An anti-CRISPR protein disables type V Cas12a by acetylation (original) (raw)
Makarova, K. S. et al. An updated evolutionary classification of CRISPR-Cas systems. Nat. Rev. Microbiol.13, 722–736 (2015). ArticleCAS Google Scholar
Marraffini, L. A. CRISPR-Cas immunity in prokaryotes. Nature526, 55–61 (2015). ArticleCAS Google Scholar
Westra, E. R. et al. The CRISPRs, they are a-changin’: how prokaryotes generate adaptive immunity. Annu. Rev. Genet.46, 311–339 (2012). ArticleCAS Google Scholar
Sorek, R., Lawrence, C. M. & Wiedenheft, B. CRISPR-mediated adaptive immune systems in bacteria and archaea. Annu. Rev. Biochem.82, 237–266 (2013). ArticleCAS Google Scholar
Ran, F. A. et al. Genome engineering using the CRISPR-Cas9 system. Nat. Protoc.8, 2281–2308 (2013). ArticleCAS Google Scholar
Platt, R. J. et al. CRISPR-Cas9 knockin mice for genome editing and cancer modeling. Cell159, 440–455 (2014). ArticleCAS Google Scholar
Shalem, O. et al. Genome-scale CRISPR-Cas9 knockout screening in human cells. Science343, 84–87 (2014). ArticleCAS Google Scholar
Zetsche, B. et al. Multiplex gene editing by CRISPR-Cpf1 using a single crRNA array. Nat. Biotechnol.35, 31–34 (2017). ArticleCAS Google Scholar
Kleinstiver, B. P. et al. Genome-wide specificities of CRISPR-Cas Cpf1 nucleases in human cells. Nat. Biotechnol.34, 869–874 (2016). ArticleCAS Google Scholar
Tang, X. et al. A CRISPR-Cpf1 system for efficient genome editing and transcriptional repression in plants. Nat. Plants3, 17103 (2017). Article Google Scholar
Nishimasu, H. et al. Crystal structure of Cas9 in complex with guide RNA and target DNA. Cell156, 935–949 (2014). ArticleCAS Google Scholar
Yamano, T. et al. Crystal structure of Cpf1 in complex with guide RNA and target DNA. Cell165, 949–962 (2016). ArticleCAS Google Scholar
Bondy-Denomy, J., Pawluk, A., Maxwell, K. L. & Davidson, A. R. Bacteriophage genes that inactivate the CRISPR/Cas bacterial immune system. Nature493, 429–432 (2013). ArticleCAS Google Scholar
He, F. et al. Anti-CRISPR proteins encoded by archaeal lytic viruses inhibit subtype I-D immunity. Nat Microbiol3, 461–469 (2018). ArticleCAS Google Scholar
Pawluk, A. et al. Naturally occurring off-switches for CRISPR-Cas9. Cell167, 1829–1838 e9 (2016). ArticleCAS Google Scholar
Rauch, B. J. et al. Inhibition of CRISPR-Cas9 with bacteriophage proteins. Cell168, 150–158 e10 (2017). ArticleCAS Google Scholar
Dong et al. Structural basis of CRISPR-SpyCas9 inhibition by an anti-CRISPR protein. Nature546, 436–439 (2017). ArticleCAS Google Scholar
Stanley, S. Y. & Maxwell, K. L. Phage-encoded anti-CRISPR defenses. Annu. Rev. Genet.52, 445–464 (2018). ArticleCAS Google Scholar
Gunaratne, R. et al. Patient dissatisfaction following total knee arthroplasty: a systematic review of the literature. J. Arthroplasty32, 3854–3860 (2017). Article Google Scholar
Watters, K. E., Fellmann, C., Bai, H. B., Ren, S. M. & Doudna, J. A. Systematic discovery of natural CRISPR-Cas12a inhibitors. Science362, 236–239 (2018). ArticleCAS Google Scholar
Marino, N. D. et al. Discovery of widespread type I and type V CRISPR-Cas inhibitors. Science362, 240–242 (2018). ArticleCAS Google Scholar
Shmakov, S. A. et al. The CRISPR spacer space is dominated by sequences from species-specific mobilomes. MBio8, e01397-17 (2017). Article Google Scholar
Heussler, G. E. & O’Toole, G. A. Friendly fire: biological functions and consequences of chromosomal targeting by CRISPR-cas systems. J. Bacteriol.198, 1481–1486 (2016). ArticleCAS Google Scholar
Zhang, F. et al. CRISPRminer is a knowledge base for exploring CRISPR-Cas systems in microbe and phage interactions. Commun. Biol.1, 180 (2018). Article Google Scholar
Yang, H. & Patel, D. J. Inhibition mechanism of an anti-CRISPR suppressor AcrIIA4 targeting SpyCas9. Mol. Cell67, 117–127 e5 (2017). ArticleCAS Google Scholar
Salah Ud-Din, A. I., Tikhomirova, A. & Roujeinikova, A. Structure and functional diversity of GCN5-related N-acetyltransferases (GNAT). Int. J. Mol. Sci.17, E1018 (2016).
Holm, L. & Laakso, L. M. Dali server update. Nucleic Acids Res.44, W351–W355 (2016). ArticleCAS Google Scholar
Magin, R. S., Liszczak, G. P. & Marmorstein, R. The molecular basis for histone H4- and H2A-specific amino-terminal acetylation by NatD. Structure23, 332–341 (2015). ArticleCAS Google Scholar
Yamano, T. et al. Structural basis for the canonical and non-canonical PAM recognition by CRISPR-Cpf1. Mol. Cell67, 633–645 e3 (2017). ArticleCAS Google Scholar
Chowdhury, S. et al. Structure reveals mechanisms of viral suppressors that intercept a CRISPR RNA-guided surveillance complex. Cell169, 47–57 e11 (2017). ArticleCAS Google Scholar
Harrington, L. B. et al. A broad-spectrum inhibitor of CRISPR-Cas9. Cell170, 1224–1233.e15 (2017). ArticleCAS Google Scholar
Maxwell, K. L. et al. The solution structure of an anti-CRISPR protein. Nat .Commun.7, 13134 (2016). ArticleCAS Google Scholar
Bondy-Denomy, J. et al. Multiple mechanisms for CRISPR-Cas inhibition by anti-CRISPR proteins. Nature526, 136–139 (2015). ArticleCAS Google Scholar
Zetsche, B. et al. Cpf1 is a single RNA-guided endonuclease of a class 2 CRISPR-Cas system. Cell163, 759–771 (2015). ArticleCAS Google Scholar
Xiong, B. et al. Genome editing of Ralstonia eutropha using an electroporation-based CRISPR-Cas9 technique. Biotechnol. Biofuels11, 172 (2018). Article Google Scholar
Feng, X., Zhao, D., Zhang, X., Ding, X. & Bi, C. CRISPR/Cas9 assisted multiplex genome editing technique in Escherichia coli. Biotechnol. J.13, e1700604 (2018). Article Google Scholar
Otwinowski, Z. & Minor, W. Processing of X-ray diffraction data collected in oscillation mode. Methods Enzymol.276, 307–326 (1997). ArticleCAS Google Scholar
McCoy, A. J. et al. Phaser crystallographic software. J .Appl. Crystallogr.40, 658–674 (2007). ArticleCAS Google Scholar
Emsley, P. & Cowtan, K. Coot: model-building tools for molecular graphics. Acta Crystallogr. D60, 2126–2132 (2004). Article Google Scholar
Adams, P. D. et al. PHENIX: building new software for automated crystallographic structure determination. Acta Crystallogr. D58, 1948–1954 (2002). Article Google Scholar
Mastronarde, D. N. Automated electron microscope tomography using robust prediction of specimen movements. J. Struct. Biol.152, 36–51 (2005). Article Google Scholar
Zheng, S. Q. et al. MotionCor2: anisotropic correction of beam-induced motion for improved cryo-electron microscopy. Nat. Methods14, 331–332 (2017). ArticleCAS Google Scholar
Zhang, K. Gctf: Real-time CTF determination and correction. J. Struct. Biol.193, 1–12 (2016). ArticleCAS Google Scholar
Shaikh, T. R. et al. SPIDER image processing for single-particle reconstruction of biological macromolecules from electron micrographs. Nat. Protoc.3, 1941–1974 (2008). ArticleCAS Google Scholar
Zivanov, J. et al. New tools for automated high-resolution cryo-EM structure determination in RELION-3. eLife7, e42166 (2018).
Grant, T., Rohou, A. & Grigorieff, N. cisTEM, user-friendly software for single-particle image processing. eLife7, e35383 (2018).
Kucukelbir, A., Sigworth, F. J. & Tagare, H. D. Quantifying the local resolution of cryo-EM density maps. Nat. Methods11, 63–65 (2014). ArticleCAS Google Scholar
Pettersen, E. F. et al. UCSF Chimera—a visualization system for exploratory research and analysis. J. Comput. Chem.25, 1605–1612 (2004). ArticleCAS Google Scholar
Chen, V. B. et al. MolProbity: all-atom structure validation for macromolecular crystallography. Acta Crystallogr. D66, 12–21 (2010). ArticleCAS Google Scholar
Hovmoller, S., Zhou, T. & Ohlson, T. Conformations of amino acids in proteins. Acta Crystallogr. D58, 768–776 (2002). Article Google Scholar
Couvin, D. et al. CRISPRCasFinder, an update of CRISRFinder, includes a portable version, enhanced performance and integrates search for Cas proteins. Nucleic Acids Res.46, W246–W251 (2018). Article Google Scholar
Edgar, R. C. PILER-CR: fast and accurate identification of CRISPR repeats. BMC Bioinformatics8, 18 (2007). Article Google Scholar
Arndt, D. et al. PHASTER: a better, faster version of the PHAST phage search tool. Nucleic Acids Res.44, W16–W21 (2016). ArticleCAS Google Scholar