Electron-beam energy reconstruction for neutrino oscillation measurements (original) (raw)

Data availability

The raw data from this experiment are archived in the Jefferson Lab’s mass storage silo under the CLAS E2 run-period dataset. Access to these data can be facilitated by contacting either the corresponding authors or the Jefferson Lab computing centre at helpdesk@jlab.org.

Change history

The linking to some of the Source Data files was originally incorrect and has now been amended.

References

  1. Particle Data Group. Review of particle physics. Phys. Rev. D 98, 030001 (2018).
    Article Google Scholar
  2. Mohapatra, R. N. et al. Theory of neutrinos: a white paper. Rep. Prog. Phys. 70, 1757–1867 (2007).
    Article ADS CAS Google Scholar
  3. Hyper-Kamiokande Proto-Collaboration. Hyper-Kamiokande design report. Preprint at https://arxiv.org/abs/1805.04163 (2018).
  4. DUNE Collaboration. The DUNE Far Detector interim design report. Volume 1: physics, technology and strategies. Preprint at https://arxiv.org/abs/1807.10334 (2018).
  5. Gonzalez-Garcia, M. C. & Nir, Y. Neutrino masses and mixing: evidence and implications. Rev. Mod. Phys. 75, 345–402 (2003).
    Article ADS CAS Google Scholar
  6. Fukugita, M. & Yanagida, T. Baryogenesis without grand unification. Phys. Lett. B 174, 45–47 (1986).
    Article ADS CAS Google Scholar
  7. The T2K Collaboration. Constraint on the matter–antimatter symmetry-violating phase in neutrino oscillations. Nature 580, 339–344 (2020).
    Article ADS Google Scholar
  8. T2K Collaboration. Search for CP violation in neutrino and antineutrino oscillations by the T2K Experiment with 2.2 × 1021 protons on target. Phys. Rev. Lett. 121, 171802 (2018).
    Article ADS Google Scholar
  9. Alvarez-Ruso, L. et al. NuSTEC White Paper: status and challenges of neutrino nucleus scattering. Prog. Part. Nucl. Phys. 100, 1–68 (2018).
    Article ADS CAS Google Scholar
  10. NOνA Collaboration. New constraints on oscillation parameters from ν e appearance and ν μ disappearance in the NOνA experiment. Phys. Rev. D 98, 032012 (2018).
    Article ADS Google Scholar
  11. Ankowski, A. et al. Missing energy and the measurement of the CP-violating phase in neutrino oscillations. Phys. Rev. D 92, 091301 (2015).
    Article ADS Google Scholar
  12. Rocco, N. Ab initio calculations of lepton–nucleus scattering. Front. Phys. 8, 00116 (2020).
    Article Google Scholar
  13. Dolan, S., Megias, G. D. & Bolognesi, S. Implementation of the SuSAv2-meson exchange current 1p1h and 2p2h models in GENIE and analysis of nuclear effects in T2K measurements. Phys. Rev. D 101, 033003 (2020).
    Article ADS CAS Google Scholar
  14. Rocco, N., Lovato, A. & Benhar, O. Unified description of electron–nucleus scattering within the spectral function formalism. Phys. Rev. Lett. 116, 192501 (2016).
    Article ADS PubMed Google Scholar
  15. MINERνA Collaboration. Neutrino flux predictions for the NuMI beam. Phys. Rev. D 94, 092005 (2016).
    Article ADS Google Scholar
  16. Maan, K. K. on behalf of the NOνA Collaboration. Constraints on the neutrino flux in NOνA using the near-detector data. In Proc. Sci. 38 th Intl Conf. High Energy Physics (ICHEP2016) Vol. 282 931 (Sissa, 2016).
  17. T2K Collaboration. T2K near detector constraints for oscillation results. In 18th Intl Workshop on Neutrino Factories and Future Neutrino Facilities Search 2 (2017); https://arxiv.org/abs/1701.02559
  18. Ankowski, A. & Friedland, A. Assessing the accuracy of the GENIE event generator with electron-scattering data. Phys. Rev. D 102, 053001 (2020).
    Article ADS CAS Google Scholar
  19. Papadopolou, A. et al. Inclusive electron scattering and the GENIE neutrino event generator. Phys. Rev. D 103, 113003 (2021).
    Article ADS Google Scholar
  20. Mecking, B. A. et al. The CEBAF large acceptance spectrometer (CLAS). Nucl. Instrum. Meth. A 503, 513–553 (2003).
    Article ADS CAS Google Scholar
  21. MINERνA Collaboration. Direct measurement of nuclear dependence of charged current quasielastic-like neutrino interactions using MINERνA Phys. Rev. Lett. 119, 082001 (2017).
    Article ADS Google Scholar
  22. Aliaga, L. et al. Design, calibration, and performance of the MINERνA detector. Nucl. Instrum. Meth. A 743 130–159 (2014).
    Article ADS CAS Google Scholar
  23. Acciarri, R. et al. Design and construction of the MicroBooNE detector. J. Instrum. 12, P02017 (2017).
    Article Google Scholar
  24. The ICARUS-WA104 Collaboration, The LAr1-ND Collaboration, The MicroBooNE Collaboration & additional Fermilab contributors. A proposal for a three detector short-baseline neutrino oscillation program in the Fermilab Booster Neutrino Beam. Preprint at https://arxiv.org/abs/1503.01520
  25. The DUNE Collaboration. Long-Baseline Neutrino Facility (LBNF) and Deep Underground Neutrino Experiment (DUNE) conceptual design report. Volume 2: The physics program for DUNE at LBNF. Preprint at https://arxiv.org/abs/1512.06148 (2016).
  26. Katori, T. & Martini, M. Neutrino–nucleus cross sections for oscillation experiments. J. Phys. G 45, 013001 (2018).
    Article ADS Google Scholar
  27. Andreopoulos, C. et al. The GENIE neutrino Monte Carlo generator. Nucl. Instrum. Meth. A 614, 87–104 (2010).
    Article ADS CAS Google Scholar
  28. MicroBooNE Collaboration. First measurement of inclusive muon neutrino charged current differential cross sections on argon at E ν ~ 0.8 GeV with the MicroBooNE detector. Phys. Rev. Lett. 123, 131801 (2019).
    Article ADS Google Scholar
  29. Lu, X.-G. et al. Measurement of nuclear effects in neutrino interactions with minimal dependence on neutrino energy. Phys. Rev. C 94, 015503 (2016).
    Article ADS Google Scholar
  30. The T2K Collaboration. Characterization of nuclear effects in muon–neutrino scattering on hydrocarbon with a measurement of final-state kinematics and correlations in charged-current pionless interactions at T2K. Phys. Rev. D 98, 032003 (2018).
    Article ADS Google Scholar
  31. MINERνA Collaboration. Measurement of final-state correlations in neutrino muon–proton mesonless production on hydrocarbon at ⟨E _ν_⟩ = 3 GeV. Phys. Rev. Lett. 121, 022504 (2018).
    Article ADS Google Scholar
  32. Freund, M. Analytic approximations for three neutrino oscillation parameters and probabilities in matter. Phys. Rev. D 64, 053003 (2001).
    Article ADS Google Scholar
  33. Cervera, A. et al. Golden measurements at a neutrino factory. Nucl. Phys. B 579, 17–55 (2000).
    Article ADS Google Scholar
  34. Cervera, A. et al. Erratum to: “Golden measurements at a neutrino factory”: [Nucl. Phys. B 579 (2000) 17]. Nucl. Phys. B 593, 731–732 (2001).
    Article ADS Google Scholar
  35. Osipenko, M. et al. Measurement of the nucleon structure function _F_2 in the nuclear medium and evaluation of its moments. Nucl. Phys. A 845, 1–32 (2010).
    Article ADS Google Scholar
  36. CLAS Collaboration. Measurement of two- and three-nucleon short-range correlation probabilities in nuclei. Phys. Rev. Lett. 96, 082501 (2006).
    Article Google Scholar
  37. CLAS Collaboration. Survey of A _LT_′ asymmetries in semi-exclusive electron scattering on 4He and 12C. Nucl. Phys. A 748, 357–373 (2005).
    Article ADS Google Scholar
  38. CLAS Collaboration. Proton source size measurements in the eA → e′ppX reaction. Phys. Rev. Lett. 93, 192301 (2004).
    Article Google Scholar
  39. CLAS Collaboration. Two-nucleon momentum distributions measured in 3He(e, e_′_pp)n. Phys. Rev. Lett. 92, 052303 (2004).
    Article Google Scholar
  40. CLAS Collaboration. Observation of nuclear scaling in the A(e, _e_′) reaction at _x_B > 1. Phys. Rev. C 68, 014313 (2003).
    Article Google Scholar
  41. Hen, O. et al. Momentum sharing in imbalanced Fermi systems. Science 346, 614–617 (2014).
    Article ADS CAS PubMed Google Scholar
  42. Sealock, R. M. et al. Electroexcitation of the Δ(1232) in nuclei. Phys. Rev. Lett. 62, 1350–1353 (1989).
    Article ADS CAS PubMed Google Scholar
  43. Gonzaléz-Jiménez, R. et al. Extensions of superscaling from relativistic mean field theory: the SuSAv2 model. Phys. Rev. C 90, 035501 (2014).
    Article ADS Google Scholar
  44. Megias, G. D. et al. Inclusive electron scattering within the SuSAv2 meson-exchange current approach. Phys. Rev. D 94, 013012 (2016).
    Article ADS Google Scholar
  45. De Pace, A., Nardi, M., Alberico, W. M., Donnelly, T.W. & Molinaria, A. The 2p–2h electromagnetic response in the quasielastic peak and beyond. Nucl. Phys. A 726, 303–326 (2003).
    Article ADS Google Scholar
  46. Katori, T. Meson exchange current (MEC) models in neutrino interaction generators. In NuINT12: 8th Intl Workshop On Neutrino–Nucleus Interactions in the Few-GeV Region (eds. Da Motta, H. et al.) https://doi.org/10.1063/1.4919465 (AIP, 2015).
  47. GENIE Collaboration. Neutrino–nucleon cross-section model tuning in GENIE v3. Phys. Rev. D 104, 072009 (2021).
    Article ADS Google Scholar
  48. Berger, Ch. & Sehgal, L. M. Lepton mass effects in single pion production by neutrinos. Phys. Rev. D 76, 113004 (2007).
    Article ADS Google Scholar
  49. Feynman, R. P., Kislinger, M. & Ravndal, F. Current matrix elements from a relativistic quark model. Phys. Rev. D 3, 2706 (1971).
    Article ADS Google Scholar
  50. Bodek, A. & Yang, U. K. Higher twist, ξ w scaling, and effective LO PDFs for lepton scattering in the few GeV region. J. Phys. G 29, 1899–1905 (2003).
    Article ADS CAS Google Scholar
  51. Yang, T., Andreopoulos, C., Gallagher, H., Hofmann, K. & Kehayias, P. A hadronization model for few-GeV neutrino interactions. Eur. Phys. J. C 63, 1–10 (2009).
    Article ADS CAS Google Scholar
  52. Sjostrand, T., Mrenna, S. & Skands, P. Z. PYTHIA 6.4 physics and manual. J. High Energy Phys. 2006, 026 (2006).
    Article MATH Google Scholar
  53. Andreopoulos, C. et al. The GENIE neutrino Monte Carlo generator: physics and user manual. Preprint at https://arxiv.org/abs/1510.05494 (2015).
  54. Dytman, S. A. & Meyer, A. S. Final state interactions in GENIE. AIP Conf. Proc. 1405, 213 (2011).
    Article ADS CAS Google Scholar
  55. Merenyi, R. et al. Determination of pion intranuclear rescattering rates in ν _μ_–Ne versus ν _μ_–D interactions for the atmospheric ν flux. Phys. Rev. D 45, 743–751 (1992).
    Article ADS CAS Google Scholar
  56. Mashnik, S. G., Sierk, A. J., Gudima, K. K. & Baznat, M. I. CEM03 and LAQGSM03—new modeling tools for nuclear applications. Phys. Conf. Ser. 41, https://doi.org/10.1088/1742-6596/41/1/037 (2006).
  57. Mo, L. W. & Tsai, Y.-S. Radiative corrections to elastic and inelastic ep and μp scattering. Rev. Mod. Phys. 41, 205–235 (1969).
    Article ADS CAS Google Scholar
  58. The T2K Collaboration. Measurement of the muon neutrino charged-current single π+ production on hydrocarbon using the T2K off-axis near detector ND280. Phys. Rev. D 101, 012007 (2020).
    Article ADS Google Scholar
  59. The T2K Collaboration. Exclusive π_0_p electroproduction off protons in the resonance region at photon virtualities 0.4 GeV2 ≤ _Q_2 ≤ 1 GeV2. Phys. Rev. C 101, 015208 (2020).
    Article ADS Google Scholar
  60. Osipenko, M. A Kinematically Complete Measurement of the Proton Structure Function F2 in the Resonance Region and Evaluation of its Moments. PhD thesis, Moscow State Univ. (2002); https://www.jlab.org/Hall-B/general/thesis/Osipenko_thesis.ps.gz
  61. The T2K Collaboration. Improved constraints on neutrino mixing from the T2K experiment with 3.13 × 1021 protons on target. Phys. Rev. D 103, 112008 (2021).
    Article ADS Google Scholar
  62. DUNE Collaboration. Long-baseline neutrino oscillation physics potential of the DUNE experiment. Eur. Phys. J. C 80, 978 (2020).
    Article Google Scholar

Download references

Acknowledgements

We acknowledge the efforts of the staff of the Accelerator and Physics Divisions at Jefferson Lab that made this experiment possible. We thank L. Pickering for useful discussions. The analysis presented here was carried out as part of the Jefferson Lab Hall B Data-Mining project supported by the US Department of Energy (DOE). The research was supported also by DOE, the US National Science Foundation, the Israel Science Foundation, the Chilean Comisión Nacional de Investigación Científica y Tecnológica, the French Centre national de la recherche scientifique and Commissariat à l'Energie Atomique et aux Energies Alternatives, the French–American Cultural Exchange, the Italian Istituto Nazionale di Fisica Nucleare, the National Research Foundation of Korea, and the UK Science and Technology Facilities Council. P. Coloma acknowledges support from project PROMETEO/2019/083. This project has been supported by the European Union Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement no. 674896 (Elusives, H2020-MSCA-ITN- 2015-674896). G.D.M. acknowledges support from the Spanish Ministerio de Economía y Competitividad and ERDF (European Regional Development Fund) under contract FIS2017-88410-P, by the University of Tokyo ICRRs Inter-University Research Program FY2020 & 2021, refs no. A07 and A06; by the Junta de Andalucia (grant no. FQM160); and by the European Union Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement no. 839481. This document was prepared by the e_4_ν Collaboration using the resources of the Fermi National Accelerator Laboratory (Fermilab), a US Department of Energy, Office of Science, HEP User Facility. Fermilab is managed by Fermi Research Alliance, LLC (FRA), acting under contract no. DE-AC02-07CH11359. Jefferson Science Associates operates the Thomas Jefferson National Accelerator Facility for the DOE, Office of Science, Office of Nuclear Physics under contract DE-AC05-06OR23177. The raw data from this experiment are archived in Jefferson Lab’s mass storage silo.

Author information

Author notes

  1. These authors contributed equally: M. Khachatryan and A. Papadopoulou

Authors and Affiliations

  1. Old Dominion University, Norfolk, VA, USA
    M. Khachatryan, F. Hauenstein, L. B. Weinstein, M. J. Amaryan, D. Bulumulla, M. Hattawy, S. E. Kuhn, J. Poudel, Y. Prok & S. Stepanyan
  2. Massachusetts Institute of Technology, Cambridge, MA, USA
    A. Papadopoulou, A. Ashkenazi, F. Hauenstein, A. Nambrath, A. Hrnjic, O. Hen, A. Beck, R. Cruz-Torres, A. Denniston, I. Korover, S. May-Tal Beck, J. Pybus & E. P. Segarra
  3. Tel Aviv University, Tel Aviv, Israel
    E. Piasetzky, E. O. Cohen & M. Duer
  4. Fermi National Accelerator Laboratory, Batavia, IL, USA
    M. Betancourt
  5. University of Pittsburgh, Pittsburgh, PA, USA
    S. Dytman
  6. Michigan State University, East Lansing, MI, USA
    K. Mahn
  7. Instituto de Física Corpuscular, Universidad de Valencia and CSIC, Valencia, Spain
    P. Coloma
  8. Universidad Autonoma de Madrid, Madrid, Spain
    P. Coloma
  9. Florida International University, Miami, Florida, USA
    S. Adhikari, J. C. Carvajal, L. Guo, A. Khanal & B. Raue
  10. The George Washington University, Washington, DC, USA
    Giovanni Angelini, W. J. Briscoe, Y. Ilieva, C. W. Kim, A. Schmidt, I. I. Strakovsky & S. Strauch
  11. Temple University, Philadelphia, PA, USA
    H. Atac, M. Paolone & N. Sparveris
  12. INFN, Ferrara, Italy
    L. Barion, G. Ciullo, M. Contalbrigo, P. Lenisa, A. Movsisyan & L. L. Pappalardo
  13. Thomas Jefferson National Accelerator Facility, Newport News, VA, USA
    M. Battaglieri, S. Boiarinov, W. K. Brooks, V. D. Burkert, D. S. Carman, A. Deur, H. Egiyan, L. Elouadrhiri, G. Gavalian, F. X. Girod, L. Guo, D. Heddle, V. Kubarovsky, N. Markov, V. Mokeev, P. Nadel-Turonski, E. Pasyuk, P. Rossi, Y. G. Sharabian, S. Stepanyan, M. Ungaro & X. Wei
  14. INFN, Genova, Italy
    M. Battaglieri, A. Celentano, R. De Vita, L. Marsicano, M. Osipenko & M. Ripani
  15. National Research Centre Kurchatov Institute - ITEP, Moscow, Russia
    I. Bedlinskiy & O. Pogorelko
  16. Duquesne University, Pittsburgh, PA, USA
    F. Benmokhtar
  17. Universita degli Studi di Brescia, Brescia, Italy
    A. Bianconi, M. Leali, V. Mascagna & L. Venturelli
  18. INFN, Pavia, Italy
    A. Bianconi, M. Leali & L. Venturelli
  19. Fairfield University, Fairfield, CT, USA
    A. S. Biselli
  20. Carnegie Mellon University, Pittsburgh, PA, USA
    A. S. Biselli & R. A. Schumacher
  21. University of Paris-Saclay, Gif-sur-Yvette, France
    F. Bossu, M. Defurne & F. Sabati
  22. Universidad Tecnica Federico Santa Maria, Valpara, Chile
    W. K. Brooks, A. El Alaoui, H. Hakobyan & T. Mineeva
  23. University Paris-Saclay, Orsay, France
    P. Chatagnon, R. Dupre, M. Guidal, A. Hobart, D. Marchand, C. Munoz Camacho, S. Niccolai & E. Voutier
  24. Lomonosov Moscow State University, Moscow, Russia
    V. Chesnokov, E. Golovatch, B. S. Ishkhanov, E. L. Isupov, V. Mokeev & Iu. Skorodumina
  25. Mississippi State University, Mississippi State, MS, USA
    T. Chetry & L. El Fassi
  26. University di Ferrara, Ferrara, Italy
    G. Ciullo, P. Lenisa & L. L. Pappalardo
  27. University of Glasgow, Glasgow, United Kingdom
    L. Clark, D. I. Glazier, D. G. Ireland, K. Livingston, I. J. D. MacGregor, B. McKinnon, D. Protopopescu, G. Rosner, D. Sokhan & R. Tyson
  28. University of Connecticut, Storrs, CT, USA
    B. A. Clary, S. Diehl & K. Joo
  29. Lamar University, Beaumont, TX, USA
    P. L. Cole
  30. Idaho State University, Pocatello, ID, USA
    P. L. Cole, T. A. Forest & M. Holtrop
  31. Florida State University, Tallahassee, FL, USA
    V. Crede, P. Eugenio & A. I. Ostrovidov
  32. INFN, Rome, Italy
    A. D’Angelo, L. Lanza & A. Rizzo
  33. Universita di Roma Tor Vergata, Rome, Italy
    A. D’Angelo & A. Rizzo
  34. Yerevan Physics Institute, Yerevan, Armenia
    N. Dashyan, H. Hakobyan & H. Voskanyan
  35. Ohio University, Athens, OH, USA
    C. Djalali, K. Hicks & U. Shrestha
  36. University of South Carolina, Columbia, SC, USA
    C. Djalali, R. W. Gothe, Y. Ilieva, K. Neupane, Iu. Skorodumina, S. Strauch, N. Tyler & M. H. Wood
  37. Argonne National Laboratory, Argonne, IL, USA
    M. Ehrhart
  38. Christopher Newport University, Newport News, VA, USA
    R. Fersch & D. Heddle
  39. INFN, Sezione di Torino, Torino, Italy
    A. Filippi
  40. University of New Hampshire, Durham, NH, USA
    G. Gavalian & R. Paremuzyan
  41. University of Richmond, Richmond, VA, USA
    G. P. Gilfoyle
  42. James Madison University, Harrisonburg, VA, USA
    K. L. Giovanetti & G. Niculescu
  43. College of William and Mary, Williamsburg, VA, USA
    K. A. Griffioen & T. B. Hayward
  44. Kyungpook National University, Daegu, Republic of Korea
    H. S. Jo, W. Kim & K. Park
  45. University of Virginia, Charlottesville, VA, USA
    D. Keller, Y. Prok & J. Zhang
  46. Norfolk State University, Norfolk, VA, USA
    M. Khandaker & C. Salgado
  47. Rensselaer Polytechnic Institute, Troy, NY, USA
    V. Kubarovsky & M. Ungaro
  48. INFN, Laboratori Nazionali di Frascati, Frascati, Italy
    M. Mirazita, P. Rossi & O. Soto
  49. Institute fur Kernphysik (Juelich), Juelich, Germany
    J. Ritman
  50. University of York, York, UK
    D. Watts & N. Zachariou
  51. Canisius College, Buffalo, NY, USA
    M. H. Wood
  52. Duke University, Durham, NC, USA
    Z. W. Zhao
  53. CERN, European Organization for Nuclear Research, Geneva, Switzerland
    S. Dolan
  54. Research Center for Cosmic Neutrinos, Institute for Cosmic Ray Research, University of Tokyo, Kashiwa, Chiba, Japan
    G. D. Megias
  55. Fermi National Accelerator Laboratory, Batavia, IL, USA
    S. Gardiner

Authors

  1. M. Khachatryan
  2. A. Papadopoulou
  3. A. Ashkenazi
  4. F. Hauenstein
  5. A. Nambrath
  6. A. Hrnjic
  7. L. B. Weinstein
  8. O. Hen
  9. E. Piasetzky
  10. M. Betancourt
  11. S. Dytman
  12. K. Mahn
  13. P. Coloma

Consortia

the CLAS Collaboration

e4ν Collaboration*

Contributions

The CEBAF Large Acceptance Spectrometer was designed and constructed by the CLAS Collaboration and Jefferson Lab. Data acquisition, processing and calibration, Monte Carlo simulations of the detector and data analyses were performed by a large number of CLAS Collaboration members, who also discussed and approved the scientific results. The analysis presented here was performed by M. Khachatryan, A.P., A.A., A. Hrnjic and A.N. with guidance from A.A., F.H., O.H., E. Piasetzky and L.B.W., and was reviewed by the CLAS Collaboration. S. Dytman., M. Betancourt and K.M. provided expertise on neutrino scattering. S. Dytman, G.M., S. Dolan and S.G. helped develop _e_-GENIE. P. Coloma performed a simulation of the DUNE sensitivity to the oscillation parameters, and determined the impact of our results on the fit.

Corresponding author

Correspondence toA. Ashkenazi.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature thanks Tingjun Yang and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. Peer reviewer reports are available.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data figures and tables

Extended Data Fig. 1 Energy distributions of different ν μ beams.

Left, Before oscillation at the near detector; and right, after oscillation at the far detector61,62. The vertical lines show the three electron beam energies of this measurement. The NO_ν_A far-detector beam flux is calculated using the near-detector flux and the neutrino oscillation parameters from the Particle Data Group. arb., arbitrary units.

Extended Data Fig. 2 Peak energy reconstruction fraction and width.

Left, The ratio of _e_-GENIE to data for the fraction of the weighted cross-section that reconstructs to the correct incident energy, plotted versus incident energy; and right, the e_-GENIE–data weighted cross-section ratio for events that reconstruct to the correct incident energy, plotted versus incident energy. The triangles and dashed lines indicate the G2018/data ratios and the squares and solid lines indicate the SuSAv2/data ratios. SuSAv2 is not intended to model nuclei lighter than 12C. Yellow shows the carbon, blue shows helium and green shows iron. Error bars show the 68% (1_σ) confidence limits for the statistical and point-to-point systematic uncertainties added in quadrature. Error bars are not shown when they are smaller than the size of the data point. Normalization uncertainties of 3% not shown.

Source data.

Extended Data Fig. 3 Particle multiplicities and include cross-section extraction.

Left, The proton (black) and charged pion (blue) multiplicities for data (points), SuSAv2 (solid histogram) and G2018 (dashed histogram) for 2.257-GeV carbon. Right, Comparison between the inclusive C(e, e_′) cross-sections measured at 37.5° for data (points) and SuSAv2 (lines) for the 0.961- and 1.299-GeV SLAC data42 and our 1.159-GeV CLAS data. Error bars show the 68% (1_σ) confidence limits for the statistical and point-to-point systematic uncertainties added in quadrature. Error bars are not shown when they are smaller than the size of the data point. Normalization uncertainties of 3% not shown.

Source data.

Extended Data Fig. 4 Energy feed-down cross-sections.

ad, (_E_rec – _E_true)/_E_true for data (points) and SuSAv2 (lines) for 1.159 GeV (red triangles and dotted lines), 2.257 GeV (green squares and solid lines) and 4.453 GeV (blue dots and solid lines) for C _E_cal (a), C _E_QE (b), Fe _E_cal (c), and Fe E_QE (d). The plots are area-normalized and each bin has been scaled by the bin width. Error bars show the 68% (1_σ) confidence limits for the statistical and point-to-point systematic uncertainties added in quadrature. Error bars are not shown when they are smaller than the size of the data point. Normalization uncertainties of 3% not shown.

Source data.

Extended Data Fig. 5 Transverse missing-momentum-dependent differential cross-section.

The cross-section plotted versus transverse missing momentum P_T for data (black points), SuSAv2 (black solid curve) and G2018 (black dotted curve). Different panels show results for different beam energy and target nucleus combinations: ac, Carbon target at 1.159 GeV (a), 2.257 GeV (b) and 4.453 GeV (c). d, e, Iron target at 2.257 GeV (d) and 4.453 GeV (e). The 4.453-GeV yields have been scaled by four to have the same vertical scale. Coloured lines show the contributions of different processes to the SuSAv2 GENIE simulation: QE (blue), MEC (red), RES (green) and DIS (orange). Error bars show the 68% (1_σ) confidence limits for the statistical and point-to-point systematic uncertainties added in quadrature. Error bars are not shown when they are smaller than the size of the data point. Normalization uncertainties of 3% not shown.

Source data.

Extended Data Fig. 6 δ_α_T-dependent differential cross-section.

aj, The cross-section plotted versus δ_α_T (ae) and versus δ_ϕ_T (fj) for data (black points), SuSAv2 (black solid curve) and G2018 (black dotted curve). Different panels show results for different beam energy and target nucleus combinations: ac, Carbon target at 1.159 GeV (a), 2.257 GeV (b) and 4.453 GeV (c). d, e, Iron target at 2.257 GeV (d) and 4.453 GeV (e). The 4.453-GeV yields have been scaled by two to have the same vertical scale. Coloured lines show the contributions of different processes to the SuSAv2 GENIE simulation: QE (blue), MEC (red), RES (green) and DIS (orange). Error bars show the 68% (1_σ_) confidence limits for the statistical and point-to-point systematic uncertainties added in quadrature. Error bars are not shown when they are smaller than the size of the data point. Normalization uncertainties of 3% not shown.

Source data.

Extended Data Fig. 7 The effect of undetected pion subtraction.

The number of weighted events as a function of reconstructed energy _E_QE for 4.453-GeV Fe(e, _e_′) events for: left, events with a detected _π_± or photon (blue), events with one (red) or two (light brown) undetected _π_± or photons; and right, all (e, e_′_X) events with detected or undetected _π_± or photon (blue), (e, _e_′) events with no detected _π_± or photon (red), and (e, _e_′) events after subtraction for undetected π_± or photon (light brown). The uncertainties are statistical only and are shown at the 1_σ or 68% confidence level. Error bars are not shown when they are smaller than the size of the data point.

Source data.

Extended Data Fig. 8 Acceptance and radiation corrections.

ac, Acceptance correction factors; df, acceptance correction factor uncertainties; and gi, electron radiation correction factors plotted versus _E_cal for the three incident beam energies. Results for carbon are shown in black, helium in green and iron in magenta. The left column (a, d, g) shows the 1.159-GeV results, the middle column (b, e, h) shows the 2.257-GeV results and the right column (c, f, i) shows the 4.453-GeV results.

Extended Data Fig. 9 CLAS detector and its calibration performance.

a, Cutaway drawing of CLAS showing the sector structure and the different detectors. Yellow, toroidal magnet; blue, drift chambers; magenta, Cherenkov counter; red, scintillation counters (time of flight); green, electromagnetic calorimeter. The beam enters from the upper left and the target is in the center of CLAS. CLAS detector image reproduced with permission of the CLAS Collaboration. b, The 2.257-GeV 3He(e, e_′_pp)X missing mass for data (solid histogram) and simulation (dashed histogram). c, The H(e, e_′_π +)X missing mass for data (black) and fit to data (red).

Extended Data Table 1 (e, e_′_p)1_p_0_π_ events reconstructed to the correct beam energy

Full size table

Supplementary information

Rights and permissions

About this article

Cite this article

Khachatryan, M., Papadopoulou, A., Ashkenazi, A. et al. Electron-beam energy reconstruction for neutrino oscillation measurements.Nature 599, 565–570 (2021). https://doi.org/10.1038/s41586-021-04046-5

Download citation