Integrating body composition analysis and machine learning for non-invasive identification of metabolic dysfunction-associated fatty liver disease: a large-scale health examination-based study (original) (raw)

References

  1. Zhao, Q. & Deng, Y. Comparison of mortality outcomes in individuals with MASLD and/or MAFLD. J. Hepatol. 80(2), e62–e64 (2024).
    Google Scholar
  2. Gofton, C., Upendran, Y., Zheng, M. H. & George, J. MAFLD: How is it different from NAFLD?. Clin. Mol. Hepatol. 29(Suppl), S17-s31 (2023).
    Google Scholar
  3. Vitale, A. et al. Epidemiological trends and trajectories of MAFLD-associated hepatocellular carcinoma 2002–2033: the ITA.LI.CA database. Gut 72(1), 141–152 (2023).
    Google Scholar
  4. Kang, S. H., Cho, Y., Jeong, S. W., Kim, S. U. & Lee, J. W. From nonalcoholic fatty liver disease to metabolic-associated fatty liver disease: Big wave or ripple?. Clin. Mol. Hepatol. 27(2), 257–269 (2021).
    Google Scholar
  5. Eslam, M. et al. The Asian Pacific association for the study of the liver clinical practice guidelines for the diagnosis and management of metabolic dysfunction-associated fatty liver disease. Hepatol. Int. 19(2), 261–301 (2025).
    Google Scholar
  6. Comprehensive Medical Evaluation and Assessment of Comorbidities. Standards of Care in Diabetes-2025. Diabetes Care 48(1 Suppl 1), S59-s85 (2025).
    Google Scholar
  7. Sun, D. Q. et al. MAFLD and risk of CKD. Metabolism 115, 154433 (2021).
    Google Scholar
  8. Zhou, X. D. et al. Metabolic dysfunction-associated fatty liver disease and implications for cardiovascular risk and disease prevention. Cardiovasc. Diabetol. 21(1), 270 (2022).
    Google Scholar
  9. Zhang, Y. et al. Association of metabolic dysfunction-associated fatty liver disease with systemic atherosclerosis: a community-based cross-sectional study. Cardiovasc. Diabetol. 22(1), 342 (2023).
    Google Scholar
  10. Kumar, A. et al. Impact of diabetes, drug-induced liver injury, and sepsis on outcomes in metabolic dysfunction associated fatty liver disease-related acute-on-chronic liver failure. Am J Gastroenterol 120(4), 816–826 (2025).
    Google Scholar
  11. Fouad, Y., Alboraie, M. & Shiha, G. Epidemiology and diagnosis of metabolic dysfunction-associated fatty liver disease. Hepatol. Int. 18(Suppl 2), 827–833 (2024).
    Google Scholar
  12. Abasi, S., Aggas, J. R., Garayar-Leyva, G. G., Walther, B. K. & Guiseppi-Elie, A. Bioelectrical impedance spectroscopy for monitoring mammalian cells and tissues under different frequency domains: a review. ACS Meas. Sci. Au. 2(6), 495–516 (2022).
    Google Scholar
  13. Ward, L. C. & Brantlov, S. Bioimpedance basics and phase angle fundamentals. Rev. Endocr. Metab. Disord. 24(3), 381–391 (2023).
    Google Scholar
  14. Coëffier, M. et al. Accuracy of bioimpedance equations for measuring body composition in a cohort of 2134 patients with obesity. Clin. Nutr. 41(9), 2013–2024 (2022).
    Google Scholar
  15. Dupertuis, Y. M. et al. Influence of the type of electrodes in the assessment of body composition by bioelectrical impedance analysis in the supine position. Clin. Nutr. 41(11), 2455–2463 (2022).
    Google Scholar
  16. Lai, C. L. et al. Bioimpedance analysis combined with sagittal abdominal diameter for abdominal subcutaneous fat measurement. Front. Nutr. 9, 952929 (2022).
    Google Scholar
  17. El-Serag, H. B. et al. Bioimpedance analysis predicts the etiology of cirrhosis in a prospective cohort study. Hepatol. Commun. 7(10), e0253 (2023).
    Google Scholar
  18. de Luis, R. D. et al. Evaluation of muscle mass and malnutrition in patients with colorectal cancer using the global leadership initiative on malnutrition criteria and comparing bioelectrical impedance analysis and computed tomography measurements. Nutrients 16(17), 3035 (2024).
    Google Scholar
  19. Younossi, Z. M. et al. Are there outcome differences between NAFLD and metabolic-associated fatty liver disease?. Hepatology 76(5), 1423–1437 (2022).
    Google Scholar
  20. Obrien, R. M. A caution regarding rules of thumb for variance inflation factors. Qual. Quant. 41(5), 673–690 (2007).
    Google Scholar
  21. Namdeo, S., Srivastava, V. C. & Mohanty, P. Machine learning implemented exploration of the adsorption mechanism of carbon dioxide onto porous carbons. J. Colloid Interface Sci. 647, 174–187 (2023).
    Google Scholar
  22. Liang, D. et al. Perspective: global burden of iodine deficiency: insights and projections to 2050 using XGBoost and SHAP. Adv. Nutr. 16(3), 100384 (2025).
    Google Scholar
  23. Greener, J. G., Kandathil, S. M., Moffat, L. & Jones, D. T. A guide to machine learning for biologists. Nat. Rev. Mol. Cell Biol. 23(1), 40–55 (2022).
    Google Scholar
  24. Deo, R. C. Machine learning in medicine. Circulation 132(20), 1920–1930 (2015).
    Google Scholar
  25. Handelman, G. S. et al. eDoctor: Machine learning and the future of medicine. J. Intern. Med. 284(6), 603–619 (2018).
    Google Scholar
  26. Mohr, F. & van Rijn, J. N. Fast and informative model selection using learning curve cross-validation. IEEE Trans. Pattern. Anal. Mach. Intell. 45(8), 9669–9680 (2023).
    Google Scholar
  27. Crane, H. et al. Global prevalence of metabolic dysfunction-associated fatty liver disease-related hepatocellular carcinoma: A systematic review and meta-analysis. Clin. Mol. Hepatol. 30(3), 436–448 (2024).
    Google Scholar
  28. Zhao, J. et al. MAFLD as part of systemic metabolic dysregulation. Hepatol. Int. 18(Suppl 2), 834–847 (2024).
    Google Scholar
  29. Argenziano, M. E. et al. Epidemiology, pathophysiology and clinical aspects of Hepatocellular Carcinoma in MAFLD patients. Hepatol. Int. 18(Suppl 2), 922–940 (2024).
    Google Scholar
  30. Bai, J. et al. Correlation analysis of the abdominal visceral fat area with the structure and function of the heart and liver in obesity: a prospective magnetic resonance imaging study. Cardiovasc. Diabetol. 22(1), 206 (2023).
    Google Scholar
  31. Wewege, M. A. et al. The effect of resistance training in healthy adults on body fat percentage, fat mass and visceral fat: A systematic review and meta-analysis. Sports Med. 52(2), 287–300 (2022).
    Google Scholar
  32. Kolb, H. Obese visceral fat tissue inflammation: From protective to detrimental?. BMC Med. 20(1), 494 (2022).
    Google Scholar
  33. Mitsushio, K. et al. Interrelationships among accumulations of intra- and periorgan fats, visceral fat, and subcutaneous fat. Diabetes 73(7), 1122–1126 (2024).
    Google Scholar
  34. Feng, H. et al. Myopenic obesity determined by visceral fat area strongly predicts long-term mortality in cirrhosis. Clin. Nutr. 40(4), 1983–1989 (2021).
    Google Scholar
  35. Zhang, S. et al. Increased visceral fat area to skeletal muscle mass ratio is positively associated with the risk of cardiometabolic diseases in a Chinese natural population: A cross-sectional study. Diabetes Metab. Res. Rev. 39(2), e3597 (2023).
    Google Scholar
  36. GorditoSoler, M. et al. Usefulness of body fat and visceral fat determined by bioimpedanciometry versus body mass index and waist circumference in predicting elevated values of different risk scales for non-alcoholic fatty liver disease. Nutrients 16(13), 2160 (2024).
    Google Scholar
  37. Rosa, G. B., Lukaski, H. C. & Sardinha, L. B. The science of bioelectrical impedance-derived phase angle: insights from body composition in youth. Rev. Endocr. Metab. Disord 10, 1–22 (2025).
    Google Scholar
  38. Moh, M. C. et al. Association between neutrophil/lymphocyte ratio and kidney impairment in type 2 diabetes mellitus: A role of extracellular water/total body water ratio. Diabetes Res. Clin. Pract. 199, 110634 (2023).
    Google Scholar
  39. Shibata, K. et al. Prognostic impact of segmental extracellular water to total body water ratio in cardiovascular surgery patients. Clin. Nutr. 51, 81–89 (2025).
    Google Scholar
  40. Kajitani, N. et al. Relationship between extracellular water to total body water ratio and severe diabetic retinopathy in Type 2 diabetes. J. Clin. Endocrinol. Metab. 110(7), e2248–e2255 (2025).
    Google Scholar
  41. Dmitrieva, N. I., Boehm, M., Yancey, P. H. & Enhörning, S. Long-term health outcomes associated with hydration status. Nat. Rev. Nephrol. 20(5), 275–294 (2024).
    Google Scholar
  42. Akimoto, T., Tasaki, K., Ishihara, M., Hara, M. & Nakajima, H. Association of body water balance, nutritional risk, and sarcopenia with outcome in patients with acute ischemic stroke: A single-center prospective study. Nutrients 16(13), 2165 (2024).
    Google Scholar
  43. Kim, Y., Chang, Y., Ryu, S., Wild, S. H. & Byrne, C. D. NAFLD improves risk prediction of type 2 diabetes: With effect modification by sex and menopausal status. Hepatology 76(6), 1755–1765 (2022).
    Google Scholar
  44. Yang, J. D. et al. Patient sex, reproductive status, and synthetic hormone use associate with histologic severity of nonalcoholic steatohepatitis. Clin. Gastroenterol. Hepatol. 15(1), 127-131.e122 (2017).
    Google Scholar
  45. Balakrishnan, M. et al. Women have a lower risk of nonalcoholic fatty liver disease but a higher risk of progression vs men: A systematic review and meta-analysis. Clin. Gastroenterol. Hepatol. 19(1), 61-71.e15 (2021).
    Google Scholar
  46. Yang, X., Xue, X. & Zhou, Y. Methodological concerns and potential confounding factors. JAMA Ophthalmol 142(6), 587 (2024).
    Google Scholar
  47. Ergun, Y. Significance of confounding factors in retrospective observational studies. JCO Oncol. Pract. 20(1), 154–155 (2024).
    Google Scholar
  48. Lan, T. & Tacke, F. Diagnostics and omics technologies for the detection and prediction of metabolic dysfunction-associated steatotic liver disease-related malignancies. Metabolism 161, 156015 (2024).
    Google Scholar
  49. Hu, H., Han, Y., Cao, C. & He, Y. The triglyceride glucose-body mass index: a non-invasive index that identifies non-alcoholic fatty liver disease in the general Japanese population. J. Transl. Med. 20(1), 398 (2022).
    Google Scholar
  50. Bozic, D. et al. Detection of sarcopenia in patients with liver cirrhosis using the bioelectrical impedance analysis. Nutrients 15(15), 3335 (2023).
    Google Scholar
  51. Dumitriu, A. M. et al. Advancing nutritional care through bioelectrical impedance analysis in critical patients. Nutrients 17(3), 380 (2025).
    Google Scholar
  52. Romano, D. et al. Predictive and explainable machine learning models for endocrine, nutritional, and metabolic mortality in Italy using geolocalized pollution data. Appl. Syst. Innov. 8(2), 48 (2025).
    Google Scholar
  53. Yu, Y., Yang, Y., Li, Q., Yuan, J. & Zha, Y. Predicting metabolic dysfunction associated steatotic liver disease using explainable machine learning methods. Sci. Rep. 15(1), 12382 (2025).
    Google Scholar

Download references