Age-related differences in fat-free mass, skeletal muscle, body cell mass and fat mass between 18 and 94 years (original) (raw)
Allison DB, Gallagher D, Heo M, Pi-Sunyer FX & Heymsfield SB (1997) Body mass index and all-cause mortality among people age 70 and over: the Longitudinal Study of Aging Int. J. Obes. Relat. Metab. Disord.21 424–431 ArticleCAS Google Scholar
Bartlett HL, Puhl SM, Hodgson JL & Burskirk ER (1991) Fat-free mass in relation to stature: ratios of fat-free mass to height in children, adults, and elderly subjects Am. J. Clin. Nutr.53 1112–1116 Article Google Scholar
Baumgartner RN, Stauber PM, McHugh D, Koehler KM & Garry PJ (1995) Cross-sectional age differences in body composition in persons 60+ years of age J. Gerontol.50A M307–M316 Article Google Scholar
Baumgartner RN, Koehler KM, Gallagher D, Romero L, Heymsfield SB, Ross RR et al (1998) Epidemiology of sarcopenia among the elderly in New Mexico Am. J. Epidemiol.147 755–763 ArticleCAS Google Scholar
Bernstein MS, Morabia S & Sloutskis D (1999) Definition and prevalence of sedentarism in an urban population Am. J. Public Health89 862–867 ArticleCAS Google Scholar
Bink B, Bonier FH & Van der Sluys H (1966) Assessment of the energy expenditure by indirect time and motion study. In Physical Activity in Health and Disease: Proceedings of the Bertostolen Symposium, eds. K Edang & KL Anderson 207–244 Oslo: Oslo University Google Scholar
Blake GM, Patel R & Lewis MK (1996) New generation dual X-ray absorptiometry scanners increase dose to patients and staff J. Bone Mineral Res.11 S15 7 Google Scholar
Chumlea WC, Vellas B & Guo SS (1998) Malnutrition or healthy senescence Proc. Nutr. Soc.57 593–598 ArticleCAS Google Scholar
Chumlea WC, Guo SS, Zeller CM, Reo NV & Siervogel RM (1999) Total body water data for white adults 18 to 64 years of age: the Fels Longitudinal Study Kidney Int.56 244–252 ArticleCAS Google Scholar
Cohn SH, Vaswani AN, Yasumura S, Yuen K & Ellis KJ (1985) Assessment of cellular mass and lean body mass by noninvasive nuclear techniques J. Lab. Clin. Med.105 305–311 CASPubMed Google Scholar
Deurenberg P, Weststrate JA & Seidell JC (1991) Body mass index as a measure of body fatness: age- and sex- specific prediction formula Br. J. Nutr.65 105–114 ArticleCAS Google Scholar
Gallagher D, Visser M, De Meersman RE, Sepulveda D, Baumgartner RN, Pierson RN et al (1995) Appendicular skeletal muscle mass: effects of age, gender and ethnicity J. Appl. Physiol.83 229–239 Article Google Scholar
Gallagher D, Visser M, Wang Z, Harris T, Pierson RN Jr & Heymsfield SB (1996) Metabolically active component of fat-free body mass: influences of age, adiposity and gender Metabolism45 992–997 ArticleCAS Google Scholar
Guo SS, Zeller C, Chumlea WC & Siervogel RM (1999) Aging, body composition, and lifestyle: the Fels Longitudinal Study Am. J. Clin. Nutr.70 405–411 ArticleCAS Google Scholar
Heitmann BL, Erikson H, Ellsinger BM, Mikkelsen KL & Larsson B (2000) Mortality associated with body fat, fat-free mass and body mass index among 60-year-old Swedish men-a 22-year follow-up. The study of men born in 1913. Int. J. Obest. Relat. Metab. Disord.24 33–37 ArticleCAS Google Scholar
Heymsfield SB, Smith R, Aulet M, Benson B, Lichtman S, Wang J et al (1990) Appendicular skeletal muscle mass: measurement by dual-photon absorptiometry Am. J. Clin. Nutr.52 214–218 ArticleCAS Google Scholar
Heymsfield SB, Gallagher D, Poehlman ET, Wolper C, Nonas KDN et al (1994) Menopausal changes in body composition and energy expenditure Exp. Gerontol.29 377–389 ArticleCAS Google Scholar
Jebb SA, Goldberg GR & Elia M (1993) DEXA measurement of fat and bone mineral in relation to depth and adiposity In Human Body Composition: in vivo Methods, Models and Assessment, eds. KJ Ellis & JD Eastman 115–119 New York: Plenum Press Chapter Google Scholar
Kehayias JJ, Fiatarone MA, Zhuang H & Roubenoff R (1997) Total body potassium and body fat: relevance to aging. Am. J. Clin. Nutr.66 904–910 ArticleCAS Google Scholar
Kyle UG, Gremion G, Genton L, Slosman DO, Golay A & Pichard C (2001) Physical activity and fat-free and fat mass as measured by bioelectrical impedance in 3853 adults Med. Sci. Sports Exerc (in press).
Lewis MK, Blake GM & Fogelman I (1994) Patient dose in dual X-ray absorptiometry Osteoporosis Int.4 11–15 ArticleCAS Google Scholar
Lexell J (1995) Human aging, muscle mass, and fiber type composition J. Gerontol. A. Biol. Sci. Med. Sci.50 11–16 PubMed Google Scholar
Lexell J, Henriksson-Larsen K, Winblad B & Sjostrom M (1983) Distribution of different fiber types in human skeletal muscles: effects of aging studied in whole muscle cross sections Muscle Nerve6 588–595 ArticleCAS Google Scholar
Lowry OH & Hastings AB (1942) Histochemical changes in ageing. In The Problems of Aging, eds. EV Cowdry Baltimore: Williams and Wilkins Google Scholar
Lukaski HC, Mendez J, Buskirk ER & Cohn SH (1981) A comparison of methods of assessment of body composition including neutron activation analysis of total body nitrogen Metabolism30 777–782 ArticleCAS Google Scholar
Mazariegos M, Wang ZM, Gallagher D, Baumgartner RN, Allison DB, Wang J et al (1994) Differences between young and old females in the five levels of body composition and their relevance to the two-compartment chemical model J. Gerontol.49 M201–M208 ArticleCAS Google Scholar
Mazess RB, Peppler WW & Gibbons M (1990) Total body composition by dual-photon (153 Gd) absorptiometry Am. J. Clin. Nutr.40 834–839 Article Google Scholar
Moore FD & Boyden CM (1963) Body cell mass and limits of hydration of the fat-free body: their relation to estimated skeletal weight Ann. N.Y. Acad. Sci.110 62–71 Article Google Scholar
Morabia A, Bernstein M, He´ritier S & Ylli A (1997) Community-based surveillance of cardiovascular risk factors in Geneva: methods, resulting distributions, and comparisons with other populations Prev. Med.26 311–319
Pichard C, Kyle UG, Bracco D, Slosman DO, Morabia A & Schutz Y (2000) Reference values of fat-free and fat masses by bioelectrical impedance analysis in 3393 healthy subjects Nutrition16 245–254 ArticleCAS Google Scholar
Roubenoff R (2000) Sarcopenia and its implications for the elderly Eur. J. Clin. Nutr.54(Suppl 3) S40–S47 Article Google Scholar
Slosman DO, Casez JP, Pichard C, Rochat T, Fery F, Rizzoli R et al (1992) Assessment of whole-body composition using dual X-ray absorptiometry Radiology185 593–598 ArticleCAS Google Scholar
Starling RD, Ades PA & Poehlman ET (1999) Physical activity, protein intake, and appendicular skeletal muscle mass in older men Am. J. Clin. Nutr.70 91–96 ArticleCAS Google Scholar
Visser M, Harris TB, Langlois J, Hannan MT, Roubenoff R, Felson DT (1998) Body fat and skeletal muscle mass in relation to physical disability in very old men and women of the Framingham Heart Study J. Gerontol.53 M214–M221 ArticleCAS Google Scholar
Visser M, Fuerst T, Lang T & Harris TB (1999) Validity of fan-beam dual-energy X-ray absorptiometry for measuring fat-free mass and leg muscle mass J. Appl. Physiol.87 1513–1520 ArticleCAS Google Scholar
Voorrips LE, Ravelli ACJ, Dongelmans PCA, Deurenberg P & Van Staveren WA (1991) A physical activity questionnaire for the elderly Med. Sci. Sports Exerc.23 974–979 ArticleCAS Google Scholar
Wang ZM, Visser M, Ma R, Baumgartner R, Kotler D, Gallagher D et al (1996) Skeletal muscle mass: evaluation of neutron activation and dual-energy X-ray absorptiometry methods J. Appl. Physiol.80 824–831 ArticleCAS Google Scholar
Wenger P & Soucas L (1964) Anthropogammame`tre (whole body counter) de Genève. Etalonnage pour le potassium naturel et variation de la teneur en potassium naturel en fonction du poids du sujet Helv. Chim. Acta47 947–951 Article Google Scholar
Zar JH (1999) Comparing simple linear regression equations. In Biostatistical Analysis, eds. JH Zar 360–375 Upper Saddle River, NJ: Prentice Hall Google Scholar