Lipopolysaccharide-binding protein (LBP) reverses the amyloid state of fibrin seen in plasma of type 2 diabetics with cardiovascular co-morbidities (original) (raw)
Chiti, F. & Dobson, C. M. Protein misfolding, functional amyloid, and human disease. Annu Rev Biochem75, 333–366 (2006). ArticleCASPubMed Google Scholar
Knowles, T. P. J., Vendruscolo, M. & Dobson, C. M. The amyloid state and its association with protein misfolding diseases. Nat Rev Mol Cell Biol15, 384–396, doi:10.1038/nrm3810 (2014). ArticleCASPubMed Google Scholar
Tipping, K. W., van Oosten-Hawle, P., Hewitt, E. W. & Radford, S. E. Amyloid Fibres: Inert End-Stage Aggregates or Key Players in Disease? Trends Biochem Sci40, 719–727, doi:10.1016/j.tibs.2015.10.002 (2015). ArticleCASPubMed Google Scholar
Olanow, C. W. & Brundin, P. Parkinson's disease and alpha synuclein: is Parkinson's disease a prion-like disorder? Mov Disord28, 31–40, doi:10.1002/mds.25373 (2013). ArticleCASPubMed Google Scholar
Uversky, V. N., Li, J. & Fink, A. L. Metal-triggered structural transformations, aggregation, and fibrillation of human alpha-synuclein. A possible molecular link between Parkinson's disease and heavy metal exposure. J Biol Chem276, 44284–44296 (2001). ArticleCASPubMed Google Scholar
Fändrich, M., Meinhardt, J. & Grigorieff, N. Structural polymorphism of Alzheimer Abeta and other amyloid fibrils. Prion3, 89–93 (2009). ArticlePubMedPubMed Central Google Scholar
Cooper, G. J. S. et al. Purification and characterization of a peptide from amyloid-rich pancreases of type 2 diabetic patients. Proc Natl Acad Sci USA84, 8628–8632 (1987). ArticleADSCASPubMedPubMed Central Google Scholar
Lorenzo, A., Razzaboni, B., Weir, G. C. & Yankner, B. A. Pancreatic islet cell toxicity of amylin associated with type-2 diabetes mellitus. Nature368, 756–760, doi:10.1038/368756a0 (1994). ArticleADSCASPubMed Google Scholar
Jaikaran, E. T. A. S. & Clark, A. Islet amyloid and type 2 diabetes: from molecular misfolding to islet pathophysiology. Biochim Biophys Acta1537, 179–203 (2001). ArticleCASPubMed Google Scholar
Loomes, K. M. Survival of an islet beta-cell in type-2 diabetes: curbing the effects of amyloid cytotoxicity. Islets3, 38–39 (2011). ArticlePubMed Google Scholar
Zhang, S. et al. The pathogenic mechanism of diabetes varies with the degree of overexpression and oligomerization of human amylin in the pancreatic islet beta cells. FASEB J28, 5083–5096, doi:10.1096/fj.14-251744 (2014). ArticleCASPubMed Google Scholar
Janson, J., Ashley, R. H., Harrison, D., McIntyre, S. & Butler, P. C. The mechanism of islet amyloid polypeptide toxicity is membrane disruption by intermediate-sized toxic amyloid particles. Diabetes48, 491–498 (1999). ArticleCASPubMed Google Scholar
Campbell, R. A., Aleman, M., Gray, L. D., Falvo, M. R. & Wolberg, A. S. Flow profoundly influences fibrin network structure: implications for fibrin formation and clot stability in haemostasis. Thromb Haemost104, 1281–1284, doi:10.1160/TH10-07-0442 (2010). ArticleCASPubMedPubMed Central Google Scholar
Pretorius, E., Steyn, H., Engelbrecht, M., Swanepoel, A. C. & Oberholzer, H. M. Differences in fibrin fiber diameters in healthy individuals and thromboembolic ischemic stroke patients. Blood Coagul Fibrinolysis22, 696–700, doi:10.1097/MBC.0b013e32834bdb32 (2011). ArticlePubMed Google Scholar
Bester, J., Soma, P., Kell, D. B. & Pretorius, E. Viscoelastic and ultrastructural characteristics of whole blood and plasma in Alzheimer-type dementia, and the possible role of bacterial lipopolysaccharides (LPS). Oncotarget Gerontology6, 35284–35303 (2015). Google Scholar
Kell, D. B. & Pretorius, E. The simultaneous occurrence of both hypercoagulability and hypofibrinolysis in blood and serum during systemic inflammation, and the roles of iron and fibrin(ogen). Integr Biol7, 24–52, doi:10.1039/c4ib00173g (2015). ArticleCAS Google Scholar
Pretorius, E., Oberholzer, H. M., van der Spuy, W. J., Swanepoel, A. C. & Soma, P. Qualitative scanning electron microscopy analysis of fibrin networks and platelet abnormalities in diabetes. Blood Coagul Fibrinol22, 463–467, doi:10.1097/MBC.0b013e3283468a0d (2011). ArticleCAS Google Scholar
Pretorius, E. et al. Poorly controlled type 2 diabetes is accompanied by significant morphological and ultrastructural changes in both erythrocytes and in thrombin-generated fibrin: implications for diagnostics. Cardiovasc Diabetol13, 30 (2015). ArticleCAS Google Scholar
Jörneskog, G. et al. Altered properties of the fibrin gel structure in patients with IDDM. Diabetologia39, 1519–1523 (1996). ArticlePubMed Google Scholar
Dunn, E. J., Philippou, H., Ariëns, R. A. S. & Grant, P. J. Molecular mechanisms involved in the resistance of fibrin to clot lysis by plasmin in subjects with type 2 diabetes mellitus. Diabetologia49, 1071–1080, doi:10.1007/s00125-006-0197-4 (2006). ArticleCASPubMed Google Scholar
Pieters, M. et al. The effect of glycaemic control on fibrin network structure of type 2 diabetic subjects. Thromb Haemost96, 623–629 (2006). CASPubMed Google Scholar
Alzahrani, S. H. et al. Gender-specific alterations in fibrin structure function in type 2 diabetes: associations with cardiometabolic and vascular markers. J Clin Endocrinol Metab97, E2282–2287, doi:10.1210/jc.2012-2128 (2012). ArticleCASPubMed Google Scholar
Undas, A. & Ariëns, R. A. S. Fibrin clot structure and function: a role in the pathophysiology of arterial and venous thromboembolic diseases. Arterioscler Thromb Vasc Biol31, e88–99, doi:10.1161/ATVBAHA.111.230631 (2011). ArticleCASPubMed Google Scholar
Averett, L. E. et al. Complexity of "A-a" knob-hole fibrin interaction revealed by atomic force spectroscopy. Langmuir24, 4979–4988, doi:10.1021/la703264x (2008). ArticleCASPubMed Google Scholar
Yermolenko, I. S., Lishko, V. K., Ugarova, T. P. & Magonov, S. N. High-resolution visualization of fibrinogen molecules and fibrin fibers with atomic force microscopy. Biomacromolecules12, 370–379, doi:10.1021/bm101122g (2011). ArticleCASPubMed Google Scholar
Protopopova, A. D. et al. Visualization of fibrinogen alphaC regions and their arrangement during fibrin network formation by high-resolution AFM. J Thromb Haemost13, 570–579, doi:10.1111/jth.12785 (2015). ArticleCASPubMed Google Scholar
Kell, D. B. & Pretorius, E. Proteins behaving badly. Substoichiometric molecular control and amplification of the initiation and nature of amyloid fibril formation: lessons from and for blood clotting. Progr Biophys Mol Biol123, 16–41, doi:10.1016/j.pbiomolbio.2016.08.006 (2017). ArticleCAS Google Scholar
Dickneite, G. et al. Coagulation factor XIII: a multifunctional transglutaminase with clinical potential in a range of conditions. Thromb Haemost113, 686–697, doi:10.1160/TH14-07-0625 (2015). ArticlePubMed Google Scholar
Langkilde, A. E., Morris, K. L., Serpell, L. C., Svergun, D. I. & Vestergaard, B. The architecture of amyloid-like peptide fibrils revealed by X-ray scattering, diffraction and electron microscopy. Acta Crystallogr D Biol Crystallogr71, 882–895, doi:10.1107/S1399004715001674 (2015). ArticleCASPubMedPubMed Central Google Scholar
LeVine, H. 3rd Quantification of beta-sheet amyloid fibril structures with thioflavin T. Methods Enzymol309, 274–284 (1999). ArticleCASPubMed Google Scholar
Biancalana, M., Makabe, K., Koide, A. & Koide, S. Molecular mechanism of thioflavin-T binding to the surface of beta-rich peptide self-assemblies. J Mol Biol385, 1052–1063, doi:10.1016/j.jmb.2008.11.006 (2009). ArticleCASPubMed Google Scholar
Sulatskaya, A. I., Kuznetsova, I. M. & Turoverov, K. K. Interaction of thioflavin T with amyloid fibrils: stoichiometry and affinity of dye binding, absorption spectra of bound dye. J Phys Chem B115, 11519–11524, doi:10.1021/jp207118x (2011). ArticleCASPubMed Google Scholar
Freire, S., de Araujo, M. H., Al-Soufi, W. & Novo, M. Photophysical study of Thioflavin T as fluorescence marker of amyloid fibrils. Dyes and Pigments110, 97–105, doi:10.1016/j.dyepig.2014.05.004 (2014). ArticleCAS Google Scholar
Stangou, A. J. et al. Hereditary fibrinogen A alpha-chain amyloidosis: phenotypic characterization of a systemic disease and the role of liver transplantation. Blood115, 2998–3007, doi:10.1182/blood-2009-06-223792 (2010). ArticleCASPubMed Google Scholar
Kell, D. B. & Pretorius, E. Serum ferritin is an important disease marker, and is mainly a leakage product from damaged cells. Metallomics6, 748–773, doi:10.1039/C3MT00347G (2014). ArticleCASPubMed Google Scholar
Pretorius, E., Vermeulen, N., Bester, J., Lipinski, B. & Kell, D. B. A novel method for assessing the role of iron and its functional chelation in fibrin fibril formation: the use of scanning electron microscopy. Toxicol Mech Methods23, 352–359, doi:10.3109/15376516.2012.762082 (2013). ArticleCASPubMed Google Scholar
Pretorius, E. et al. Profound morphological changes in the erythrocytes and fibrin networks of patients with hemochromatosis or with hyperferritinemia, and their normalization by iron chelators and other agents. PLoS One9, e85271 (2014). ArticleADSPubMedPubMed CentralCAS Google Scholar
Pretorius, E. & Kell, D. B. Diagnostic morphology: biophysical indicators for iron-driven inflammatory diseases. Integrative Biol6, 486–510 (2014). ArticleCAS Google Scholar
Pretorius, E., Mbotwe, S., Bester, J., Robinson, C. J. & Kell, D. B. Acute induction of anomalous and amyloidogenic blood clotting by molecular amplification of highly substoichiometric levels of bacterial lipopolysaccharide. J R Soc Interface123, 20160539, doi:10.1098/rsif.2016.0539 (2016). Article Google Scholar
Pretorius, E., Mbotwe, S., Bester, J., Robinson, C. & Kell, D. B. Acute induction of anomalous blood clotting by highly substoichiometric levels of bacterial lipopolysaccharide (LPS). bioRxiv, 2016-053538v053531, doi:10.1101/053538 (2016).
Kell, D. B. & Pretorius, E. Substoichiometric molecular control and amplification of the initiation and nature of amyloid fibril formation: lessons from and for blood clotting. bioRxiv preprint. bioRxiv, 054734, doi:10.1101/054734 (2016).
Kell, D. B., Potgieter, M. & Pretorius, E. Individuality, phenotypic differentiation, dormancy and ‘persistence’ in culturable bacterial systems: commonalities shared by environmental, laboratory, and clinical microbiology. F1000Research4, 179, doi:10.12688/f1000research.6709.1 (2015). PubMedPubMed Central Google Scholar
Kell, D. B. & Pretorius, E. On the translocation of bacteria and their lipopolysaccharides between blood and peripheral locations in chronic, inflammatory diseases: the central roles of LPS and LPS-induced cell death. Integr Biol7, 1339–1377, doi:10.1039/C5IB00158G (2015). ArticleCAS Google Scholar
Kell, D. B. & Kenny, L. C. A dormant microbial component in the development of pre-eclampsia. BioRxiv preprint. bioRxiv, 057356 (2016).
Kell, D. B. & Pretorius, E. To what extent are the terminal stages of sepsis, septic shock, SIRS, and multiple organ dysfunction syndrome actually driven by a toxic prion/amyloid form of fibrin? bioRxiv preprint. bioRxiv, 057851, doi:10.1101/057851 (2016).
Pretorius, E., Akeredolu, O.-O., Soma, P. & Kell, D. B. Major involvement of bacterial components in rheumatoid arthritis and its accompanying oxidative stress, systemic inflammation and hypercoagulability. Exp Biol Med, in press (2016).
Pretorius, E., Bester, J. & Kell, D. B. A bacterial component to Alzheimer-type dementia seen via a systems biology approach that links iron dysregulation and inflammagen shedding to disease. J Alzheimers Dis53, 1237–1256 (2016). ArticleCASPubMedPubMed Central Google Scholar
Kell, D. B. Iron behaving badly: inappropriate iron chelation as a major contributor to the aetiology of vascular and other progressive inflammatory and degenerative diseases. BMC Med Genomics2, 2 (2008). ArticleCAS Google Scholar
Kell, D. B. Towards a unifying, systems biology understanding of large-scale cellular death and destruction caused by poorly liganded iron: Parkinson’s, Huntington’s, Alzheimer’s, prions, bactericides, chemical toxicology and others as examples. Arch Toxicol577, 825–889, doi:10.1007/s00204-010-0577-x (2010). ArticleCAS Google Scholar
Lipinski, B., Pretorius, E., Oberholzer, H. M. & Van Der Spuy, W. J. Iron enhances generation of fibrin fibers in human blood: Implications for pathogenesis of stroke. Microsc Res Tech75, 1185–1190, doi:10.1002/jemt.22047 (2012). ArticleCASPubMed Google Scholar
Lassenius, M. I. et al. Bacterial endotoxin activity in human serum is associated with dyslipidemia, insulin resistance, obesity, and chronic inflammation. Diabetes Care34, 1809–1815, doi:10.2337/dc10-2197 (2011). ArticleCASPubMedPubMed Central Google Scholar
Nymark, M. et al. Serum lipopolysaccharide activity is associated with the progression of kidney disease in finnish patients with type 1 diabetes. Diabetes Care32, 1689–1693, doi:10.2337/dc09-0467 (2009). ArticleCASPubMedPubMed Central Google Scholar
Carr, M. E. Diabetes mellitus: a hypercoagulable state. J Diabet Complic15, 44–54 (2001). ArticleCAS Google Scholar
Thor, M., Yu, A. & Swedenborg, J. Markers of inflammation and hypercoagulability in diabetic and nondiabetic patients with lower extremity ischemia. Thromb Res105, 379–383 (2002). ArticleCASPubMed Google Scholar
Aras, R., Sowers, J. R. & Arora, R. The proinflammatory and hypercoagulable state of diabetes mellitus. Rev Cardiovasc Med6, 84–97 (2005). PubMed Google Scholar
Tripodi, A. et al. Hypercoagulability in patients with type 2 diabetes mellitus detected by a thrombin generation assay. J Thromb Thrombolysis31, 165–172, doi:10.1007/s11239-010-0506-0 (2011). ArticleCASPubMed Google Scholar
Ye, Y., Perez-Polo, J. R., Aguilar, D. & Birnbaum, Y. The potential effects of anti-diabetic medications on myocardial ischemia-reperfusion injury. Basic Res Cardiol106, 925–952, doi:10.1007/s00395-011-0216-6 (2011). ArticleCASPubMed Google Scholar
Beijers, H. J. B. H. et al. Impaired glucose metabolism and type 2 diabetes are associated with hypercoagulability: potential role of central adiposity and low-grade inflammation–the Hoorn Study. Thromb Res129, 557–562, doi:10.1016/j.thromres.2011.07.033 (2012). ArticleCASPubMed Google Scholar
Cucuianu, M., Fekete, T., Marcusiu, C., Mosler, R. & Dutu, A. Fibrinolysis in diabetes mellitus. Role of overweight and hypertriglyceridemia. Medecine interne22, 171–177 (1984). CASPubMed Google Scholar
Yano, Y. et al. Increased plasma thrombin-activatable fibrinolysis inhibitor levels in normotensive type 2 diabetic patients with microalbuminuria. The Journal of clinical endocrinology and metabolism88, 736–741, doi:10.1210/jc.2002-020691 (2003). ArticleCASPubMed Google Scholar
Walus-Miarka, M. et al. Altered fibrin-clot properties are associated with retinopathy in type 2 diabetes mellitus. Diabetes & Metabolism38, 462–465, doi:10.1016/j.diabet.2012.03.007 (2012). ArticleCAS Google Scholar
Bochenek, M., Zalewski, J., Sadowski, J. & Undas, A. Type 2 diabetes as a modifier of fibrin clot properties in patients with coronary artery disease. J Thromb Thrombolysis35, 264–270, doi:10.1007/s11239-012-0821-8 (2013). ArticleCASPubMed Google Scholar
Konieczynska, M., Fil, K., Bazanek, M. & Undas, A. Prolonged duration of type 2 diabetes is associated with increased thrombin generation, prothrombotic fibrin clot phenotype and impaired fibrinolysis. Thromb Haemost111, 685–693, doi:10.1160/th13-07-0566 (2014). ArticleCASPubMed Google Scholar
Pearson, F. C. et al. Comparison of several control standard endotoxins to the National Reference Standard Endotoxin–an HIMA collaborative study. Appl Environ Microbiol50, 91–93 (1985). CASPubMedPubMed Central Google Scholar
Mattsby-Baltzer, I., Lindgren, K., Lindholm, B. & Edebo, L. Endotoxin shedding by enterobacteria: free and cell-bound endotoxin differ in Limulus activity. Infect Immun59, 689–695 (1991). CASPubMedPubMed Central Google Scholar
Novitsky, T. J. Limitations of the Limulus amebocyte lysate test in demonstrating circulating lipopolysaccharides. Ann N Y Acad Sci851, 416–421 (1998). ArticleADSCASPubMed Google Scholar
Novitsky, T. J. Biomedical Applications of Limulus Amebocyte Lysate. Biology and Conservation of Horseshoe Crabs, 315–329, doi:10.1007/978-0-387-89959-6_20 (2009).
Brownlee, M., Vlassara, H. & Cerami, A. Nonenzymatic glycosylation reduces the susceptibility of fibrin to degradation by plasmin. Diabetes32, 680–684 (1983). ArticleCASPubMed Google Scholar
Howard, S. C., Algra, A. & Rothwell, P. M. Effect of age and glycaemic control on the association between fibrinogen and risk of acute coronary events after transient ischaemic attack or stroke. Cerebrovasc Dis25, 136–143, doi:10.1159/000112324 (2008). ArticleCASPubMed Google Scholar
Svensson, J. et al. Acetylation and glycation of fibrinogen in vitro occur at specific lysine residues in a concentration dependent manner: a mass spectrometric and isotope labeling study. Biochem Biophys Res Commun421, 335–342, doi:10.1016/j.bbrc.2012.03.154 (2012). ArticleCASPubMed Google Scholar
Fan, N. K., Keegan, P. M., Platt, M. O. & Averett, R. D. Experimental and imaging techniques for examining fibrin clot structures in normal and diseased states. J Vis Exp, e52019, doi:10.3791/52019 (2015).
Bembde, A. S. A study of plasma fibrinogen level in type-2 diabetes mellitus and its relation to glycemic control. Indian J Hematol Blood Transfus28, 105–108, doi:10.1007/s12288-011-0116-9 (2012). ArticlePubMed Google Scholar
McBane, R. D. 2nd, Hardison, R. M. & Sobel, B. E. Comparison of plasminogen activator inhibitor-1, tissue type plasminogen activator antigen, fibrinogen, and D-dimer levels in various age decades in patients with type 2 diabetes mellitus and stable coronary artery disease (from the BARI 2D trial). Am J Cardiol105, 17–24, doi:10.1016/j.amjcard.2009.08.643 (2010). ArticleCASPubMed Google Scholar
Mayhew, T. M. & Sampson, C. Maternal diabetes mellitus is associated with altered deposition of fibrin-type fibrinoid at the villous surface in term placentae. Placenta24, 524–531 (2003). ArticleCASPubMed Google Scholar
Cooper, G. J. S. et al. Amylin and the amylin gene: structure, function and relationship to islet amyloid and to diabetes mellitus. Biochim Biophys Acta1014, 247–258 (1989). ArticleCASPubMed Google Scholar
Marzban, L., Park, K. & Verchere, C. B. Islet amyloid polypeptide and type 2 diabetes. Exp Gerontol38, 347–351 (2003). ArticleCASPubMed Google Scholar
Dieter, B. P. et al. Serum amyloid a and risk of death and end-stage renal disease in diabetic kidney disease. J Diabetes Complications, doi:10.1016/j.jdiacomp.2016.07.018 (2016).
Kumon, Y., Suehiro, T., Itahara, T., Ikeda, Y. & Hashimoto, K. Serum amyloid A protein in patients with non-insulin-dependent diabetes mellitus. Clin Biochem27, 469–473 (1994). ArticleCASPubMed Google Scholar
Reusch, J. E. Diabetes, microvascular complications, and cardiovascular complications: what is it about glucose? J Clin Invest112, 986–988 (2003). ArticleCASPubMedPubMed Central Google Scholar
Targher, G. et al. Prevalence of nonalcoholic fatty liver disease and its association with cardiovascular disease among type 2 diabetic patients. Diabetes Care30, 1212–1218 (2007). ArticlePubMed Google Scholar
Undas, A., Celinska-Lowenhoff, M., Lowenhoff, T. & Szczeklik, A. Statins, fenofibrate, and quinapril increase clot permeability and enhance fibrinolysis in patients with coronary artery disease. J Thromb Haemost4, 1029–1036, doi:10.1111/j.1538-7836.2006.01882.x (2006). ArticleCASPubMed Google Scholar
Undas, A., Brummel-Ziedins, K. E. & Mann, K. G. Antithrombotic properties of aspirin and resistance to aspirin: beyond strictly antiplatelet actions. Blood109, 2285–2292 (2007). ArticleCASPubMedPubMed Central Google Scholar
Knapp, M., Lisowska, A., Knapp, P. & Baranowski, M. Dose-dependent effect of aspirin on the level of sphingolipids in human blood. Adv Med Sci58, 274–281, doi:10.2478/ams-2013-0021 (2013). ArticleCASPubMed Google Scholar
Manolis, A. S., Manolis, T. A., Papadimitriou, P., Koulouris, S. & Melita, H. Combined antiplatelet therapy: still a sweeping combination in cardiology. Cardiovasc Hematol Agents Med Chem11, 136–167 (2013). ArticleCASPubMed Google Scholar
Mehta, S. R. Aspirin for prevention and treatment of cardiovascular disease. Ann Intern Med150, 414–416 (2009). ArticlePubMed Google Scholar
Angiolillo, D. J. & Ferreiro, J. L. Antiplatelet and anticoagulant therapy for atherothrombotic disease: the role of current and emerging agents. Am J Cardiovasc Drugs13, 233–250, doi:10.1007/s40256-013-0022-7 (2013). ArticleCASPubMed Google Scholar
Elblbesy, M. A., Hereba, A. R. & Shawki, M. M. Effects of aspirin on rheological properties of erythrocytes in vitro. Int J Biomed Sci8, 188–193 (2012). CASPubMedPubMed Central Google Scholar
Gasparyan, A. Y., Ayvazyan, L., Pretorius, E. & Kitas, G. D. Platelets in rheumatic diseases: friend or foe? Curr Pharm Des20, 552–566 (2014). ArticleCASPubMed Google Scholar
Santos, M. T. et al. Residual platelet thromboxane A2 and prothrombotic effects of erythrocytes are important determinants of aspirin resistance in patients with vascular disease. J Thromb Haemost6, 615–621, doi:10.1111/j.1538-7836.2008.02915.x (2008). ArticleCASPubMed Google Scholar
Slyepchenko, A. et al. Intestinal dysbiosis, gut hyperpermeability and bacterial translocation: missing links between depression, obesity and type 2 diabetes? Curr Pharm Des (2016).
Vaarala, O., Atkinson, M. A. & Neu, J. The "perfect storm" for type 1 diabetes: the complex interplay between intestinal microbiota, gut permeability, and mucosal immunity. Diabetes57, 2555–2562, doi:10.2337/db08-0331 (2008). ArticleCASPubMedPubMed Central Google Scholar
Delzenne, N. M., Cani, P. D., Everard, A., Neyrinck, A. M. & Bindels, L. B. Gut microorganisms as promising targets for the management of type 2 diabetes. Diabetologia58, 2206–2217, doi:10.1007/s00125-015-3712-7 (2015). ArticleCASPubMed Google Scholar
Kitchens, R. L. & Thompson, P. A. Impact of sepsis-induced changes in plasma on LPS interactions with monocytes and plasma lipoproteins: roles of soluble CD14, LBP, and acute phase lipoproteins. J Endotoxin Res9, 113–118, doi:10.1179/096805103125001504 (2003). ArticleCASPubMed Google Scholar
Kopp, F., Kupsch, S. & Schromm, A. B. Lipopolysaccharide-binding protein is bound and internalized by host cells and colocalizes with LPS in the cytoplasm: Implications for a role of LBP in intracellular LPS-signaling. Biochim Biophys Acta1863, 660–672, doi:10.1016/j.bbamcr.2016.01.015 (2016). ArticleCASPubMed Google Scholar
Kam, J. H., Lenassi, E. & Jeffery, G. Viewing Ageing Eyes: Diverse Sites of Amyloid Beta Accumulation in the Ageing Mouse Retina and the Up-Regulation of Macrophages. Plos One5, doi:10.1371/journal.pone.0013127 (2010).
Ma, Y., Tao, Y., Lu, Q. & Jiang, Y. R. Intraocular expression of serum amyloid a and interleukin-6 in proliferative diabetic retinopathy. Am J Ophthalmol152, 678–685 e672, doi:10.1016/j.ajo.2011.03.007 (2011). ArticleCASPubMed Google Scholar
Stettler, C. et al. Serum amyloid A, C-reactive protein, and retinal microvascular changes in hypertensive diabetic and nondiabetic individuals: an Anglo-Scandinavian Cardiac Outcomes Trial (ASCOT) substudy. Diabetes Care32, 1098–1100, doi:10.2337/dc08-2137 (2009). ArticleCASPubMedPubMed Central Google Scholar