Rapid cell corpse clearance by stabilin-2, a membrane phosphatidylserine receptor (original) (raw)
Strasser A, O'Connor L, Dixit VM . Apoptosis signaling. Annu Rev Biochem 2000; 69: 217–245. ArticleCAS Google Scholar
Savill J, Fadok V . Corpse clearance defines the meaning of cell death. Nature 2000; 407: 784–788. ArticleCAS Google Scholar
Lauber K, Blumenthal SG, Waibel M, Wesselborg S . Clearance of apoptotic cells: getting rid of the corpses. Mol Cell 2004; 14: 277–287. ArticleCAS Google Scholar
Henson PM, Bratton DL, Fadok VA . Apoptotic cell removal. Curr Biol 2001; 11: R795–R805. ArticleCAS Google Scholar
Fadok VA, Bratton DL, Rose DM, Pearson A, Ezekewitz RA, Henson PM . A receptor for phosphatidylserine-specific clearance of apoptotic cells. Nature 2000; 405: 85–90. ArticleCAS Google Scholar
Zhou Z, Hartwieg E, Horvitz HR . CED-1 is a transmembrane receptor that mediates cell corpse engulfment in C. elegans. Cell 2001; 104: 43–56. ArticleCAS Google Scholar
Devitt A, Moffatt OD, Raykundalia C, Capra JD, Simmons DL, Gregory CD . Human CD14 mediates recognition and phagocytosis of apoptotic cells. Nature 1998; 392: 505–509. ArticleCAS Google Scholar
Hanayama R, Tanaka M, Miwa K, Shinohara A, Iwamatsu A, Nagata S . Identification of a factor that links apoptotic cells to phagocytes. Nature 2002; 417: 182–187. ArticleCAS Google Scholar
Scott RS, McMahon EJ, Pop SM, Reap EA, Caricchio R, Cohen PL et al. Phagocytosis and clearance of apoptotic cells is mediated by MER. Nature 2001; 411: 207–211. ArticleCAS Google Scholar
Oka K, Sawamura T, Kikuta K, Itokawa S, Kume N, Kita T et al. Lectin-like oxidized low-density lipoprotein receptor 1 mediates phagocytosis of aged/apoptotic cells in endothelial cells. Proc Natl Acad Sci USA 1998; 95: 9535–9540. ArticleCAS Google Scholar
Fadok VA, Warner ML, Bratton DL, Henson PM . CD36 is required for phagocytosis of apoptotic cells by human macrophages that use either a phosphatidylserine receptor or the vitronectin receptor (alpha v beta 3). J Immunol 1998; 161: 6250–6257. CASPubMed Google Scholar
Franc NC, Heitzler P, Ezekowitz RA, White K . Requirement for croquemort in phagocytosis of apoptotic cells in Drosophila. Science 1999; 284: 1991–1994. ArticleCAS Google Scholar
Ogden CA, deCathelineau A, Hoffmann PR, Bratton D, Ghebrehiwet B, Fadok VA et al. C1q and mannose binding lectin engagement of cell surface calreticulin and CD91 initiates macropinocytosis and uptake of apoptotic cells. J Exp Med 2001; 194: 781–795. ArticleCAS Google Scholar
Gardai SJ, McPhillips KA, Frasch SC, Janssen WJ, Starefeldt A, Murphy-Ullrich JE et al. Cell-surface calreticulin initiates clearance of viable or apoptotic cells through trans-activation of LRP on the phagocyte. Cell 2005; 123: 321–334. ArticleCAS Google Scholar
Platt N, da Silva RP, Gordon S . Recognizing death: the phagocytosis of apoptotic cells. Trends Cell Biol 1998; 8: 365–372. ArticleCAS Google Scholar
Gardai SJ, Bratton DL, Ogden CA, Henson PM . Recognition ligands on apoptotic cells: a perspective. J Leukoc Biol 2006; 79: 896–903. ArticleCAS Google Scholar
Politz O, Gratchev A, McCourt PA, Schledzewski K, Guillot P, Johansson S et al. Stabilin-1 and -2 constitute a novel family of fasciclin-like hyaluronan receptor homologues. Biochem J 2002; 362 (Part 1): 155–164. CASPubMedPubMed Central Google Scholar
Zhou B, Weigel JA, Fauss L, Weigel PH . Identification of the hyaluronan receptor for endocytosis (HARE). J Biol Chem 2000; 275: 37733–37741. ArticleCAS Google Scholar
Adachi H, Tsujimoto M . FEEL-1, a novel scavenger receptor with in vitro bacteria-binding and angiogenesis-modulating activities. J Biol Chem 2002; 277: 34264–34270. ArticleCAS Google Scholar
Tamura Y, Adachi H, Osuga J, Ohashi K, Yahagi N, Sekiya M et al. FEEL-1 and FEEL-2 are endocytic receptors for advanced glycation end products. J Biol Chem 2003; 278: 12613–12617. ArticleCAS Google Scholar
Falkowski M, Schledzewski K, Hansen B, Goerdt S . Expression of stabilin-2, a novel fasciclin-like hyaluronan receptor protein, in murine sinusoidal endothelia, avascular tissues, and at solid/liquid interfaces. Histochem Cell Biol 2003; 120: 361–369. ArticleCAS Google Scholar
Nose A, Nagafuchi A, Takeichi M . Expressed recombinant cadherins mediate cell sorting in model systems. Cell 1988; 54: 993–1001. ArticleCAS Google Scholar
Gigli I, Nelson Jr RA . Complement dependent immune phagocytosis. I. Requirements for C′1, C′4, C′2, C′3. Exp Cell Res 1968; 51: 45–67. ArticleCAS Google Scholar
Fadok VA, Voelker DR, Campbell PA, Cohen JJ, Bratton DL, Henson PM . Exposure of phosphatidylserine on the surface of apoptotic lymphocytes triggers specific recognition and removal by macrophages. J Immunol 1992; 148: 2207–2216. CAS Google Scholar
Martin SJ, Reutelingsperger CP, McGahon AJ, Rader JA, van Schie RC, LaFace DM et al. Early redistribution of plasma membrane phosphatidylserine is a general feature of apoptosis regardless of the initiating stimulus: inhibition by overexpression of Bcl-2 and Abl. J Exp Med 1995; 182: 1545–1556. ArticleCAS Google Scholar
Huynh ML, Fadok VA, Henson PM . Phosphatidylserine-dependent ingestion of apoptotic cells promotes TGF-beta1 secretion and the resolution of inflammation. J Clin Invest 2002; 109: 41–50. ArticleCAS Google Scholar
Schlegel RA, Williamson P . Phosphatidylserine, a death knell. Cell Death Differ 2001; 8: 551–563. ArticleCAS Google Scholar
Li MO, Sarkisian MR, Mehal WZ, Rakic P, Flavell RA . Phosphatidylserine receptor is required for clearance of apoptotic cells. Science 2003; 302: 1560–1563. ArticleCAS Google Scholar
Cui P, Qin B, Liu N, Pan G, Pei D . Nuclear localization of the phosphatidylserine receptor protein via multiple nuclear localization signals. Exp Cell Res 2004; 293: 154–163. ArticleCAS Google Scholar
Bose J, Gruber AD, Helming L, Schiebe S, Wegener I, Hafner M et al. The phosphatidylserine receptor has essential functions during embryogenesis but not in apoptotic cell removal. J Biol 2004; 3: 15. Article Google Scholar
Mitchell JE, Cvetanovic M, Tibrewal N, Patel V, Colamonici OR, Li MO et al. The presumptive phosphatidylserine receptor is dispensable for innate anti-inflammatory recognition and clearance of apoptotic cells. J Biol Chem 2005; 281: 5718–5725. Article Google Scholar
Devitt A, Pierce S, Oldreive C, Shingler WH, Gregory CD . CD14-dependent clearance of apoptotic cells by human macrophages: the role of phosphatidylserine. Cell Death Differ 2003; 10: 371–382. ArticleCAS Google Scholar
Hoffmann PR, deCathelineau AM, Ogden CA, Leverrier Y, Bratton DL, Daleke DL et al. Phosphatidylserine (PS) induces PS receptor-mediated macropinocytosis and promotes clearance of apoptotic cells. J Cell Biol 2001; 155: 649–659. ArticleCAS Google Scholar
Wu Y, Tibrewal N, Birge RB . Phosphatidylserine recognition by phagocytes: a view to a kill. Trends Cell Biol 2006; 16: 189–197. ArticleCAS Google Scholar
Parnaik R, Raff MC, Scholes J . Differences between the clearance of apoptotic cells by professional and non-professional phagocytes. Curr Biol 2000; 10: 857–860. ArticleCAS Google Scholar
Henry RM, Hoppe AD, Joshi N, Swanson JA . The uniformity of phagosome maturation in macrophages. J Cell Biol 2004; 164: 185–194. ArticleCAS Google Scholar
Arur S, Uche UE, Rezaul K, Fong M, Scranton V, Cowan AE et al. Annexin I is an endogenous ligand that mediates apoptotic cell engulfment. Dev Cell 2003; 4: 587–598. ArticleCAS Google Scholar
Kawasaki Y, Nakagawa A, Nagaosa K, Shiratsuchi A, Nakanishi Y . Phosphatidylserine binding of class B scavenger receptor type I, a phagocytosis receptor of testicular sertoli cells. J Biol Chem 2002; 277: 27559–27566. ArticleCAS Google Scholar
Fadok VA, de Cathelineau A, Daleke DL, Henson PM, Bratton DL . Loss of phospholipid asymmetry and surface exposure of phosphatidylserine is required for phagocytosis of apoptotic cells by macrophages and fibroblasts. J Biol Chem 2001; 276: 1071–1077. ArticleCAS Google Scholar
Finnemann SC, Rodriguez-Boulan E . Macrophage and retinal pigment epithelium phagocytosis: apoptotic cells and photoreceptors compete for alphavbeta3 and alphavbeta5 integrins, and protein kinase C regulates alphavbeta5 binding and cytoskeletal linkage. J Exp Med 1999; 190: 861–874. ArticleCAS Google Scholar