The molecular genetics of cervical carcinoma (original) (raw)
References
Antinore, M. J., Birrer, M. J., Patel, D., Nader, L. & McCance, D. J. (1996). The human papillomavirus type 16 E7 gene product interacts with and trans-activates the AP1 family of transcription factor. EMBO J15: 1950–1960. CASPubMedPubMed Central Google Scholar
Atkin, N. B., Baker, M. C. & Fox, M. F. (1989). Chromosome changes in 43 carcinomas of the cervix uteri. Cancer Genet Cytogenet44: 229–241. Google Scholar
Banks, L., Edmonds, C. & Vousden, K. H. (1995). Ability of the HPV16 E7 protein to bind Rb and induce DNA synthesis is not sufficient for efficient transforming activity in NIH3T3 cells. Oncogene5: 1383–1389. Google Scholar
Bartholomew, I. S., Glenville, S., Sarkar, S., Burt, D. J., Stanley, M. A., Ruiz-Cabello, F., Chengang, J., Garrido, F. & Stern, P. L. (1997). Integration of high-risk human papillomavirus DNA is linked to the down-regulation of class I antigens by steroid hormones in cervical tumor cells. Cancer Res57: 937–942. CASPubMed Google Scholar
Bartsch, D., Boye, B., Baust, C., zur Hausen, H. & Schwarz, E. (1992). Retinoic acid-mediated repression of human papillomavirus 18 transcription and different ligand regulation of the retinoic acid receptor beta gene in non-tumorigenic and tumorigenic HeLa hybrid cells. EMBO J11: 2283–2291. CASPubMedPubMed Central Google Scholar
Bauer-Hoffman, R., Borghouts, C., Bourda, E., F, R. s. & Alonso, A. (1996). Genomic cloning and characterization of the nonoccupied allele corresponding to the integration site of human papillomavirus type 16 DNA in the cervical cancer cell line SiHa. Virology217: 33–41. Google Scholar
Bethwaite, P. B., Koreh, J., Herrington, C. S. & McGee, J. O. (1995). Loss of heterozygosity occurs at the D11S29 locus on chromosome 11q23. Br J Cancer71: 814–818. CASPubMedPubMed Central Google Scholar
Bosch, F. X., Manos, M. M., Muñoz, N., Sherman, M., Jansen, A. M., Peto, J., Schiffman, M. H., Moreno, V., Kurman, R. & Shah, K. V. (1995). Prevalence of human papillomavirus in cervical cancer: a worldwide perspective. J Natl Cancer Inst87: 796–802. CASPubMed Google Scholar
Cannistra, S. A. & Niloff, J. (1996). Cancer of the uterine cervix. N Engl J Med334: 1030–1038. CASPubMed Google Scholar
Castren, K., Vahakangas, K., Heikkinen, E. & Ranki, A. (1998). Absence of p53 mutations in benign and pre-malignant male genital lesions with over-expressed p53 protein. Int J Cancer77: 674–678. CASPubMed Google Scholar
Couturier, J., Sastre-Garau, X., Schneider-Maunoury, S., Labib, A. & Orth, G. (1991). Integration of papillomavirus DNA near MYC genes in genital carcinomas and its consequences for proto-oncogene expression. J Virol65: 4534–4538. CASPubMedPubMed Central Google Scholar
Cullen, A. P., Reid, R., Campion, M. & Campion, A. T. Lr (1991). Analysis of the physical state of different human papillomavirus DNAs in intraepithelial and invasive cervical neoplasia. J Virol65: 606–612. CASPubMedPubMed Central Google Scholar
Chen, T., Pecoraro, G. & Defendi, V. (1993). Genetic analysis of in vitro progression of human papillomavirus transfected human cervical cells. Cancer Res53: 1167–1171. CASPubMed Google Scholar
Choo, K., Lee, H., Chong, K. & Chou, H. (1990). Analysis of the unoccupied site of an integrated human papilomavirus 16 sequence in a cervical carcinoma. Virology178: 621–625. CASPubMed Google Scholar
Choo, K., Huang, C., Chen, C. M., Han, C. P. & Au, L. C. (1995). Jun-B oncogene aberrations in cervical cancer cell lines. Cancer Lett93: 249–253. CASPubMed Google Scholar
Chu, T-Y, Shen, C-Y, Chiou, Y-S, Perng, C-L, Yu, M-S & Liu, H-S (1998). HPV-associated cervical cancers show frequent allelic loss at 3p14 but no apparent aberration of FHIT mRNA. Int J Cancer75: 199–204. CASPubMed Google Scholar
Dokianakis, D. N., Sourvinos, G., Sakkas, S., Athanasiadou, E. & Spandidos, D. A. (1998). Detection of HPV and ras gene mutations in cervical smears from female genital lesions. Oncol Rep5: 1195–1198. CASPubMed Google Scholar
Dowhanick, J. J., McBride, A. A. & Howley, P. M. (1995). Suppression of cellular proliferation by the papillomavirus E2 protein. J Virol69: 7791–7799. CASPubMedPubMed Central Google Scholar
Durst, M., Croce, C., Gissman, L., Schwarz, E. & Huebner, K. (1987). Papillomavirus sequences integrate near cellular oncogenes in some cervical carcinomas. Proc Natl Acad Sci USA84: 1070–1074. CASPubMedPubMed Central Google Scholar
El Awady, M., Kaplan, J. B. & Burk, R. D., SJ, OB (1987). Molecular analysis of integrated human papillomavirus 16 sequences in the cervical cancer cell line SiHa. Virology159: 389–398. CASPubMed Google Scholar
Frattini, M. G., Hurst, S. D., Lim, H. B., Swaminathan, S. & Laimins, L. A. (1997). Abrogation of a mitotic checkpoint by E2 proteins from oncogenic human papillomaviruses correlates with increased turnover of the p53 tumor suppressor protein. Embo J16: 318–331. CASPubMedPubMed Central Google Scholar
Fujita, M., Inoue, M., Tanizawa, O., Iwamoto, S. & Enomoto, T. (1992). Alterations of p53 gene in human primary cervical carcinoma with and without human papillomavirus infection. Cancer Res52: 5323–5328. CASPubMed Google Scholar
Gallego, M. I. & Lazo, P. A. (1995). Deletion in human chromosome region 12q13–15 by integration of human papillomavirus DNA in a cervical carcinoma cell line. J Biol Chem270: 24321–24326. CASPubMed Google Scholar
Gallego, M. I., Shoenmakers, EPFM, Van de Ven, W. J. M. & Lazo, P. A. (1997). Complex genomic rearrangement within the 12q15 multiple aberration region induced by integrated human papillomavirus 18 in a cervical carcinoma cell line. Mol Carcinogen19: 114–121. CAS Google Scholar
Gloss, B., Chong, T. & Bernard, H. (1989). Numerous nuclear proteins bind the long control region of human papillomavirus type 16: a subset of 6 of 23 DNaseI-protected segments coincides with the location of the cell-type-specific enhancer. J Virol63: 1142–1152. CASPubMedPubMed Central Google Scholar
Greeblatt, M. S., Bennet, W. P., Hollstein, M. & Harris, C. C. (1994). Mutations in the p53 tumor suppressor genes: clues to cancer etiology and molecular pathogenesis. Cancer Res54: 4855–4878. Google Scholar
Greenspan, D. L., Connolly, D. C., Wu, R., Lei, R. Y., Vogelstein, J. T. C., Kim, Y., Mok, J. E., Muñoz, N., Bosch, F. X., Shah, K. & Cho, K. R. (1997). Loss of FHIT expression in cervical carcinoma cell lines and primary tumors. Cancer Res57: 4692–4698. CASPubMed Google Scholar
Hampton, G. M., Larson, A. A., Baergen, R. N., Sommers, R. L., Kren, S. & Cavanee, W. K. (1996). Simultaneous assessment of loss of heterozygosity at multiple microsatellite loci using semi-automated fluorescence based detection: subregional mapping of chromosome 4 in cervical carcinoma. Proc Natl Acad Sci USA93: 6704–6709. CASPubMedPubMed Central Google Scholar
Hampton, G. M., Penny, L. A., Baergen, R. N., Larson, A., Brewer, C., Liao, S., Busby-Earle, R. M. C., Williams, A. W. R., Steel, C. M., Bird, C. C., Stanbridge, E. J. & Evans, G. A. (1994). Loss of heterozygosity in cervical carcinoma: subchromosomal localization of a putative tumor-suppressor gene to chromosome 11q22–q24. Proc Natl Acad Sci USA91: 6953–6957. CASPubMedPubMed Central Google Scholar
Hayashi, S., Tanimoto, K., Hajiro-Nakanishi, K., Kurosomi, M., Higashi, Y., Imai, K., Suga, K. & Nakachi, K. (1997). Abnormal FHIT transcript in human breast carcinomas: a clinicopathological and epidemiological analysis of 61 Japanese cases. Cancer Res57: 1981–1985. CASPubMed Google Scholar
Helland, A., Borresen-Dale, A., Peltomaki, P., Kristensen, M., Nesland, J. M., De La Chapelle, A. & Lothe, R. A. (1997). Microsatellite instability in cervical and endometrial carcinomas. Int J Cancer70: 499–501. CASPubMed Google Scholar
Helland, A., Karlsen, F., Due, E. U., Holm, R., Kristensen, G. & Borresen-Dale, A. (1998a). Mutations in the TP53 gene and protein expression of p53, MDM 2 and p21/WAF-1 in primary cervical carcinomas with no or low human papillomavirus load. Br J Cancer78: 69–72. CASPubMedPubMed Central Google Scholar
Helland, A., Olsen, A. O., Gjoen, K., Akselsen, H. E., Sauer, T., Magnus, P., Borresen-Dale, A. L. & Ronningen, K. S. (1998b). An increased risk of cervical intra-epithelial neoplasia grade II-III among human papillomavirus positive patients with the HLA-DQA1*0102–DQB1*0602 haplotype: a population-based case-control study of Norwegian women. Int J Cancer76: 19–24. CASPubMed Google Scholar
Heselmeyer, K., Schröck, E., Du Manoir, S., Blegen, H., Shah, K. V., Steinbeck, R., Auer, G. & Ried, T. (1996). Gain of chromosome 3q defines the transition from severe dysplasia to invasive carcinoma of the uterine cervix. Proc Natl Acad Sci USA93: 479–484. CASPubMedPubMed Central Google Scholar
Heselmeyer, K., Macville, M., Schrock, E., Blegen, H., Hellstrom, A-C, Shah, K., Auer, G. & Ried, T. (1997). Advanced-stage cervical carcinomas are defined by a recurrent pattern of chromosomal aberrations revealing high genetic instability and a consistent gain of chromosome arm 3q. Genes Chromosom Cancer19: 233–240. CASPubMed Google Scholar
Howley, P. M. (1995). Papillomavirinae: The viruses and their replication. In Virology, Fields BN, Knipe DM and Howley PM (eds), Vol 2. pp. 2045–2076. Lippincot-Raven: Philadelphia Google Scholar
Hueber, A., Zornig, M., Lyon, D., Suda, T., Nagata, S. & Evan, G. I. (1997). Requirement for the Cd95 receptor-ligand pathway in c-myc-induced apoptosis. Science278: 1305–1309. CASPubMed Google Scholar
Huettner, P. C., Gerhard, D. S., Li, L., Gersell, D. J., Dunnigan, K., Kamarasova, T. & Rader, J. S. (1998). Loss of heterozygosity in clinical stage IB cervical carcinoma: relationship with clinical and histopathologic features. Hum Pathol29: 364–370. CASPubMed Google Scholar
Iglesias, M., Yen, K., Gaiotti, D., Hildesheim, A., Stoler, M. H. & Woodsworth, C. D. (1998). Human papillomavirus type 16 E7 protein sensitizes cervical keratinocytes to apoptosis and release of interleukin 1a. Oncogene17: 1195–1205. CASPubMed Google Scholar
Jeon, S. & Lambert, P. (1995). Integration of human papillomavirus type 16 DNA in the human genome leads to increased stability of E6 and E7 mRNAs: implications for cervical carcinogenesis. Proc Natl Acad Sci USA92: 1654–1658. CASPubMedPubMed Central Google Scholar
Jeon, S., Allen-Hoffmann, B. L. & Lambert, P. F. (1995). Integration of human papillomavirus type 16 into the human genome correlates with a selective growth advantage of cells. J Virol69: 2989–2997. CASPubMedPubMed Central Google Scholar
Jones, M. H. & Nakamura, Y. (1992). Deletion mapping of chromosome 3p in female genital tract malignancies using microsatellite polymorphisms. Oncogene7: 1631–1634. CASPubMed Google Scholar
Kaelbing, M., Burk, R. D., Atkin, N. B., Johnson, A. B. & Klinger, H. P. (1992). Loss of heterozygosity on chromosome 17p and mutant p53 in HPV-negative cervical carcinomas. Lancet340: 140–142. Google Scholar
Kalantari, M., Karlsen, F., Kristensen, G., Holm, R., Hagmar, B. & Johansson, B. (1998). Disruption of the E1 and E2 reading frames of HPV16 in cervical carcinoma is associated with poor prognosis. Int J Gynecol Pathol17: 146–153. CASPubMed Google Scholar
Kamijo, T., Zindy, F., Roussel, M. F., Quelle, D. E., Downing, J. R., Ashmun, R. A., Grosveld, G. & Sherr, C. J. (1997). Tumor suppression at the INK4a locus mediated by the alternative reading frame product p19arf. Cell91: 649–659. CASPubMed Google Scholar
Karlsen, F., Rabbitts, P. H., Sundresan, V. & Hagmar, B. (1994). PCR-RFLP studies on chromosome 3p in formaldehyde-fixed paraffin-embedded cervical cancer tissues. Int J Cancer58: 787–792. CASPubMed Google Scholar
Kersemaekers, A. M., Hermans, J., Fleuren, G. J. & van de Vijver, M. J. (1998a). Loss of heterozygosity for defined regions on chromosomes 3, 11 and 17 in carcinomas of the uterine cervix. Br J Cancer77: 192–200. CASPubMedPubMed Central Google Scholar
Kersemaekers, A. M., Kenter, G. G., Hermans, J., Fleuren, G. J. & van de Vijver, M. J. (1998b). Allelic loss and prognosis in carcinoma of the uterine cervix [In Process Citation]. Int J Cancer79: 411–417. CASPubMed Google Scholar
Kim, J. W., Namkoong, S. E., Ryu, S. W., Kim, H. S., Shin, J. W., Lee, J. M., Kim, D. H. & Kim, I. K. (1998). Absence of p15INK4B and p16INK4A gene alterations in primary cervical carcinoma tissues and cell lines with human papillomavirus infection [In Process Citation]. Gynecol Oncol70: 75–79. CASPubMed Google Scholar
Kinzler, K. W. & Vogelstein, B. (1996). Lessons from hereditary colorectal cancer. Cell87: 159–170. CASPubMed Google Scholar
Kinzler, K. W. & Vogelstein, B. (1998). Landscaping the cancer terrain. Science280: 1036–1037. CASPubMed Google Scholar
Kirchhoff, M., Rose, H., Petersen, B. L., Maahr, J., Gerdes, T., Lundsteen, C., Bryndorf, T., Kryger-Baggesen, N., Christensen, L., Engelholm, S. A. & Philip, J. (1999). Comparative genomic hybridization reveals a recurrence pattern of chromosomal aberrations in severe dysplasia/carcinoma in situ of the cervix and in advanced-stage cervical carcinoma. Genes Chrom Cancer24: 144–150. CASPubMed Google Scholar
Kohno, T., Takayama, H., Hamaguchi, M., Takano, H., Yamaguchi, N., Tsuda, H., Hirohashi, S., Vissing, H., Shimizu, M., Oshimura, M. & Yokota, J. (1993). Deletion mapping of chromosome 3p in human uterine cervical cancer. Oncogene8: 1825–1832. CASPubMed Google Scholar
Koi, M., Morita, H., Yamada, H., Satoh, H., Barrett, J. C. & Oshimura, M. (1989). Normal human chromosome 11 suppresses tumorigenicity of human cervical tumor cell line SiHa. Mol Carcinog2: 12–21. CASPubMed Google Scholar
Konishi, H., Takahashi, T., Kozaki, K., Yatabe, Y., Mitsudomi, T., Fujii, Y., Sugiura, T. & Matsuda, H. (1998). Detailed deletion mapping suggests the involvement of a tumor suppressor gene at 17p13.3, distal to p53, in the pathogenesis of lung cancers. Oncogene17: 2095–2100. CASPubMed Google Scholar
Krammer, P. H. (1997). The tumor strikes back: new data on expression of CD95 (APO-1/FAS) receptor/ligand system may cause paradigm changes in our view on drug treatment and tumor immunology. Cell Death Diff4: 362–364. CAS Google Scholar
Ku, J-L, Kim, W-H, Park, H-S, Kang, S-B & Park, J-G (1977). Establishment and characterization of 12 uterine cervical carcinoma cell lines: common sequence variation in the E7 gene of HPV-16 positive cell lines. Int J Cancer72: 313–320. Google Scholar
Ku, W-H, Liu, I-L, Yen, M-S, Chien, C. C., Yue, C-T, Ma, Y., Chang, S., Ng, H., Wu, C. & Shen, C. (1997). Genomic deletion and p53 inactivation in cervical carcinoma. Int J Cancer72: 270–276. CASPubMed Google Scholar
Kubbutat, M. H. G. & Vousden, K. H. (1996). Role of E6 and E7 oncoproteins in HPV-induced anogenital malignancies. Semin Virol7: 295–304. CAS Google Scholar
Kurvinen, K., Syrjänen, K. & Syrjänen, S. (1996). p53 and bcl-2 proteins as prognostic markers in human papillomavirus-associated cervical lesions. J Clin Onc14: 2120–2130. CAS Google Scholar
Larson, A. A., Kern, S., Sommers, R. L., Yokota, J., Cavenee, W. K. & Hampton, G. M. (1996). Analysis of replication error phenotypes in cervical carcinoma. Cancer Res56: 1426–1431. CASPubMed Google Scholar
Larson, A. A., Kern, S., Curtiss, S., Gordon, R., Cavanee, W. K. & Hampton, G. M. (1997). High resolution analysis of chromosome 3p alterations in cervical cancer. Cancer Res57: 4082–4090. CASPubMed Google Scholar
Lazo, P. A. (1988a). Human papillomaviruses in oncogenesis. BioEssays9: 158–162. CASPubMed Google Scholar
Lazo, P. A. (1988b). Rearrangement of both alleles of human chromosome 8 in HeLa cells, one of them as a result of papillomavirus DNA integration. J Biol Chem263: 360–367. CASPubMed Google Scholar
Lazo, P. A., Gallego, M. I., Ballester, S. & Feduchi, E. (1992). Genetic alterations by human papillomaviruses in oncogenesis. FEBS Lett300: 109–113. CASPubMed Google Scholar
Le Beau, M. M., Drabkin, H., Glover, T. W., Gemmill, R., Rassool, F. V., McKeithan, T. W. & Smith, D. I. (1998). An FHIT tumor suppressor gene? Genes Chromosom Cancer21: 281–289. CASPubMed Google Scholar
Leis, P. F., Stevens, K. R., Baer, S. C., Kadmon, D., Goldberg, L. H. & Wang, X. J. (1998). A c-rasHa mutation in the metastasis of a human papillomavirus (HPV)-18 positive penile squamous cell carcinoma suggests a cooperative effect between HPV-18 and c-rasHa activation in malignant progression. Cancer83: 122–129. CASPubMed Google Scholar
Lengauer, C., Kinzler, K. W. & Vogelstein, B. (1998). Genetic instabilities in human cancers. Nature396: 643–649. CASPubMed Google Scholar
Lopez-Borges, S., Gallego, M. I. & Lazo, P. A. (1998). Recurrent integration of papillomavirus DNA within the human 12q14–15 uterine breakpoint region in genital carcinomas [In Process Citation]. Genes Chromosomes Cancer23: 55–60. CASPubMed Google Scholar
Mao, L., Fan, Y-H, Lotan, R. & Hong, W. K. (1996). Frequent abnormalities of FHIT, a candidate tumor suppressor gene, in head and neck cancer cell lines. Cancer Res56: 5128–5131. CASPubMed Google Scholar
Mitelman, F., Mertens, F. & Johansson, B. (1997). A breakpoint map of recurrent chromosomal rearrangements in human neoplasia. Nat Genet15: 417–474. CASPubMed Google Scholar
Mitra, A. B., Murty, V., Li, R. G., Pratap, M., Luthra, U. K. & Chaganti, R. S. K. (1994a). Allelotype analysis of cervical carcinoma. Cancer Res54: 4481–4487. CASPubMed Google Scholar
Mitra, A. B., Murty, V., Pratap, M., Dodhani, P. & Chaganti, R. S. K. (1994b). ERBB2 (HER2/neu) oncogene is frequently amplified in squamous carcinoma of the uterine cervix. Cancer Res54: 637–639. CASPubMed Google Scholar
Montgomery, K., Tedford, K. L. & McDougall, J. K. (1995). Genetic instability of chromosome 3 in HPV immortalized and tumorigenic human keratinocytes. Genes Chrom Cancer14: 97–105. CASPubMed Google Scholar
Muller, C. Y., O’Boyle, J. D., Fong, K. M., Wistuba, I. I., Biesterveld, E., Ahmadian, M., Miller, D. S., Gazdar, A. F. & Minna, J. D. (1998). Abnormalities of fragile histidine triad genomic and complementary DNA in cervical cancer: association with human papillomavirus type. J Natl Cancer Inst90: 433–439. CASPubMed Google Scholar
Mullokandov, M. R., Kholodilov, N. G., Atkin, N. B., Burk, R. D., Johnson, A. B. & Klinger, H. P. (1996). Genomic alterations in cervical carcinoma: losses of chromosome heterozygosity and human papillomavirus tumor status. Cancer Res56: 197–205. CASPubMed Google Scholar
Ning, Y., Weber, J. L., Killary, A. M., Ledbetter, D. H., Smith, J. R. & Pereira-Smith, O. M. (1991). Genetic analysis of indefinite division in human cells: evidence for a cell senescence-related gene(s) on human chromosome 4. Proc Natl Acad Sci USA88: 5635–5639. CASPubMedPubMed Central Google Scholar
O’Connor, M. J., Tan, S., Tan, C. & Bernard, H. (1996). YY1 represses human papillomavirus type 16 transcription by quenching AP-1 activity. J Virol70: 6529–6539. PubMedPubMed Central Google Scholar
Oshimura, M., Kugoh, H., Koi, M., Shimizu, M., Yamada, H., Satoh, H. & Barrett, J. C. (1990). Transfer of a normal human chromosome 11 suppresses tumorigenicity of some but not all tumor cell lines. J Cell Biochem42: 135–142. CASPubMed Google Scholar
Park, S., Kang, Y., Kim, B., Lee, S., Lee, E., Lee, K., Park, K. & Lee, J. (1995). Loss of heterozygosity on the short arm of chromosome 17 in uterine cervical carcinomas. Cancer Genet Cytogenet79: 74–78. CASPubMed Google Scholar
Pinion, S. B., Kennedy, J. H., Miller, R. W. & MacLean, A. B. (1991). Oncogene expression in cervical intraepithelial neoplasia and invasive cancer of the cervix. Lancet337: 819–820. CASPubMed Google Scholar
Pirisi, L., Yasumoto, S., Feller, M., Doniger, J. & DiPaolo, J. A. (1987). Transformation of human fibroblasts and keratinocytes with human papillomavirus type 16 DNA. J Virol61: 1061–1066. CASPubMedPubMed Central Google Scholar
Popescu, N. C. & DiPaolo, J. A. (1989). Preferential sites for viral integration on mammalian genome. Cancer Genet Cytogenet42: 157–171. CASPubMed Google Scholar
Popescu, N. C., DiPaolo, J. A. & Amsbaugh, S. C. (1987). Integration sites of human papillomavirus 18 DNA sequences on HeLa cell chromosomes. Cytogenet Cell Genet44: 58–62. CASPubMed Google Scholar
Popescu, N. C., Zimonjic, D. & DiPaolo, J. A. (1990). Viral integration, fragile sites and proto-oncogenes in human neoplasia. Hum Genet44: 58–62. Google Scholar
Rabbitts, T. H. (1994). Chromosomal translocations in human cancer. Nature372: 143–149. CASPubMed Google Scholar
Rabbitts, T. H. (1997). Chromosomal breakpoints hit the spot. Nat Med3: 496–497. CASPubMed Google Scholar
Rosl, F., Achtstatter, T., Bauknecht, T., Hutter, K. J., Futterman, G. & zur Hausen, H. (1991). Extinction of the HPV18 upstream regulatory region in cervical carcinoma cells after fusion with non-tumorigenic human keratinocytes under non-selective conditions. EMBO J10: 1337–1345. CASPubMedPubMed Central Google Scholar
Sánchez-García, I. (1997). Consequences of chromosomal abnormalities in tumor development. Annu Rev Genet31: 429–453. PubMed Google Scholar
Sastre-Garau, X., Couturier, J., Favre, M. & Orth, G. (1995). A recurrent human papillomavirus integration site at chromosome region 12q14–15 in SW756 and SK-v cell lines derived from genital tumors. CR Acad Sci III318: 475–478. CAS Google Scholar
Saxon, P. J., Srivatsan, E. S. & Stanbridge, E. J. (1986). Introduction of human chromosome 11 via microcell transfer controls tumorigenic expression of HeLa cells. Embo J5: 3461–3466. CASPubMedPubMed Central Google Scholar
Schneider, J. F., McGlennen, R. C., LaBresh, K. V., Ostrow, R. S. & Faras, A. J. (1991). Rhesus papillomavirus type 1 cooperates with activated ras in transforming primary epithelial rat cells independent of dexamethasone. J Virol65: 3354–3358. CASPubMedPubMed Central Google Scholar
Shah, K. V. & Howley, P. M. (1995). Papillomaviruses. In Virology2: Fields BN, Knipe DM, Howley PN Lippincot-Raven: Philadelphia 2077–2109. Google Scholar
Smith, P. P., Friedman, C. L., Bryant, E. M. & McDougall, J. K. (1992). Viral integration and fragile sites in human papillomavirus immortalized human keratinocyte cell lines. Genes Chromosomes Cancer5: 150–157. CASPubMed Google Scholar
Southern, S. A. & Herrington, C. S. (1997). Interphase karyotypic analysis of chromosomes 11, 17 and X in invasive squamous-cell carcinoma pf the cervix: Morphological correlation with HPV infection. Int J Cancer70: 502–507. CASPubMed Google Scholar
Sozzi, G., Veronese, M. L., Negrini, M., Baffa, R., Cotticelli, M. G., Inoue, H., Pilotti, S., De Gregorio, L., Pastorino, U., Pierotti, M. A., Ohta, M., Huebner, K., Croce, C. M. & Tornielli, S. (1996). The FHIT gene at 3p14.2 is abnormal in lung cancer. Cell85: 17–26. CASPubMed Google Scholar
Srivasan, E. S., Misra, B. C., Venugopalan, M. & Wilczynski, S. P. (1991). Loss of heterozygosity for alleles on chromosome 11 in cervical carcinoma. Am J Hum Genet49: 868–877. Google Scholar
Steenbergen, R. D. M., Hermsen, M., Walboomers, J. M. M., Joenje, H., Arwert, F., Meijer, C. & Snijders, P. J. F. (1995). Integrated human papillomavirus type 16 and loss of heterozygosity at 11q22 and 18q21 in an oral carcinoma and its derivative cell line. Cancer Res55: 5465–5471. CASPubMed Google Scholar
Steenbergen, R. D. M., Walboomers, J. M. M., Meijer, C., van der Raaij-Helmer, E. M. H., Parker, J. N., Chow, L. T., Broker, T. R. & Snijders, P. J. F. (1996). Transition of human papillomavirus type 16 and 18 transfected human foreskin keratinocytes towards immortality: activation of telomerase and allele loss at 3p, 10p, 11q and/or 18q. Oncogene13: 1249–1257. CASPubMed Google Scholar
Stoppler, H., Stoppler, M. C., Johnson, E., Simbulan-Rosenthal, C. M., Smulson, M. E., lyer, S., Rosenthal, D. S. & Schlegel, R. (1998). The E7 protein of human papillomavirus type 16 sensitizes primary human keratinocytes to apoptosis. Oncogene17: 1207–1214. CASPubMed Google Scholar
Thiagalingam, S., Lisistsyn, N. A., Hamaguchi, M., Wigler, M. H., Willson, J. K. V., Markowitz, S. D., Leach, F. S., Kinzler, K. W. & Vogelstein, B. (1996). Evaluation of the FHIT gene in colorectal cancers. Cancer Res56: 2936–2939. CASPubMed Google Scholar
Thomas, M., Matlashewski, G., Pim, D. & Banks, L. (1996). Induction of apoptosis by p53 is independent of its oligomeric state and can be abolished by HPV18 E6 through ubiquitin mediated degradation. Oncogene13: 265–273. CASPubMed Google Scholar
Tomlinson, I. & Bodmer, W. (1999). Selection, the mutation rate and cancer: ensuring that the tail does not wag the tail. Nat Med5: 11–12. CASPubMed Google Scholar
Tomlinson, I. P. M., Novelli, M. R. & Bodmer, W. F. (1996). The mutation rate and cancer. Proc Natl Acad Sci USA93: 14800–14803. CASPubMedPubMed Central Google Scholar
Uejima, H., Mitsuya, K., Kugoh, H., Horikawa, I. & Oshimura, M. (1995). Normal human chromosome 2 induces cellular senescence in the human cervical carcinoma cell line SiHa. Genes Chromosomes Cancer14: 120–127. CASPubMed Google Scholar
Unger, E. R., Vernon, S. D., Thoms, W. W., Nisenbaum, R., Spann, C. O., Horowitz, I. R., Icenogle, J. P. & Reeves, W. C. (1995). Human papillomavirus and disease-free survival in FIGO stage Ib cervical cancer. J Infect Dis172: 1184–1190. CASPubMed Google Scholar
Vernon, S. D., Unger, E. R., Miller, D. L., Lee, D. R. & Reeves, W. C. (1997). Association of human papillomavirus type 16 integration in the E2 gene with poor disease-free survival from cervical cancer. Int J Cancer74: 50–56. CASPubMed Google Scholar
Werness, B. A., Levine, A. J. & Howley, P. M. (1990). Association of human papillomavirus types 16 and 18 E6 proteins with p53. Science248: 76–79. CASPubMed Google Scholar
Wilke, C. M., Hall, B. K., Hoge, A., Paradee, W., Smith, D. I. & Glover, T. W. (1996). FRA3B extends over a broad region and contains a spontaneous HPV16 integration site: direct evidence for the coincidence of viral integration sites and fragile sites. Hum Mol Genet5: 187–195. CASPubMed Google Scholar
Yokota, J., Tsukada, Y., Nakajima, T., Gotoh, M., Shimosato, Y., Mori, N., Tsunokawa, Y., Sugimura, T. & Terada, M. (1989). Loss of heterozygosity on the short arm of chromosome 3 in carcinoma of the uterine cervix. Cancer Res49: 3598–3601. CASPubMed Google Scholar
Yoshino, K., Enomoto, T., Nakamura, T., Nakashima, R., Wada, H., Saitoh, J., Noda, K. & Murata, Y. (1998). Aberrant FHIT transcripts in squamous cell carcinoma of the uterine cervix. Int J Cancer76: 176–181. CASPubMed Google Scholar
Zimonjic, D. B., Popescu, N. C. & DiPaolo, J. A. (1994). Chromosomal organization of viral integration sites in human papillomavirus-immortalized human keratynocytes cell lines. Cancer Genet Cytogenet72: 39–43. CASPubMed Google Scholar
Zimonjic, D. B., Druck, T., Ohta, M., Kastury, K., Coce, C. M., Popescu, N. & Huebner, K. (1997). Position of chromosome 3p14.2 fragile site (FRA3B) within the FHIT gene. Cancer Res57: 1166–1170. CASPubMed Google Scholar
Zou, T. T., Lei, J., Shi, Y. Q., Wang, S., Souza, R. F., Kong, D., Shimada, Y., Smolinski, K. N., Greenwald, B. D., Abraham, J. M., Harpaz, N. & Meltzer, S. J. (1997). FHIT alterations in esophageal cancer and ulcerative colitis (UC). Oncogene15: 101–105. CASPubMed Google Scholar
zur Hausen, H. (1994). Human papillomaviruses. Annu Rev Microbiol48: 427–447. CASPubMed Google Scholar