductions consistent with 2 °C. Nat. Clim. Change6, 503–507 (2016). ArticleADS Google Scholar
Cowtan, K. & Way, R. G. Coverage bias in the HadCRUT4 temperature series and its impact on recent temperature trends. Q. J. R. Meteorol. Soc. 140, 1935–1944 (2014). ArticleADS Google Scholar