Transcriptional network analysis implicates altered hepatic immune function in NASH development and resolution (original) (raw)
Haas, J. T., Francque, S. & Staels, B. Pathophysiology and mechanisms of nonalcoholic fatty liver disease. Annu. Rev. Physiol.78, 181–205 (2016). ArticleCAS Google Scholar
Luyckx, F. H., Lefebvre, P. J. & Scheen, A. J. Non-alcoholic steatohepatitis: association with obesity and insulin resistance, and influence of weight loss. Diabetes Metab.26, 98–106 (2000). CASPubMed Google Scholar
Brunt, E. M. Pathology of nonalcoholic fatty liver disease. Nat. Rev. Gastroenterol. Hepatol.7, 195–203 (2010). Article Google Scholar
Brunt, E. M. et al. Nonalcoholic fatty liver disease (NAFLD) activity score and the histopathologic diagnosis in NAFLD: distinct clinicopathologic meanings. Hepatology53, 810–820 (2011). ArticleCAS Google Scholar
Bedossa, P. et al. Histopathological algorithm and scoring system for evaluation of liver lesions in morbidly obese patients. Hepatology56, 1751–1759 (2012). Article Google Scholar
Hirsova, P. & Gores, G. J. Ballooned hepatocytes, undead cells, sonic hedgehog, and vitamin E: therapeutic implications for nonalcoholic steatohepatitis. Hepatology61, 15–17 (2015). Article Google Scholar
Vonghia, L., Michielsen, P. & Francque, S. Immunological mechanisms in the pathophysiology of non-alcoholic steatohepatitis. Int. J. Mol. Sci.14, 19867–19890 (2013). Article Google Scholar
Liaskou, E. et al. Monocyte subsets in human liver disease show distinct phenotypic and functional characteristics. Hepatology57, 385–398 (2013). ArticleCAS Google Scholar
Rau, M. et al. Progression from nonalcoholic fatty liver to nonalcoholic steatohepatitis is marked by a higher frequency of Th17 cells in the liver and an increased Th17/resting regulatory T cell ratio in peripheral blood and in the liver. J. Immunol.196, 97–105 (2016). ArticleCAS Google Scholar
Wolf, M. J. et al. Metabolic activation of intrahepatic CD8+ T cells and NKT cells causes nonalcoholic steatohepatitis and liver cancer via cross-talk with hepatocytes. Cancer Cell26, 549–564 (2014). ArticleCAS Google Scholar
Kleiner, D. E. & Bedossa, P. Liver histology and clinical trials for nonalcoholic steatohepatitis-perspectives from 2 pathologists. Gastroenterology149, 1305–1308 (2015). Article Google Scholar
Ryaboshapkina, M. & Hammar, M. Human hepatic gene expression signature of non-alcoholic fatty liver disease progression, a meta-analysis. Sci. Rep.7, 12361 (2017). Article Google Scholar
Moylan, C. A. et al. Hepatic gene expression profiles differentiate presymptomatic patients with mild versus severe nonalcoholic fatty liver disease. Hepatology59, 471–482 (2014). ArticleCAS Google Scholar
Vilar-Gomez, E. et al. Weight loss through lifestyle modification significantly reduces features of nonalcoholic steatohepatitis. Gastroenterology149, 367–378 e365 (2015). Article Google Scholar
Lassailly, G. et al. Bariatric surgery reduces features of nonalcoholic steatohepatitis in morbidly obese patients. Gastroenterology149, 379–388 (2015). Article Google Scholar
Lefebvre, P. et al. Interspecies NASH disease activity whole-genome profiling identifies a fibrogenic role of PPARalpha-regulated dermatopontin. JCI Insight2, e92264 (2017). Article Google Scholar
Langfelder, P. & Horvath, S. WGCNA: an R package for weighted correlation network analysis. BMC Bioinformatics9, 559 (2008). Article Google Scholar
Vonghia, L. et al. CD4+ROR gamma t++ and tregs in a mouse model of diet-induced nonalcoholic steatohepatitis. Mediators Inflamm.2015, 239623 (2015). Article Google Scholar
Bhattacharjee, J. et al. Hepatic natural killer T-cell and CD8+ T-cell signatures in mice with nonalcoholic steatohepatitis. Hepatol. Commun.1, 299–310 (2017). ArticleCAS Google Scholar
Sutti, S. et al. Adaptive immune responses triggered by oxidative stress contribute to hepatic inflammation in NASH. Hepatology59, 886–897 (2014). ArticleCAS Google Scholar
Clapper, J. R. et al. Diet-induced mouse model of fatty liver disease and nonalcoholic steatohepatitis reflecting clinical disease progression and methods of assessment. Am. J. Physiol. Gastrointest. Liver Physiol.305, G483–G495 (2013). ArticleCAS Google Scholar
Asgharpour, A. et al. A diet-induced animal model of non-alcoholic fatty liver disease and hepatocellular cancer. J. Hepatol.65, 579–588 (2016). ArticleCAS Google Scholar
Jensen, T. et al. Fructose and sugar: a major mediator of non-alcoholic fatty liver disease. J. Hepatol.68, 1063–1075 (2018). ArticleCAS Google Scholar
Ioannou, G. N. The role of cholesterol in the pathogenesis of NASH. Trends Endocrinol. Metab.27, 84–95 (2016). ArticleCAS Google Scholar
Bottini, N. & Peterson, E. J. Tyrosine phosphatase PTPN22: multifunctional regulator of immune signaling, development, and disease. Annu. Rev. Immunol.32, 83–119 (2014). ArticleCAS Google Scholar
Froylich, D. et al. Effect of Roux-en-Y gastric bypass and sleeve gastrectomy on nonalcoholic fatty liver disease: a comparative study. Surg. Obes. Relat. Dis.12, 127–131 (2016). Article Google Scholar
Patouraux, S. et al. CD44 is a key player in non-alcoholic steatohepatitis. J. Hepatol.67, 328–338 (2017). ArticleCAS Google Scholar
Zhang, X. et al. CXCL10 plays a key role as an inflammatory mediator and a non-invasive biomarker of non-alcoholic steatohepatitis. J. Hepatol.61, 1365–1375 (2014). ArticleCAS Google Scholar
Tilg, H., Moschen, A. R. & Roden, M. NAFLD and diabetes mellitus. Nat. Rev. Gastroenterol. Hepatol.14, 32–42 (2017). ArticleCAS Google Scholar
Syn, W. K. et al. Accumulation of natural killer T cells in progressive nonalcoholic fatty liver disease. Hepatology51, 1998–2007 (2010). ArticleCAS Google Scholar
Miura, K., Yang, L., van Rooijen, N., Ohnishi, H. & Seki, E. Hepatic recruitment of macrophages promotes nonalcoholic steatohepatitis through CCR2. Am. J. Physiol. Gastrointest. Liver Physiol.302, G1310–G1321 (2012). ArticleCAS Google Scholar
Durai, V. & Murphy, K. M. Functions of murine dendritic cells. Immunity45, 719–736 (2016). ArticleCAS Google Scholar
Vu Manh, T. P., Bertho, N., Hosmalin, A., Schwartz-Cornil, I. & Dalod, M. Investigating evolutionary conservation of dendritic cell subset identity and functions. Front. Immunol.6, 260 (2015). Google Scholar
Henning, J. R. et al. Dendritic cells limit fibroinflammatory injury in nonalcoholic steatohepatitis in mice. Hepatology58, 589–602 (2013). ArticleCAS Google Scholar
Worbs, T., Hammerschmidt, S. I. & Forster, R. Dendritic cell migration in health and disease. Nat. Rev. Immunol.17, 30–48 (2017). ArticleCAS Google Scholar
Kelly, A. et al. CD141(+) myeloid dendritic cells are enriched in healthy human liver. J. Hepatol.60, 135–142 (2014). ArticleCAS Google Scholar
Doganay, L. et al. HLA DQB1 alleles are related with nonalcoholic fatty liver disease. Mol. Biol. Rep.41, 7937–7943 (2014). ArticleCAS Google Scholar
Nishimura, S. et al. CD8+ effector T cells contribute to macrophage recruitment and adipose tissue inflammation in obesity. Nat. Med.15, 914–920 (2009). ArticleCAS Google Scholar
Wieser, V. et al. Adipose type I interferon signalling protects against metabolic dysfunction. Gut67, 157–165 (2018). ArticleCAS Google Scholar
Ghazarian, M. et al. Type I interferon responses drive intrahepatic T cells to promote metabolic syndrome. Sci. Immunol.2, eaai7616 (2017). Article Google Scholar
Luo, J. L., Kamata, H. & Karin, M. IKK/NF-kappaB signaling: balancing life and death—a new approach to cancer therapy. J. Clin. Invest.115, 2625–2632 (2005). ArticleCAS Google Scholar
du Plessis, J. et al. Association of adipose tissue inflammation with histologic severity of nonalcoholic fatty liver disease. Gastroenterology149, 635–648 e614 (2015). Article Google Scholar
Bijnen, M. et al. Adipose tissue macrophages induce hepatic neutrophil recruitment and macrophage accumulation in mice. Gut67, 1317–1327 (2018). ArticleCAS Google Scholar
Francque, S. et al. PPARalpha gene expression correlates with severity and histological treatment response in patients with non-alcoholic steatohepatitis. J. Hepatol.63, 164–173 (2015). ArticleCAS Google Scholar
Matthews, D. R. et al. Homeostasis model assessment: insulin resistance and beta-cell function from fasting plasma glucose and insulin concentrations in man. Diabetologia28, 412–419 (1985). ArticleCAS Google Scholar
Verrijken, A. et al. A gene variant of PNPLA3, but not of APOC3, is associated with histological parameters of NAFLD in an obese population. Obesity (Silver Spring)21, 2138–2145 (2013). ArticleCAS Google Scholar
Kleiner, D. E. et al. Design and validation of a histological scoring system for nonalcoholic fatty liver disease. Hepatology41, 1313–1321 (2005). Article Google Scholar
Rubtsov, Y. P. et al. Regulatory T cell-derived interleukin-10 limits inflammation at environmental interfaces. Immunity28, 546–558 (2008). ArticleCAS Google Scholar
Pawlak, M. et al. The transrepressive activity of peroxisome proliferator-activated receptor alpha is necessary and sufficient to prevent liver fibrosis. Hepatology60, 1593–1606 (2014). ArticleCAS Google Scholar
Irizarry, R. A. et al. Exploration, normalization, and summaries of high density oligonucleotide array probe level data. Biostatistics4, 249–264 (2003). Article Google Scholar
Leek, J. T. & Storey, J. D. Capturing heterogeneity in gene expression studies by surrogate variable analysis. PLoS Genet.3, 1724–1735 (2007). ArticleCAS Google Scholar
Smyth, G. K., Michaud, J. & Scott, H. S. Use of within-array replicate spots for assessing differential expression in microarray experiments. Bioinformatics21, 2067–2075 (2005). ArticleCAS Google Scholar
Goeman, J. J. & Buhlmann, P. Analyzing gene expression data in terms of gene sets: methodological issues. Bioinformatics23, 980–987 (2007). ArticleCAS Google Scholar