Complex MLL rearrangements in t(4;11) leukemia patients with absent AF4 · MLL fusion allele (original) (raw)
Felix CA, Hosler MR, Winick NJ, Masterson M, Wilson AE, Lange BJ . ALL-1 gene rearrangements in DNA topoisomerase II inhibitor-related leukemia in children. Blood 1995; 85: 3250–3256. CASPubMed Google Scholar
Mitterbauer-Hohendanner G, Mannhalter C . The biological and clinical significance of MLL abnormalities in haematological malignancies. Eur J Clin Invest 2004; 34 (Suppl 2): 12–24. ArticleCASPubMed Google Scholar
Rowley JD . The der(11) chromosome contains the critical breakpoint junction in the 4;11, 9;11, and 11;19 translocations in acute leukemia. Genes Chrom Cancer 1992; 5: 264–266. ArticleCASPubMed Google Scholar
Meyer C, Schneider B, Jakob S, Strehl S, Attarbaschi A, Schnittger S et al. The MLL recombinome of acute leukemias. Leukemia 2006a; 20: 777–784. ArticleCASPubMed Google Scholar
Meyer C, Kowarz E, Oehm C, Klingebiel T, Dingermann T, Marschalek R . Genomic DNA of leukemia patients: target for clinical diagnosis of MLL rearrangements. Biotechnol J 2006b; 1: 656–663. ArticleCASPubMed Google Scholar
Ayton PM, Cleary ML . Molecular mechanisms of leukemogenesis mediated by MLL fusion proteins. Oncogene 2001; 20: 5695–5707. ArticleCASPubMed Google Scholar
Hess JL . Mechanisms of transformation by MLL. Crit Rev Eukaryot Gene Expr 2004; 14: 235–254. ArticleCASPubMed Google Scholar
Horton SJ, Grier DG, McGonigle GJ, Thompson A, Morrow M, De Silva I et al. Continuous MLL-ENL expression is necessary to establish a ‘Hox Code’ and maintain immortalization of hematopoietic progenitor cells. Cancer Res 2005; 65: 9245–9252. ArticleCASPubMed Google Scholar
Rozovskaia T, Feinstein E, Mor O, Foa R, Blechman J, Nakamura T et al. Upregulation of Meis1 and HoxA9 in acute lymphocytic leukemias with the t(4;11) abnormality. Oncogene 2001; 20: 874–878. ArticleCASPubMed Google Scholar
Ayton PM, Cleary ML . Transformation of myeloid progenitors by MLL oncoproteins is dependent on Hoxa7 and Hoxa9. Genes Dev 2003; 17: 2298–2307. ArticleCASPubMedPubMed Central Google Scholar
Zeisig BB, Milne T, Garcia-Cuellar MP, Schreiner S, Martin ME, Fuchs U et al. Hoxa9 and Meis1 are key targets for MLL-ENL-mediated cellular immortalization. Mol Cell Biol 2004; 24: 617–628. ArticleCASPubMedPubMed Central Google Scholar
Hess JL, Bittner CB, Zeisig DT, Bach C, Fuchs U, Borkhardt A et al. c-Myb is an essential downstream target for homeobox-mediated transformation of hematopoietic cells. Blood 2006; 108: 297–304. ArticleCASPubMedPubMed Central Google Scholar
Xia ZB, Popovic R, Chen J, Theisler C, Stuart T, Santillan DA et al. The MLL fusion gene, MLL-AF4, regulates cyclin-dependent kinase inhibitor CDKN1B (p27kip1) expression. Proc Natl Acad Sci USA 2005; 102: 14028–14033. ArticleCASPubMedPubMed Central Google Scholar
Gaussmann A, Wenger T, Eberle I, Bursen A, Bracharz S, Herr I et al. The combined effects of the two reciprocal t(4;11) fusion proteins, MLL_·_AF4 and AF4_·_MLL, confer resistance to apoptosis, cell cycling capacity and growth transformation. Oncogene 2006, [E pub ahead of print].
Milne TA, Hughes CM, Lloyd R, Yang Z, Rozenblatt-Rosen O, Dou Y et al. Menin and MLL cooperatively regulate expression of cyclin-dependent kinase inhibitors. Proc Natl Acad Sci USA 2005a; 102: 749–754. ArticleCASPubMedPubMed Central Google Scholar
Milne TA, Dou Y, Martin ME, Brock HW, Roeder RG, Hess JL . MLL associates specifically with a subset of transcriptionally active target genes. Proc Natl Acad Sci USA 2005b; 102: 14765–14770. ArticleCASPubMedPubMed Central Google Scholar
Milne TA, Martin ME, Brock HW, Slany RK, Hess JL . Leukemogenic MLL fusion proteins bind across a broad region of the Hox a9 locus, promoting transcription and multiple histone modifications. Cancer Res 2005c; 65: 11367–11374. ArticleCASPubMed Google Scholar
Corral J, Lavenir I, Impey H, Warren AJ, Forster A, Larson TA et al. An Mll-AF9 fusion gene made by homologous recombination causes acute leukemia in chimeric mice: a method to create fusion oncogenes. Cell 1996; 85: 853–861. ArticleCASPubMed Google Scholar
Lavau C, Szilvassy SJ, Slany R, Cleary ML . Immortalization and leukemic transformation of a myelomonocytic precursor by retrovirally transduced HRX-ENL. EMBO J 1997; 16: 4226–4237. ArticleCASPubMedPubMed Central Google Scholar
Slany RK, Lavau C, Cleary ML . The oncogenic capacity of HRX-ENL requires the transcriptional transactivation activity of ENL and the DNA binding motifs of HRX. Mol Cell Biol 1998; 18: 122–129. ArticleCASPubMedPubMed Central Google Scholar
Dobson CL, Warren AJ, Pannell R, Forster A, Lavenir I, Corral J et al. The Mll-AF9 gene fusion in mice controls myeloproliferation and specifies acute myeloid leukaemogenesis. EMBO J 1999; 18: 3564–3574. ArticleCASPubMedPubMed Central Google Scholar
DiMartino JF, Miller T, Ayton PM, Landewe T, Hess JL, Cleary ML et al. A carboxy-terminal domain of ELL is required and sufficient for immortalization of myeloid progenitors by MLL-ELL. Blood 2000; 96: 3887–3893. CASPubMed Google Scholar
Lavau C, Du C, Thirman M, Zeleznik-Le N . Chromatin-related properties of CBP fused to MLL generate a myelodysplastic-like syndrome that evolves into myeloid leukemia. EMBO J 2000a; 19: 4655–4664. ArticleCASPubMedPubMed Central Google Scholar
Lavau C, Luo RT, Du C, Thirman MJ . Retrovirus-mediated gene transfer of MLL-ELL transforms primary myeloid progenitors and causes acute myeloid leukemias in mice. Proc Natl Acad Sci USA 2000b; 97: 10984–10989. ArticleCASPubMedPubMed Central Google Scholar
DiMartino JF, Ayton PM, Chen EH, Naftzger CC, Young BD, Cleary ML . The AF10 leucine zipper is required for leukemic transformation of myeloid progenitors by MLL-AF10. Blood 2002; 99: 3780–3785. ArticleCASPubMed Google Scholar
Eguchi M, Eguchi-Ishimae M, Greaves M . The small oligomerization domain of gephyrin converts MLL to an oncogene. Blood 2004; 103: 3876–3882. ArticleCASPubMed Google Scholar
Liu H, Chen B, Xiong H, Huang QH, Zhang QH, Wang ZG et al. Functional contribution of EEN to leukemogenic transformation by MLL-EEN fusion protein. Oncogene 2004; 23: 3385–3394. ArticleCASPubMed Google Scholar
So CW, Karsunky H, Wong P, Weissman IL, Cleary ML . Leukemic transformation of hematopoietic progenitors by MLL-GAS7 in the absence of Hoxa7 or Hoxa9. Blood 2004a; 103: 3192–3199. ArticleCASPubMed Google Scholar
So CW, Cleary ML . Dimerization: a versatile switch for oncogenesis. Blood 2004; 104: 919–922. ArticleCASPubMed Google Scholar
Wang J, Iwasaki H, Krivtsov A, Febbo PG, Thorner AR, Ernst P et al. Conditional MLL-CBP targets GMP and models therapy-related myeloproliferative disease. EMBO J 2005; 24: 368–381. ArticlePubMedPubMed Central Google Scholar
Strehl S, Borkhardt A, Slany R, Fuchs UE, Konig M, Haas OA . The human LASP1 gene is fused to MLL in an acute myeloid leukemia with t(11;17)(q23;q21). Oncogene 2003; 22: 157–160. ArticleCASPubMed Google Scholar
Metzler M, Forster A, Pannell R, Arends MJ, Daser A, Lobato MN et al. A conditional model of MLL-AF4 B-cell tumourigenesis using invertor technology. Oncogene 2006; 25: 3093–3103. ArticleCASPubMed Google Scholar
Chen W, Li Q, Hudson WA, Kumar A, Kirchhof N, Kersey JH . A murine Mll-AF4 knock-in model results in lymphoid and myeloid deregulation and hematologic malignancy. Blood 2006; 108: 669–677. ArticleCASPubMedPubMed Central Google Scholar
Bursen A, Moritz S, Gaussmann A, Moritz S, Dingermann T, Marschalek R . Interaction of AF4 wild-type and AF4.MLL fusion protein with SIAH proteins: indication for t(4;11) pathobiology? Oncogene 2004; 23: 6237–6249. ArticleCASPubMed Google Scholar
Downing JR, Head DR, Raimondi SC, Carroll AJ, Curcio-Brint AM, Motroni TA et al. The der(11)-encoded MLL/AF-4 fusion transcript is consistently detected in t(4;11)(q21;q23)-containing acute lymphoblastic leukemia. Blood 1994; 83: 330–335. CASPubMed Google Scholar
Reichel M, Gillert E, Angermuller S, Hensel JP, Heidel F, Lode M et al. Biased distribution of chromosomal breakpoints involving the MLL gene in infants versus children and adults with t(4;11) ALL. Oncogene 2001; 20: 2900–2907. ArticleCASPubMed Google Scholar
Scharf S, Zech J, Bursen A, Schraets D, Oliver PL, Kliem S et al. Transcription linked to recombination: a gene-internal promoter coincides with the recombination hot spot II of the human MLL gene. Oncogene 2007; 26: 1361–1371. ArticleCASPubMed Google Scholar
Meyer C, Schneider B, Reichel M, Angermueller S, Strehl S, Schnittger S et al. Diagnostic tool for the identification of MLL rearrangements including unknown partner genes. Proc Natl Acad Sci USA 2005; 102: 449–454. ArticleCASPubMed Google Scholar
van Dongen JJ, Macintyre EA, Gabert JA, Delabesse E, Rossi V, Saglio G et al. Standardized RT-PCR analysis of fusion gene transcripts from chromosome aberrations in acute leukemia for detection of minimal residual disease. Report of the BIOMED-1 Concerted Action: investigation of minimal residual disease in acute leukemia. Leukemia 1999; 13: 1901–1928. ArticleCASPubMed Google Scholar
van der Burg M, Beverloo HB, Langerak AW, Wijsman J, van Drunen E, Slater R et al. Rapid and sensitive detection of all types of MLL gene translocations with a single FISH probe set. Leukemia 1999; 13: 2107–2113. ArticleCASPubMed Google Scholar
Andersson A, Höglund M, Johansson B, Lassen C, Billström R, Garwicz S et al. Paired multiplex reverse-transcriptase polymerase chain reaction (PMRT-PCR) analysis as a rapid and accurate diagnostic tool for the detection of MLL fusion genes in hematologic malignancies. Leukemia 2001; 15: 1293–1300. ArticleCASPubMed Google Scholar
van der Burg M, Poulsen TS, Hunger SP, Beverloo HB, Smit EM, Vang-Nielsen K et al. Split-signal FISH for detection of chromosome aberrations in acute lymphoblastic leukemia. Leukemia 2004; 18: 895–908. ArticleCASPubMed Google Scholar
Raffini LJ, Slater DJ, Rappaport EF, Nigro LL, Cheung NK, Biegel JA et al. Panhandle and reverse-panhandle PCR enable cloning of der(11) and der(other) genomic breakpoint junctions of MLL translocations and identify complex translocation of MLL, AF-4, and CDK6. Proc Natl Acad Sci USA 2002; 99: 4568–4573. ArticleCASPubMedPubMed Central Google Scholar
Harrison CJ, Cuneo A, Clark R, Johansson B, Lafage-Pochitaloff M, Mugneret F et al. Ten novel 11q23 chromosomal partner sites. European 11q23 Workshop participants. Leukemia 1998; 12: 811–822. ArticleCASPubMed Google Scholar
Meyer C, Burmeister T, Strehl S, Schneider B, Hubert D, Zach O et al. Spliced MLL fusions: a novel mechanism to generate functional chimaeric MLL·MLLT1 transcripts in t(11;19)(q23;p13.3) leukaemia. Leukemia 2007; 21: 588–590. ArticleCASPubMed Google Scholar
Hunger SP, Galili N, Carroll AJ, Crist WM, Link MP, Cleary ML . The t(1;19)(q23;p13) results in consistent fusion of E2A and PBX1 coding sequences in acute lymphoblastic leukemias. Blood 1991; 77: 687–693. CASPubMed Google Scholar
Kamps MP, Look AT, Baltimore D . The human t(1;19) translocation in pre-B ALL produces multiple nuclear E2A-Pbx1 fusion proteins with differing transforming potentials. Genes Dev 1991; 5: 358–368. ArticleCASPubMed Google Scholar
Wang GG, Pasillas MP, Kamps MP . Persistent transactivation by meis1 replaces hox function in myeloid leukemogenesis models: evidence for co-occupancy of meis1-pbx and hox-pbx complexes on promoters of leukemia-associated genes. Mol Cell Biol 2006; 26: 3902–3916. ArticleCASPubMedPubMed Central Google Scholar
Cho JY, Akbarali Y, Zerbini LF, Gu X, Boltax J, Wang Y et al. Isoforms of the Ets transcription factor NERF/ELF-2 physically interact with AML1 and mediate opposing effects on AML1-mediated transcription of the B cell-specific blk gene. J Biol Chem 2004; 279: 19512–19522. ArticleCASPubMed Google Scholar
Wildonger J, Mann RS . The t(8;21) translocation converts AML1 into a constitutive transcriptional repressor. Development 2005; 132: 2263–2272. ArticleCASPubMed Google Scholar
Kordes U, Krappmann D, Heissmeyer V, Ludwig WD, Scheidereit C . Transcription factor NF-kappaB is constitutively activated in acute lymphoblastic leukemia cells. Leukemia 2000; 14: 399–402. ArticleCASPubMed Google Scholar
Guzman ML, Neering SJ, Upchurch D, Grimes B, Howard DS, Rizzieri DA et al. Nuclear factor-kappaB is constitutively activated in primitive human acute myelogenous leukemia cells. Blood 2001; 98: 2301–2307. ArticleCASPubMed Google Scholar