The multicatalytic compartment of propionyl-CoA synthase sequesters a toxic metabolite (original) (raw)
References
Wheeldon, I. et al. Substrate channelling as an approach to cascade reactions. Nat. Chem.8, 299–309 (2016). ArticleCAS Google Scholar
Linster, C. L., Van Schaftingen, E. & Hanson, A. D. Metabolite damage and its repair or pre-emption. Nat. Chem. Biol.9, 72–80 (2013). ArticleCAS Google Scholar
Alber, B. E. & Fuchs, G. Propionyl-coenzyme A synthase from Chloroflexus aurantiacus, a key enzyme of the 3-hydroxypropionate cycle for autotrophic CO2 fixation. J. Biol. Chem.277, 12137–12143 (2002). ArticleCAS Google Scholar
Zarzycki, J., Brecht, V., Müller, M. & Fuchs, G. Identifying the missing steps of the autotrophic 3-hydroxypropionate CO2 fixation cycle in Chloroflexusaurantiacus. Proc. Natl Acad. Sci. USA106, 21317–21322 (2009). ArticleCAS Google Scholar
Todd, J. D., Curson, A. R. J., Sullivan, M. J., Kirkwood, M. & Johnston, A. W. B. The Ruegeria pomeroyi acuI gene has a role in DMSP catabolism and resembles yhdH of E. coli and other bacteria in conferring resistance to acrylate. PLoS One7, e35947 (2012). ArticleCAS Google Scholar
Teufel, R., Kung, J. W., Kockelkorn, D., Alber, B. E. & Fuchs, G. 3-hydroxypropionyl-coenzyme A dehydratase and acryloyl-coenzyme A reductase, enzymes of the autotrophic 3-hydroxypropionate/4-hydroxybutyrate cycle in the Sulfolobales. J. Bacteriol.191, 4572–4581 (2009). ArticleCAS Google Scholar
Berg, I. A., Kockelkorn, D., Buckel, W. & Fuchs, G. A 3-hydroxypropionate/4-hydroxybutyrate autotrophic carbon dioxide assimilation pathway in Archaea. Science318, 1782–1786 (2007). ArticleCAS Google Scholar
Engilberge, S. et al. Crystallophore: a versatile lanthanide complex for protein crystallography combining nucleating effects, phasing properties, and luminescence. Chem. Sci.8, 5909–5917 (2017). ArticleCAS Google Scholar
Lindbladh, C. et al. Preparation and kinetic characterization of a fusion protein of yeast mitochondrial citrate synthase and malate dehydrogenase. Biochemistry33, 11692–11698 (1994). ArticleCAS Google Scholar
Shatalin, K., Lebreton, S., Rault-Leonardon, M., Vélot, C. & Srere, P. A. Electrostatic channeling of oxaloacetate in a fusion protein of porcine citrate synthase and porcine mitochondrial malate dehydrogenase. Biochemistry38, 881–889 (1999). ArticleCAS Google Scholar
Datta, A., Merz, J. M. & Spivey, H. O. Substrate channeling of oxalacetate in solid-state complexes of malate dehydrogenase and citrate synthase. J. Biol. Chem.260, 15008–15012 (1985). CASPubMed Google Scholar
Chowdhury, C., Sinha, S., Chun, S., Yeates, T. O. & Bobik, T. A. Diverse bacterial microcompartment organelles. Microbiol. Mol. Biol. Rev.78, 438–468 (2014). ArticleCAS Google Scholar
Sutter, M., Greber, B., Aussignargues, C. & Kerfeld, C. A. Assembly principles and structure of a 6.5-MDa bacterial microcompartment shell. Science356, 1293–1297 (2017). ArticleCAS Google Scholar
Sutter, M. et al. Structural basis of enzyme encapsulation into a bacterial nanocompartment. Nat. Struct. Mol. Biol.15, 939–947 (2008). ArticleCAS Google Scholar
Jung, T. & Grune, T. The proteasome and the degradation of oxidized proteins: Part I—structure of proteasomes. Redox Biol.1, 178–182 (2013). ArticleCAS Google Scholar
Reger, A. S., Carney, J. M. & Gulick, A. M. Biochemical and crystallographic analysis of substrate binding and conformational changes in acetyl-CoA synthetase. Biochemistry46, 6536–6546 (2007). ArticleCAS Google Scholar
Bock, T., Reichelt, J., Müller, R. & Blankenfeldt, W. The structure of LiuC, a 3-hydroxy-3-methylglutaconyl CoA dehydratase involved in isovaleryl-CoA biosynthesis in Myxococcus xanthus, reveals insights into specificity and catalysis. Chembiochem17, 1658–1664 (2016). ArticleCAS Google Scholar
Quade, N., Huo, L., Rachid, S., Heinz, D. W. & Müller, R. Unusual carbon fixation gives rise to diverse polyketide extender units. Nat. Chem. Biol.8, 117–124 (2011). Article Google Scholar
Spivey, H. O. & Ovádi, J. Substrate channeling. Methods19, 306–321 (1999). ArticleCAS Google Scholar
Lyle, S., Ozeran, J. D., Stanczak, J., Westley, J. & Schwartz, N.B. Intermediate channeling between ATP sulfurylase and adenosine 5′-phosphosulfate kinase from rat chondrosarcoma. Biochemistry33, 6822–6827 (1994). ArticleCAS Google Scholar
Jogl, G. & Tong, L. Crystal structure of yeast acetyl-coenzyme A synthetase in complex with AMP. Biochemistry43, 1425–1431 (2004). ArticleCAS Google Scholar
Tanaka, S., Sawaya, M. R. & Yeates, T. O. Structure and mechanisms of a protein-based organelle in Escherichia coli. Science327, 81–84 (2010). ArticleCAS Google Scholar
Giessen, T. W. & Silver, P. A. Widespread distribution of encapsulin nanocompartments reveals functional diversity. Nat. Microbiol.2, 17029 (2017). Article Google Scholar
Fan, C., Cheng, S., Sinha, S. & Bobik, T. A. Interactions between the termini of lumen enzymes and shell proteins mediate enzyme encapsulation into bacterial microcompartments. Proc. Natl Acad. Sci. USA109, 14995–15000 (2012). ArticleCAS Google Scholar
Kerfeld, C. A. et al. Protein structures forming the shell of primitive bacterial organelles. Science309, 936–938 (2005). ArticleCAS Google Scholar
Pan, P., Woehl, E. & Dunn, M. F. Protein architecture, dynamics and allostery in tryptophan synthase channeling. Trends. Biochem. Sci.22, 22–27 (1997). ArticleCAS Google Scholar
Hyde, C. C., Ahmed, S. A., Padlan, E. A., Miles, E. W. & Davies, D. R. Three-dimensional structure of the tryptophan synthase alpha 2 beta 2 multienzyme complex from Salmonella typhimurium. J. Biol. Chem.263, 17857–17871 (1988). CASPubMed Google Scholar
Mouilleron, S., Badet-Denisot, M.-A. & Golinelli-Pimpaneau, B. Glutamine binding opens the ammonia channel and activates glucosamine-6P synthase. J. Biol. Chem.281, 4404–4412 (2006). ArticleCAS Google Scholar
Thoden, J. B., Holden, H. M., Wesenberg, G., Raushel, F. M. & Rayment, I. Structure of carbamoyl phosphate synthetase: a journey of 96 A from substrate to product. Biochemistry36, 6305–6316 (1997). ArticleCAS Google Scholar
Singh, H., Arentson, B. W., Becker, D. F. & Tanner, J. J. Structures of the PutA peripheral membrane flavoenzyme reveal a dynamic substrate-channeling tunnel and the quinone-binding site. Proc. Natl Acad. Sci.USA111, 3389–3394 (2014). ArticleCAS Google Scholar
Smith, N. E., Vrielink, A., Attwood, P. V. & Corry, B. Biological channeling of a reactive intermediate in the bifunctional enzyme DmpFG. Biophys. J.102, 868–877 (2012). ArticleCAS Google Scholar
Leys, D., Basran, J. & Scrutton, N. S. Channelling and formation of ‘active’ formaldehyde in dimethylglycine oxidase. EMBO J.22, 4038–4048 (2003). ArticleCAS Google Scholar
Tralau, T. et al. An internal reaction chamber in dimethylglycine oxidase provides efficient protection from exposure to toxic formaldehyde. J. Biol. Chem.284, 17826–17834 (2009). ArticleCAS Google Scholar
Ishikawa, M., Tsuchiya, D., Oyama, T., Tsunaka, Y. & Morikawa, K. Structural basis for channelling mechanism of a fatty acid β-oxidation multienzyme complex. EMBO J.23, 2745–2754 (2004). ArticleCAS Google Scholar
Smith, S. & Tsai, S.-C. The type I fatty acid and polyketide synthases: a tale of two megasynthases. Nat. Prod. Rep.24, 1041–1072 (2007). ArticleCAS Google Scholar
Vögeli, B. et al. Archaeal acetoacetyl-CoA thiolase/HMG-CoA synthase complex channels the intermediate via a fused CoA-binding site. Proc. Natl Acad. Sci. USA115, 3380–3385 (2018). Article Google Scholar
Bale, J. B. et al. Accurate design of megadalton-scale two-component icosahedral protein complexes. Science353, 389–394 (2016). ArticleCAS Google Scholar
Aussignargues, C. et al. Structure and function of a bacterial microcompartment shell protein engineered to bind a [4Fe-4S] cluster. J. Am. Chem. Soc.138, 5262–5270 (2016). ArticleCAS Google Scholar
Giessen, T. W. & Silver, P. A. A catalytic nanoreactor based on in vivo encapsulation of multiple enzymes in an engineered protein nanocompartment. Chembiochem17, 1931–1935 (2016). ArticleCAS Google Scholar
Azuma, Y., Zschoche, R., Tinzl, M. & Hilvert, D. Quantitative packaging of active enzymes into a protein cage. Angew. Chem. Int. Ed. Engl.55, 1531–1534 (2016). ArticleCAS Google Scholar
Burton, A. J., Thomson, A. R., Dawson, W. M., Brady, R. L. & Woolfson, D. N. Installing hydrolytic activity into a completely de novo protein framework. Nat. Chem.8, 837–844 (2016). ArticleCAS Google Scholar
Brasch, M. et al. Assembling enzymatic cascade pathways inside virus-based nanocages using dual-tasking nucleic acid tags. J. Am. Chem. Soc.139, 1512–1519 (2017). ArticleCAS Google Scholar
Ho, B. K. & Gruswitz, F. HOLLOW: generating accurate representations of channel and interior surfaces in molecular structures. BMC Struct. Biol.8, 49 (2008). Article Google Scholar
Peter, D. M., Vögeli, B., Cortina, N. S. & Erb, T. J. A chemo-enzymatic road map to the synthesis of CoA esters. Molecules21, 517 (2016). Article Google Scholar
Schwander, T., Schada von Borzyskowski, L., Burgener, S., Cortina, N. S. & Erb, T. J. A synthetic pathway for the fixation of carbon dioxide in vitro. Science354, 900–904 (2016). ArticleCAS Google Scholar
Bertani, G. Studies on lysogenesis. I. The mode of phage liberation by lysogenic. Escherichia coli. J. Bacteriol.62, 293–300 (1951). CASPubMed Google Scholar
Tartof, K. & Hobbs, C. Improved media for growing plasmid and cosmid clones. Focus9, 12 (1987). Google Scholar
Sambrook, J. & Russel, D. Molecular Cloning: a Laboratory Manual 3rd edn. (Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York, USA, 2001).
Sheldrick, G. M. A short history of SHELX. Acta Crystallogr. A.64, 112–122 (2008). ArticleCAS Google Scholar
Winn, M. D. et al. Overview of the CCP4 suite and current developments. Acta Crystallogr. D. Biol. Crystallogr.67, 235–242 (2011). ArticleCAS Google Scholar
Adams, P. D. et al. PHENIX: a comprehensive Python-based system for macromolecular structure solution. Acta Crystallogr. D Biol. Crystallogr. 66, 213–221 (2010). ArticleCAS Google Scholar
Emsley, P. & Cowtan, K. Coot: model-building tools for molecular graphics. Acta Crystallogr. D. Biol. Crystallogr.60, 2126–2132 (2004). Article Google Scholar
Eichacker, L., Granvogl, B. & Gruber, P. Method for quantitative comparison of two or more proteins. German patent EP1947461 (2008).
Konarev, P. V., Volkov, V. V., Sokolova, A. V., Koch, M. H. & Svergun, D. I. PRIMUS: a Windows PC-based system for small-angle scattering data analysis. J. Appl. Crystallogr.36, 1277–1282 (2003). ArticleCAS Google Scholar