Memory formation in the absence of experience (original) (raw)

Data availability

All data supporting the findings of this study are available from the corresponding author upon request.

Code availability

Custom code for behavioral analysis is available from the corresponding author upon request.

References

  1. Eichenbaum, H. Still searching for the engram. Learn. Behav. 44, 209–222 (2016).
    Article Google Scholar
  2. Josselyn, S. A., Kohler, S. & Frankland, P. W. Finding the engram. Nat. Rev. Neurosci. 16, 521–534 (2015).
    Article CAS Google Scholar
  3. Tonegawa, S., Liu, X., Ramirez, S. & Redondo, R. Memory engram cells have come of age. Neuron 87, 918–931 (2015).
    Article CAS Google Scholar
  4. Martin, S. J. & Morris, R. G. New life in an old idea: the synaptic plasticity and memory hypothesis revisited. Hippocampus 12, 609–636 (2002).
    Article CAS Google Scholar
  5. Buck, L. & Axel, R. A novel multigene family may encode odorant receptors: a molecular basis for odor recognition. Cell 65, 175–187 (1991).
    Article CAS Google Scholar
  6. Buck, L. B. The molecular architecture of odor and pheromone sensing in mammals. Cell 100, 611–618 (2000).
    Article CAS Google Scholar
  7. Firestein, S. How the olfactory system makes sense of scents. Nature 413, 211–218 (2001).
    Article CAS Google Scholar
  8. Mombaerts, P. et al. Visualizing an olfactory sensory map. Cell 87, 675–686 (1996).
    Article CAS Google Scholar
  9. Ressler, K. J., Sullivan, S. L. & Buck, L. B. Information coding in the olfactory system: evidence for a stereotyped and highly organized epitope map in the olfactory bulb. Cell 79, 1245–1255 (1994).
    Article CAS Google Scholar
  10. Wang, F., Nemes, A., Mendelsohn, M. & Axel, R. Odorant receptors govern the formation of a precise topographic map. Cell 93, 47–60 (1998).
    Article CAS Google Scholar
  11. Jones, S. V., Choi, D. C., Davis, M. & Ressler, K. J. Learning-dependent structural plasticity in the adult olfactory pathway. J. Neurosci. 28, 13106–13111 (2008).
    Article CAS Google Scholar
  12. Morrison, F. G., Dias, B. G. & Ressler, K. J. Extinction reverses olfactory fear-conditioned increases in neuron number and glomerular size. Proc. Natl Acad. Sci. USA 112, 12846–12851 (2015).
    Article CAS Google Scholar
  13. Jiang, Y. et al. Molecular profiling of activated olfactory neurons identifies odorant receptors for odors in vivo. Nat. Neurosci. 18, 1446–1454 (2015).
    Article CAS Google Scholar
  14. Smear, M., Resulaj, A., Zhang, J., Bozza, T. & Rinberg, D. Multiple perceptible signals from a single olfactory glomerulus. Nat. Neurosci. 16, 1687–1691 (2013).
    Article CAS Google Scholar
  15. Lammel, S. et al. Input-specific control of reward and aversion in the ventral tegmental area. Nature 491, 212–217 (2012).
    Article CAS Google Scholar
  16. Cousens, G. & Otto, T. Both pre- and posttraining excitotoxic lesions of the basolateral amygdala abolish the expression of olfactory and contextual fear conditioning. Behav. Neurosci. 112, 1092–1103 (1998).
    Article CAS Google Scholar
  17. Thompson, K. J. et al. DREADD agonist 21 (C21) is an effective agonist for muscarinic based DREADDs in vitro and in vivo. ACS Pharmacol. Transl Sci. 1, 61–72 (2018).
    Article CAS Google Scholar
  18. Walker, D. L., Paschall, G. Y. & Davis, M. Glutamate receptor antagonist infusions into the basolateral and medial amygdala reveal differential contributions to olfactory vs. context fear conditioning and expression. Learn. Mem. 12, 120–129 (2005).
    Article Google Scholar
  19. Cowansage, K. K. et al. Direct reactivation of a coherent neocortical memory of context. Neuron 84, 432–441 (2014).
    Article CAS Google Scholar
  20. Gore, F. et al. Neural representations of unconditioned stimuli in basolateral amygdala mediate innate and learned responses. Cell 162, 134–145 (2015).
    Article CAS Google Scholar
  21. Liu, X. et al. Optogenetic stimulation of a hippocampal engram activates fear memory recall. Nature 484, 381–385 (2012).
    Article CAS Google Scholar
  22. Yiu, A. P. et al. Neurons are recruited to a memory trace based on relative neuronal excitability immediately before training. Neuron 83, 722–735 (2014).
    Article CAS Google Scholar
  23. Denny, C. A. et al. Hippocampal memory traces are differentially modulated by experience, time, and adult neurogenesis. Neuron 83, 189–201 (2014).
    Article CAS Google Scholar
  24. Tanaka, K. Z. et al. Cortical representations are reinstated by the hippocampus during memory retrieval. Neuron 84, 347–354 (2014).
    Article CAS Google Scholar
  25. Rashid, A. J. et al. Competition between engrams influences fear memory formation and recall. Science 353, 383–387 (2016).
    Article CAS Google Scholar
  26. Ramirez, S. et al. Creating a false memory in the hippocampus. Science 341, 387–391 (2013).
    Article CAS Google Scholar
  27. Redondo, R. L. et al. Bidirectional switch of the valence associated with a hippocampal contextual memory engram. Nature 513, 426–430 (2014).
    Article CAS Google Scholar
  28. Ohkawa, N. et al. Artificial association of pre-stored information to generate a qualitatively new memory. Cell Rep. 11, 261–269 (2015).
    Article CAS Google Scholar
  29. Dudai, Y. in Science of Memory: Concepts (eds Roediger, H. L. III, Dudai, Y. & Fitzpatrick, S. M.) 13–16 (Oxford Univ. Press, 2007).
  30. Shinkman, P. G., Swain, R. A. & Thompson, R. F. Classical conditioning with electrical stimulation of cerebellum as both conditioned and unconditioned stimulus. Behav. Neurosci. 110, 914–921 (1996).
    Article CAS Google Scholar
  31. Steinmetz, J. E., Lavond, D. G. & Thompson, R. F. Classical conditioning in rabbits using pontine nucleus stimulation as a conditioned stimulus and inferior olive stimulation as an unconditioned stimulus. Synapse 3, 225–233 (1989).
    Article CAS Google Scholar
  32. Hegoburu, C., Parrot, S., Ferreira, G. & Mouly, A. M. Differential involvement of amygdala and cortical NMDA receptors activation upon encoding in odor fear memory. Learn. Mem. 21, 651–655 (2014).
    Article CAS Google Scholar
  33. Sevelinges, Y., Gervais, R., Messaoudi, B., Granjon, L. & Mouly, A. M. Olfactory fear conditioning induces field potential potentiation in rat olfactory cortex and amygdala. Learn. Mem. 11, 761–769 (2004).
    Article Google Scholar
  34. McGann, J. P. Associative learning and sensory neuroplasticity: how does it happen and what is it good for? Learn. Mem. 22, 567–576 (2015).
    Article CAS Google Scholar
  35. Herry, C. & Johansen, J. P. Encoding of fear learning and memory in distributed neuronal circuits. Nat. Neurosci. 17, 1644–1654 (2014).
    Article CAS Google Scholar
  36. Ozawa, T. et al. A feedback neural circuit for calibrating aversive memory strength. Nat. Neurosci. 20, 90–97 (2017).
    Article CAS Google Scholar
  37. Di Scala, G., Mana, M. J., Jacobs, W. J. & Phillips, A. G. Evidence of Pavlovian conditioned fear following electrical stimulation of the periaqueductal grey in the rat. Physiol. Behav. 40, 55–63 (1987).
    Article Google Scholar
  38. Kim, E. J. et al. Dorsal periaqueductal gray–amygdala pathway conveys both innate and learned fear responses in rats. Proc. Natl Acad. Sci USA 110, 14795–14800 (2013).
    Article CAS Google Scholar
  39. Han, S., Soleiman, M. T., Soden, M. E., Zweifel, L. S. & Palmiter, R. D. Elucidating an affective pain circuit that creates a threat memory. Cell 162, 363–374 (2015).
    Article CAS Google Scholar
  40. Sato, M. et al. The lateral parabrachial nucleus is actively involved in the acquisition of fear memory in mice. Mol. Brain 8, 22 (2015).
    Article Google Scholar
  41. Tang, J. et al. Pavlovian fear memory induced by activation in the anterior cingulate cortex. Mol. Pain 1, 6 (2005).
    Article Google Scholar
  42. Johansen, J. P. & Fields, H. L. Glutamatergic activation of anterior cingulate cortex produces an aversive teaching signal. Nat. Neurosci. 7, 398–403 (2004).
    Article CAS Google Scholar
  43. Tye, K. M. & Deisseroth, K. Optogenetic investigation of neural circuits underlying brain disease in animal models. Nat. Rev. Neurosci. 13, 251–266 (2012).
    Article CAS Google Scholar
  44. Carey, R. M. & Wachowiak, M. Effect of sniffing on the temporal structure of mitral/tufted cell output from the olfactory bulb. J. Neurosci. 31, 10615–10626 (2011).
    Article CAS Google Scholar
  45. Doucette, W. et al. Associative cortex features in the first olfactory brain relay station. Neuron 69, 1176–1187 (2011).
    Article CAS Google Scholar
  46. Rojas-Libano, D. & Kay, L. M. Interplay between sniffing and odorant sorptive properties in the rat. J. Neurosci. 32, 15577–15589 (2012).
    Article CAS Google Scholar
  47. Shusterman, R., Smear, M. C., Koulakov, A. A. & Rinberg, D. Precise olfactory responses tile the sniff cycle. Nat. Neurosci. 14, 1039–1044 (2011).
    Article CAS Google Scholar
  48. Wesson, D. W., Donahou, T. N., Johnson, M. O. & Wachowiak, M. Sniffing behavior of mice during performance in odor-guided tasks. Chem. Senses 33, 581–596 (2008).
    Article Google Scholar
  49. Kepecs, A., Uchida, N. & Mainen, Z. F. The sniff as a unit of olfactory processing. Chem. Senses 31, 167–179 (2006).
    Article Google Scholar
  50. Vetere, G. et al. Chemogenetic interrogation of a brain-wide fear memory network in mice. Neuron 94, 363–374 (2017).
    Article CAS Google Scholar
  51. Paxinos, G. & Franklin, K. B. J. The Mouse Brain in Stereotaxic Coordinates (Academic Press, 2012).
  52. Renier, N. et al. Mapping of brain activity by automated volume analysis of immediate early genes. Cell 165, 1789–1802 (2016).
    Article CAS Google Scholar
  53. Renier, N. et al. iDISCO: a simple, rapid method to immunolabel large tissue samples for volume imaging. Cell 159, 896–910 (2014).
    Article CAS Google Scholar
  54. Preibisch, S., Saalfeld, S. & Tomancak, P. Globally optimal stitching of tiled 3D microscopic image acquisitions. Bioinformatics 25, 1463–1465 (2009).
    Article CAS Google Scholar

Download references

Acknowledgements

This work was supported by Canadian Institute of Health Research (CIHR) grants to P.W.F. (FDN143227) and S.A.J. (MOP74650) and by National Institute of Mental Health grants to K.J.R. (R01-MH108665) and F.G.M. (F31-MH105237). S.A.J. is a CIHR Canada Research Chair in Memory Function and Dysfunction. P.W.F. is a CIHR Canada Research Chair in Cognitive Neurobiology. The authors thank A. Ramsaran and J. Johansen for comments on an earlier draft of this manuscript.

Author information

Author notes

  1. Gisella Vetere
    Present address: Laboratoire Plasticité du Cerveau, ESPCI- École Supérieure de Physique et de Chimie Industrielles, Paris, France

Authors and Affiliations

  1. Program in Neurosciences and Mental Health, Hospital for Sick Children, Toronto, Ontario, Canada
    Gisella Vetere, Lina M. Tran, Sara Moberg, Patrick E. Steadman, Leonardo Restivo, Sheena A. Josselyn & Paul W. Frankland
  2. Department of Physiology, University of Toronto, Toronto, Ontario, Canada
    Lina M. Tran, Sheena A. Josselyn & Paul W. Frankland
  3. Institute of Medical Sciences, University of Toronto, Toronto, Ontario, Canada
    Patrick E. Steadman, Sheena A. Josselyn & Paul W. Frankland
  4. National Center for PTSD at VA Boston Healthcare System, Boston, MA, USA
    Filomene G. Morrison
  5. Department of Psychiatry, Boston University School of Medicine, Boston, MA, USA
    Filomene G. Morrison
  6. McLean Hospital, Harvard Medical School, Belmont, MA, USA
    Kerry J. Ressler
  7. Department of Psychology, University of Toronto, Toronto, Ontario, Canada
    Sheena A. Josselyn & Paul W. Frankland
  8. Brain, Mind and Consciousness Program, Canadian Institute for Advanced Research, Toronto, Ontario, Canada
    Sheena A. Josselyn
  9. Child and Brain Development Program, Canadian Institute for Advanced Research, Toronto, Ontario, Canada
    Paul W. Frankland

Authors

  1. Gisella Vetere
    You can also search for this author inPubMed Google Scholar
  2. Lina M. Tran
    You can also search for this author inPubMed Google Scholar
  3. Sara Moberg
    You can also search for this author inPubMed Google Scholar
  4. Patrick E. Steadman
    You can also search for this author inPubMed Google Scholar
  5. Leonardo Restivo
    You can also search for this author inPubMed Google Scholar
  6. Filomene G. Morrison
    You can also search for this author inPubMed Google Scholar
  7. Kerry J. Ressler
    You can also search for this author inPubMed Google Scholar
  8. Sheena A. Josselyn
    You can also search for this author inPubMed Google Scholar
  9. Paul W. Frankland
    You can also search for this author inPubMed Google Scholar

Contributions

G.V. and P.W.F. conceived the study and designed the experiments. G.V., L.M.T., and S.M. conducted the behavioral and immunohistochemical experiments. G.V. and L.R. conducted data and statistical analyses. P.E.S. conducted the iDISCO tissue clearing. P.W.F., G.V., K.J.R., F.G.M., and S.A.J. wrote the paper.

Corresponding authors

Correspondence toSheena A. Josselyn or Paul W. Frankland.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Journal peer review information: Nature Neuroscience thanks Mark Baxter and other anonymous reviewer(s) for their contribution to the peer review of this work.

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Integrated supplementary information

Supplementary Figure 1 Testing apparatus.

a, Odor preference was assessed in a rectangular box. Filter paper containing acetophenone or carvone was placed in the lid of a Petri dish. This was covered by a Petri dish (with 9 drilled holes), and then bedding. b, Photograph and schematic of test apparatus.

Supplementary Figure 2 Distance traveled in test sessions. These graphs depict the distance traveled during the test session in each of the experiments.

a, Acetophenone paired with shock (ANOVA, _F_4,46 = 13.10, P < 0.0001). (The data shown here corresponds to groups shown in Fig. 1b, c: CS + US group, n = 15 mice; naïve/home cage, n = 8 mice; US only, n = 15 mice; CS only, n = 8 mice; US│CS group, n = 12 mice). b, M72 photostimulation paired shock (ANOVA, _F_2,26 = 10.86, P = 0.0004). (The data here corresponds to groups shown in Fig. 1f, g: CS + US group, n = 18 mice; CS only, n = 8 mice; US│CS group, n = 8 mice). c, Acetophenone paired with food (corresponds to data shown in Supplementary Fig. 6, n = 12). d, M72 photostimulation paired with LHb stimulation (2 tailed t-test: _t_14 = 0.59, P = 0.56). (The data shown here corresponds to groups shown in Fig. 2d, e: CS + US, n = 12 mice; US│CS, n = 8 mice). e, M72 photostimulation paired with LDT stimulation (2 tailed t-test: _t_18 = 1.29, P = 0.21). (The data shown here corresponds to groups shown in Fig. 2i, j: CS + US, n = 10 mice; US│CS, n = 10 mice). f, Acetophenone paired with shock (2 tailed t-test: _t_14 = 0.24, P = 0.81) (real memory condition in BLA silencing experiment, corresponding to groups shown in Fig. 4d, e). g. M72 photostimulation paired with LHb photostimulation (2 tailed t-test: _t_14 = 1.26, P = 0.23) (real memory condition in BLA silencing experiment, corresponding to groups shown in Fig. 4i, j). *P < 0.05, **P < 0.01, ***P < 0.001 ****P < 0.0001 by Newman-Keuls. Error bars = s.e.m.

Supplementary Figure 4 Training protocol pairing M72 photostimulation with shock.

Each train included 40 pulses (pulse width 100 ms) delivered at 4 Hz. During the last 1 s of the train, a 0.7 mA shock was delivered. During training, mice received 10 photostimulation-shock pairs.

Supplementary Figure 5 Training protocol pairing M72 photostimulation (artificial CS) with photostimulation of either LHb-VTA or LDT–VTA projections (artificial US).

(Top) M72 stimulation occurred continuously through training, and consisted of 100 ms pulses, delivered at 4 Hz. (Bottom) Phasic VTA stimulation consisted of trains (0.5 s duration) of 5 ms pulses delivered at 30 Hz. Inter-train interval was 2 s.

Supplementary Figure 6 Formation of an odor-reward memory.

a, Schematic showing apparatus and training protocol. Mice were food-deprived one day prior to training. During training, acetophenone was paired with food, and preference (acetophenone vs. carvone) was evaluated one day later. b, In the test, mice (n = 12) spent more time on the acetophenone side of the apparatus (2 tailed, one sample t test vs. zero preference: _t_11 = 2.89, P = 0.015). Shading represents s.e.m. c, Summary data showing preference scores for individual mice. Error bar = s.e.m.

Supplementary Figure 7 VTA photostimulation alone does not act as a US during conditioning.

During training, acetophenone was paired with VTA photostimulation in mice (n = 12) not expressing ChR2. a, During testing mice did not exhibit conditioned aversion to acetophenone (2 tailed, one sample t test vs. zero preference: _t_11 = 0.47, P = 0.65). Shading represents s.e.m. b, Summary data showing preference scores for individual mice. Error bar = s.e.m.

Supplementary Figure 8 Recall induced cFos expression.

During the training phase mice received either CS alone (that is, acetophenone [n = 6] or M72 stimulation [n = 8]) or CS + US (that is, acetophenone paired with shock [n = 6] or M72 stimulation paired with LHb-mVTA stimulation [n = 7]). During testing, the CS only was presented, and c-Fos induction assessed in 18 brain regions (see Fig. 3a, b). The numbers of c-Fos+ nuclei are shown for mice in the ‘real’ (left) and ‘artificial’ (right) memory conditions. Error bars = s.e.m. Groups (CS + US vs. CS only) were compared by unpaired t-tests (2 tailed) in the real and artificial memory conditions. a, APir (real): _t_10 = 0.52, P = 0.62; APir (artificial): _t_13 = 0.56, P = 0.59. b, Pir (real): _t_10 = 0.26, P = 0.80; Pir (artificial): _t_13 = 0.20, P = 0.84. c, PLCo (real): _t_10 = 0.17, P = 0.86; PLCo (artificial): _t_13 = 0.20, P = 0.84. d, LEnt (real): _t_10 = 0.29, P = 0.77; LEnt (artificial): _t_13 = 1.17, P = 0.26. e, PMCo (real): _t_10 = 0.00, P = 0.99; PMCo (artificial): _t_13 = 0.71, P = 0.49. f, Tu (real): _t_9 = 1.34, P = 0.21; Tu (artificial): _t_11 = 1.70, P = 0.12. g, DTT (real): _t_9 = 0.68, P = 0.52; DTT (artificial): _t_10 = 0.25, P = 0.80. h, LOT (real): _t_10 = 0.99, P = 0.35; LOT (artificial): _t_11 = 3.25, P = 0.0077. i, AO (real): _t_10 = 0.99, P = 0.34; AO (artificial): _t_9 = 0.53, P = 0.61. j, V1 (real): _t_10 = 1.41, P = 0.19; V1 (artificial): _t_13 = 0.06, P = 0.95. k, VO (real): _t_9 = 0.86, P = 0.41; VO (artificial): _t_10 = 0.81, P = 0.43. l, BMA (real): _t_10 = 0.02, P = 0.99; BMA (artificial): _t_10 = 0.22, P = 0.83. m, CA1 (real): _t_10 = 0.36, P = 0.73; CA1 (artificial): _t_10 = 1.13, P = 0.29. n, RTn (real): _t_9 = 0.95, P = 0.37; RTn (artificial): _t_8 = 2.90, P = 0.020. o, Cg (real): _t_9 = 1.43, P = 0.19; Cg (artificial): _t_9 = 0.58, P = 0.58. p, Ce (real): _t_10 = 2.05, P = 0.068; Ce (artificial): _t_13 = 1.91, P = 0.079. q, La (real): _t_10 = 1.13, P = 0.29; La (artificial): _t_12 = 0.92, P = 0.38. Abbreviations: APir = amygdalopiriform transition area; Pir = piriform cortex; PLCo = posterolateral cortical amygdaloid nucleus; LEnt = lateral entorhinal cortex; PMCo = posteromedial cortical amygdaloid nucleus; Tu = olfactory tubercle; DTT = dorsal tenia tecta; LOT = nucleus of the lateral olfactory tract; AO = anterior olfactory nucleus; V1 = primary visual cortex; VO = ventral orbital cortex; BMA = basomedial amygdaloid nucleus; CA1 = field CA1 of the hippocampus; RTn = rsotromedial tegmental nucleus; Cg = cingulate cortex; Ce = central amygdaloid nucleus; La = lateral amygdaloid nucleus.

Supplementary Figure 9 Regional cFos expression is highly correlated in real vs artificial conditions.

a, CS only condition. Regional (n = 18 regions) c-Fos expression is highly correlated in mice in the real vs artificial conditioning groups (Pearson’s, r = 0.80, P < 0.0001). b, CS + US condition. Regional (n = 18 regions) c-Fos expression is highly correlated in mice in the real vs artificial conditioning groups (Pearson’s, r = 0.77, P = 0.0002).

Supplementary Figure 10 C21 treatment alone does not affect conditioned odor aversion.

During training, acetophenone was paired with shock in mice not expressing the DREADD, hM4Di. Before testing, mice were treated with VEH (n = 12) or C21 (n = 12). a. Both VEH-treated (one sample, 2 tailed t test vs. zero preference: _t_11 = 2.92, P = 0.014) and C21-treated (one sample, 2 tailed t test vs. zero preference: _t_11 = 2.40, P = 0.033) mice avoided acetophenone. Shaded area depicts s.e.m. b. Summary data showing preference in VEH- and C21-treated mice did not differ (2 tailed t test, _t_22 = 0.34, P = 0.73). Error bars = s.e.m.

Supplementary Figure 11 C21 treatment reduces recall-induced activation of hM4Di-infected neurons in the BLA.

a, b. During training, acetophenone was paired with shock. During testing, VEH-treated mice (n = 4) or C21-treated mice (n = 3) were presented with the CS (acetophenone) and c-Fos was quantified in hM4Di+ neurons in the BLA. C21 treatment reduced c-Fos expression (2 tailed t test, _t_5 = 3.03, P = 0.029). c, d. During training, M72 stimulation was paired with LHb-VTA stimulation. During testing, VEH-treated mice (n = 4) or C21-treated mice (n = 3) were presented with the CS (M72 stimulation) and c-Fos was measured in hM4Di+ neurons in the BLA. C21 treatment reduced c-Fos expression (2 tailed t test, _t_5 = 3.15, P < 0.05). In all graphs, error bars = s.e.m. Scale bars (in b and d) = 50 µm.

Supplementary information

Rights and permissions

About this article

Cite this article

Vetere, G., Tran, L.M., Moberg, S. et al. Memory formation in the absence of experience.Nat Neurosci 22, 933–940 (2019). https://doi.org/10.1038/s41593-019-0389-0

Download citation