Schizophrenia, neurodevelopment and corpus callosum (original) (raw)
Parnas J, Bovet P . Autism in schizophrenia revisited. Compr Psychiatry 1991; 32: 7–21. CASPubMed Google Scholar
Andreasen NC . Linking mind and brain in the study of mental illnesses: a project for a scientific psychopathology. Science 1997; 275: 1586–1593. CASPubMed Google Scholar
Mountcastle V . An organizing principle for cerebral function: the unit module and the distributed system. In: Edelman GE, Mountcastle V (eds). The Mindful Brain. MIT Press: Cambridge, MA, 1978; pp 7–50. Google Scholar
Edelman G . Neural Darwinism. The Theory of Neuronal Group Selection. Basic Books Inc: New York, 1987; p 331. Google Scholar
Engel AK, Roelfsema PR, Fries P, Brecht M, Singer W . Role of the temporal domain for response selection and perceptual binding. Cereb Cortex 1997; 7: 571–582. CASPubMed Google Scholar
Selemon LD, Goldman-Rakic P . The reduced neuropil hypothesis: a circuit based model of schizophrenia. Biol Psychiatry 1999; 45: 17–25. CASPubMed Google Scholar
Harrison PJ . The neuropathology of schizophrenia; a critical review of the data and their interpretation. Brain 1999; 122: 593–624. PubMed Google Scholar
Lewis DA . Is there a neuropathology of schizophrenia? Recent findings converge on altered thalamic–prefrontal cortical connectivity. The Neuroscientist 2000; 6: 208–218. Google Scholar
Lewis DA, Lieberman JA . Catching up on schizophrenia: natural history and neurobiology. Neuron 2000; 28: 325–334. CASPubMed Google Scholar
McGlashan TH, Hoffman RE . Schizophrenia as a disorder of developmentally reduced synaptic connectivity. Arch Gen Psychiatry 2000; 57: 637–648. CASPubMed Google Scholar
Selemon LD . Regionally diverse cortical pathology in schizophrenia: clues to the etiology of the disease. Schizophrenia Bull 2001; 27: 349–377. CAS Google Scholar
Feinberg I . Schizophrenia: caused by a fault in programmed synaptic elimination during adolescence? J Psychiatry Res 1982; 17: 319–334. Google Scholar
Beaumont JC, Dimond S . Brain disconnection and schizophrenia. Br J Psychiatry 1973; 123: 661–662. CASPubMed Google Scholar
Friston KJ, Frith CD . Schizophrenia: a disconnection syndrome? Clin Neurosci 1995; 3: 89–97. CASPubMed Google Scholar
Innocenti GM . Exuberant development of connections, and its possible permissive role in cortical evolution. Trends Neurosci 1995; 18: 371–426. CAS Google Scholar
Markram H . A network of tufted layer 5 pyramidal neurons. Cereb Cortex 1997; 7: 523–533. CASPubMed Google Scholar
Zilberter Y, Kaiser KM, Sakmann B . Dendritic GABA release depresses excitatory transmission between layer 2/3 pyramidal and bitufted neurons in rat neocortex. Neuron 1999; 24: 979–988. CASPubMed Google Scholar
Zilberter Y . Dendritic release of glutamate suppresses synaptic inhibition of pyramidal neurons in rat neocortex. J Physiol 2000; 528: 489–496. CASPubMedPubMed Central Google Scholar
Parnas J, Bovet P, Innocenti GM . Schizophrenic trait features, binding, and cortico-cortical connectivity: a neurodevelopmental pathogenetic hypothesis. Neurol Psychiatry Brain Res 1996; 4: 185–196. Google Scholar
Crow TJ . Schizophrenia as a transcallosal misconnection syndrome. Schizophrenia Res 1998; 30: 111–114. CAS Google Scholar
Weinberger DR . Implications of normal brain development for the pathogenesis of schizophrenia. Arch Gen Psychiatry 1987; 44: 660–669. CASPubMed Google Scholar
Marenco S, Weinberger DR . The developmental hypothesis of schizophrenia: following a trail of evidence from cradle to grave. Dev Psychopat 2000; 12: 501–527. CAS Google Scholar
Innocenti GM, Fiore L, Caminiti R . Exuberant projection into the corpus callosum from the visual cortex of newborn cats. Neurosci Lett 1977; 4: 237–242. CASPubMed Google Scholar
Innocenti GM . Growth and reshaping of axons in the establishment of visual callosal connections. Science 1981; 212: 824–827. CASPubMed Google Scholar
Ivy GO, Killackey HP . The ontogeny of the distribution of callosal projection neurons in the rat parietal cortex. J Comp Neurol 1981; 195: 367–389. CASPubMed Google Scholar
Stanfield BB, O'Leary DDM, Fricks C . Selective collateral elimination in early postnatal development restricts cortical distribution of rat pyramidal tract neurones. Nature 1982; 298: 371–373. CASPubMed Google Scholar
Berbel P, Innocenti GM . The development of the corpus callosum in cats: a light- and electron-microscopic study. J Comp Neurol 1988; 276: 132–156. CASPubMed Google Scholar
Kennedy H, Bullier J, Dehay C . Transient projection from the superior temporal sulcus to area 17 in the newborn macaque monkey. Proc Natl Acad Sci USA 1989; 86: 8093–8097. CASPubMed Google Scholar
LaMantia A-S, Rakic P . Axon overproduction and elimination in the corpus callosum of the developing rhesus monkey. J Neurosci 1990; 10: 2156–2175. CASPubMed Google Scholar
Callaway EM, Katz LC . Emergence and refinement of clustered horizontal connections in cat striate cortex. J Neurosci 1990; 10: 1134–1153. CASPubMed Google Scholar
Webster MJ, Ungerleider LG, Bachevalier J . Connections of inferior temporal areas TE and TEO with medial temporal-lobe structures in infant and adult monkeys. J Neurosci 1991; 11: 1095–1116. CASPubMed Google Scholar
Bressoud R, Innocenti GM . Typology, early differentiation and exuberant growth of a set of cortical axons. J Comp Neurol 1999; 406: 87–108. CASPubMed Google Scholar
Innocenti GM . The development of projections from cerebral cortex. Prog Sens Physiol 1991; 12: 65–114. Google Scholar
Cragg BG . The development of synapses in the visual system of the cat. J Comp Neurol 1975; 160: 147–166. CASPubMed Google Scholar
Huttenlocher PR . Synaptic density in human frontal cortex—developmental changes and effects of aging. Brain Res 1979; 163: 195–205. CASPubMed Google Scholar
Huttenlocher PR, De Courten C, Garey LJ, Van der Loos H . Synaptogenesis in human visual cortex—evidence for synapse elimination during normal development. Neurosci Lett 1982; 33: 247–252. CASPubMed Google Scholar
Bourgeois J-P, Rakic P . Changes of synaptic density in the primary visual cortex of the macaque monkey from fetal to adult stage. J Neurosci 1993; 13: 2801–2820. CASPubMed Google Scholar
Aggoun-Zouaoui D, Kiper D, Innocenti GM . Growth of callosal terminal arbors in primary visual areas of the cat. Eur J Neurosci 1996; 8: 1132–1148. Google Scholar
Woo T-U, Pucak ML, Kye CH, Matus CV, Lewis DA . Peribuberal refinement of the intrinsic and associational circuitry in the monkey prefrontal cortex. Neuroscience 1997; 80: 1149–1158. CASPubMed Google Scholar
Parnas J, Carter JW . High-risk studies and developmental hypothesis. In: Häfner H, Resch F (eds). Risk and Protective Factors in Schizophrenia: Towards a Conceptual Disease Model. Springer-Verlag: Berlin, 2001. Google Scholar
Galuske RAW, Schlote W, Singer W . Interhemispheric asymmetries of the modular structure in human temporal cortex. Science 2000; 289: 1946–1949. CASPubMed Google Scholar
Pakkenberg B . Total nerve cell number in neocortex in chronic schizophrenics and controls estimated using optical disectors. Biol Psychiatry 1993; 34: 768–772. CASPubMed Google Scholar
Selemon LD, Rajkowska G, Goldman-Rakic PS . Abnormally high neuronal density in the schizophrenic cortex: a morphometric analysis of prefrontal areas 9 and occipital area 17. Arch Gen Psychiatry 1995; 52: 805–818. CASPubMed Google Scholar
Garey LJ, Ong WY, Patel TS, Kanani M, Davis A, Mortimer AM et al. Reduced dendritic spine density on cerebral cortical pyramidal neurons in schizophrenia. J Neurol Neurosurg Ps 1998; 65: 446–453. CAS Google Scholar
Glantz LA, Lewis DA . Decreased dendritic spine density on prefrontal cortical pyramidal neurons in schizophrenia. Arch Gen Psychiatry 2000; 57: 65–73. CASPubMed Google Scholar
Ong WY, Garey LJ . Ultrastructural features of biopsed temporopolar cortex (area 38) in a case of schizophrenia. Schizophrenia Res 1993; 10: 15–27. CAS Google Scholar
Glantz LA, Lewis DA . Reduction of synaptophysin immunoreactivity in the prefrontal cortex of subjects with schizophrenia: regional and diagnostic specificity. Arch Gen Psychiatry 1997; 54: 943–952. CASPubMed Google Scholar
Karson CN, Mrak RE, Schluterman KO, Sturner WO Sheng JG, Griffin WST . Alterations in synaptic protein and their encoding mRNAs in prefrontal cortex in schizophrenia: a possible neurochemical basis for ‘hypofrontality’. Mol Psychiatry 1999; 4: 39–45. CASPubMed Google Scholar
Honer WG, Falkai P, Chen C, Arango V, Mann JJ, Dwork AJ . Synaptic and plasticity-associated proteins in anterior frontal cortex in severe mental illness. Neuroscience 1999; 91: 1247–1255. CASPubMed Google Scholar
Glantz LA, Austin MC, Lewis DA . Normal cellular levels of synaptophysin mRNA expression in the prefrontal cortex of subjects with schizophrenia. Biol Psychiatry 2000; 48: 389–397. CASPubMed Google Scholar
Miormics K, Middleton FA, Marquez A, Lewis DA, Levitt P . Molecular characterization of schizophrenia viewed by microarray analysis of gene expression in prefrontal cortex. Neuron 2000; 28: 53–67. Google Scholar
Shenton ME, Dickey CC, Frumin M, McCarley RW . A review of MRI findings in schizophrenia. Schizophrenia Res 2001; 49: 1–52. CAS Google Scholar
Weinberger DR, Berman KF, Suddath R, Torrey EF . Evidence of dysfunction of a prefrontal–limbic network in schizophrenia: a magnetic resonance imaging and regional blood flow study of discordant monozygotic twins. Am J Psychiatry 1992; 149: 890–897. CASPubMed Google Scholar
Andreasen NC, O'Leary DS, Flaum M, Nopoulos P, Watkins GL, Boles Ponto LL et al. Hypofrontality in schizophrenia: distributed dysfunctional circuits in neuroleptic naïve patients. Lancet 1997; 349: 1730–1734. CASPubMed Google Scholar
Tsai G, Passani La, Slusher BS, Carter R, Baer L, Kleinman JE et al. Abnormal excitatory neurotransmitter metabolism in schizophrenic brains. Arch Gen Psychiatry 1995; 52: 829–836. CASPubMed Google Scholar
Melone M, Vitellaro-Zuccarello L, Vallejo-Illarramendi A, Pérez-Samartin A, Matute C, Cozzi A, Pellegrini-Giampietro DE et al. The expression of glutamate transporter GLT-1 in the rat cerebral cortex is down-regulated by the antipsychotic drug clozapine. Mol Psychiatry 2001; 6: 380–386. CASPubMed Google Scholar
Do KQ, Trabesinger AH, Kirsten-Kruger M, Lauer CJ, Dydak U, Hell D et al. Schizophrenia: glutathione deficit in cerebrospinal fluid and prefrontal cortex in vivo. Eur J Neurosci 2000; 12: 3721–3728. CASPubMed Google Scholar
Hyde TM, Ziegler JC, Weinberger DR . Psychiatric disturbance in metachromatic leukodystrophy: insight into the neuronbiology of psychosis. Arch Neurol 1992; 49: 401–406. CASPubMed Google Scholar
Friston KJ . Theoretical neurobiology and schizophrenia. Br Medical Bull 1996; 52: 644–655. CAS Google Scholar
Hoffman RE . Neural network simulations, cortical connectivity, and schizophrenic psychosis. MD Computing 1997; 14: 200–208. CASPubMed Google Scholar
Pakkenberg B . Pronounced reduction of nerve cell number in mediodorsal thalamic nucleus and nucleus accumbens in schizophrenics. Arch Gen Psychiatry 1990; 47: 1023–1028. CASPubMed Google Scholar
Popken GJ, Bunney WE, Potkin SG, Jones EG . Subnucleus-specific loss of neurons in medial thalamus of schizophrenics. Proc Natl Acad Sci USA 2000; 97: 9276–9280. CASPubMed Google Scholar
Innocenti GM, Frost DO, Illes J . Maturation of visual callosal connections in visually deprived kittens: a challenging critical period. J Neurosci 1985; 5: 255–267. CASPubMed Google Scholar
Olavarria J . The effect of visual deprivation on the number of callosal cells in the cat is less pronounced in extrastriate cortex than in the 17/18 border region. Neurosci Lett 1995; 195:147–150. CASPubMed Google Scholar
McCasland JS, Bernardo KL, Probst KL, Woolsey TA . Cortical local circuit axons do not mature after early deafferentation. Proc Natl Acad Sci USA 1992; 89: 1832–1836. CASPubMed Google Scholar
Zufferey PD, Jin F, Nakamura H, Tettoni L, Innocenti GM . The role of pattern vision in the development of cortico-cortical connections. Eur J Neurosci 1999; 11: 2669–2688. CASPubMed Google Scholar
Rajkowska G, Selemon LD, Goldman-Rakic PS . Neuronal and glial somal size in the prefrontal cortex. A postmortem morphometric study of schizophrenia and Huntington disease. Arch Gen Psychiatry 1998; 55: 215–224. CASPubMed Google Scholar
Pierri JN, Volk CLE, Sunyaung Auh MS, Sampson A, Lewis DA . Decreased somal size of deep layer 3 pyramidal neurons in the prefrontal cortex of subjects with schizophrenia. Arch Gen Psychiatry 2000; 158: 466–473. Google Scholar
Clarke S, Kraftsik R, Van der Loos H, Innocenti GM . Forms and measures of adult and developing human corpus callosum: is there sexual dimorphism? J Comp Neurol 1989; 280: 213–230. CASPubMed Google Scholar
Kennedy H, Meissirel C, Dehay C . Callosal pathways and their compliancy to general rules governing the organization of corticocortical connectivity. In: Dreher B, Robinson S (eds). Vision and Visual Dysfunction, Vol 3: Neuroanatomy of the Visual Pathways and their Development. Macmillan: London, 1991, pp 324–359. Google Scholar
Lewis DA, Gonzales-Burgos G . Intrinsic excitatory connections in the prefrontal cortex and the pathophysiology of schizophrenia. Brain Res Bull 2000; 52: 309–317. CASPubMed Google Scholar
David AS . Divided visual field studies in schizophrenia. In: Crawford J, Parker D (eds). Developments in Clinical and Experimental Neuropsychology. Plenum Press: New York, 1989, pp 113–126. Google Scholar
Coger RW, Serafetinides EA . Schizophrenia, corpus callosum, and interhemispheric communication: a review. Psychiatry Res 1990; 34: 163–184. CASPubMed Google Scholar
Woodruff PWR, McManus IC, David AS . Meta-analysis of corpus callosum size in schizophrenia. J Neurol Neurosur Ps 1995; 58: 457–461. CAS Google Scholar
Hoff AL, Neal C, Kushner M, DeLisi LE . Gender differences in corpus callosum size in first-episode schizophrenics. Biol Psychiatry 1994; 35: 913–919. CASPubMed Google Scholar
Colombo C, Bonfanti A, Scarone S . Anatomical characteristics of the corpus callosum and clinical corelates in schizophrenia. Eur Arch Psychiatry Clin N 1994; 243: 244–248. CAS Google Scholar
Wright IC, McGuire PK, Poline J-B, Trevere JM, Murray RM, Frith CD et al. A voxel-based method for the statistical analysis of gray and white matter density applied to schizophrenia. Neuroimage 1995; 2: 244–252. CASPubMed Google Scholar
Hendren RL, Hodde-Vargas J, Yeo RA, Vargas LA, Brooks WM, Ford C . Neuropsychophysiological study of children at risk for schizophrenia: a preliminary report. J Am Acad Child Psychiatry 1995; 34: 1284–1291. CAS Google Scholar
Woodruff PWR, Phillips ML, Rushe T, Wright IC, Murray RM, David AS . Corpus callosum size and inter-hemispheric function in schizophrenia. Schizophr Res 1997; 23: 189–196. CASPubMed Google Scholar
Tibbo P, Nopoulos P, Arndt S, Andreasen NC . Corpus callosum shape and size in male patients with schizophrenia. Biol Psychiatry 1998; 44: 405–412. CASPubMed Google Scholar
DeQuardo JR, Keshavan MS, Bookstein FL, Bagwell WW, Green WDK, Sweeney JA et al. Landmark-based morphometric analysis of first-episode schizophrenia. Biol Psychiatry 1999; 45: 1321–1328. CASPubMed Google Scholar
Highley JR, Esiri MM, McDonald B, Cortina-Borja M, Herron BM, Crow TJ . The size and fibre composition of the corpus callosum with respect to gender and schizophrenia: a post-mortem study. Brain 1999; 122: 99–110. PubMed Google Scholar
Meisenzahl EM, Frodl T, Greiner J, Leinsinger G, Maag K-P, Heiss D et al. Corpus callosum size in schizophrenia—a magnetic resonance imaging analysis. Eur Arch Psychiatry Clin N 1999; 249: 305–312. CAS Google Scholar
Scheller-Gilkey G, Lewine RRJ . Age at onset and sex differences in corpus callosum area in schizophrenia. Schizophr Res 1999; 40: 229–235. CASPubMed Google Scholar
Sachdev PS, Brodaty H . Mid-sagittal anatomy in late-onset schizophrenia. Psychol Med 1999; 29: 963–970. CASPubMed Google Scholar
Chua SE, Sharma T, Takei N, Murray RM, Woodruff PWR . A magnetic resonance imaging study of corpus callosum size in familial schizophrenic subjects, their relatives, and normal controls. Schizophr Res 2000; 41: 397–403. CASPubMed Google Scholar
Downhill JE, Buchsbaum MS, Wei T, Spiegel-Cohen J, Hazlett EA, Haznedar MM et al. Shape and size of the corpus callosum in schizophrenia and schizotypal personality disorder. Schizophr Res 2000; 42: 193–208. PubMed Google Scholar
Foong J, Maier M, Clark CA, Barker GJ, Miller DH, Ron MA . Neuropathological abnormalities of the corpus callosum in schizophrenia: a diffusion tensor imaging study. J Neurol Neurosur Ps 2000; 68: 242–244. CAS Google Scholar
Narr KL, Thompson PM, Sharma T, Moussai J, Cannestra AF, Toga AW . Mapping morphology of the corpus callosum in schizophrenia. Cereb Cortex 2000; 10: 40–49. CASPubMed Google Scholar
Agartz I, Andersson JLR, Skasre S . Abnormal brain white matter in schizophrenia: a diffusor tensor imaging study. Neuroreport 2001; 12: 2251–2254. CASPubMed Google Scholar
Foong J, Symms MR, Barker GJ, Maier M, Woermann FG, Miller DH, Ron MA . Neuropathological abnormalities in schizoprenia: evidence from magnetization transfer imaging. Brain 2001; 124: 882–892. CASPubMed Google Scholar
Rossell SL, Shapleske J, Fukuda R, Woodruff PWR, Simmons A, David AS . Corpus callosum area and functioning in schizophrenic patients with auditory–verbal hallucinations. Schizophr Res 2001; 50: 9–17. CASPubMed Google Scholar
Höppner J, Kunesch E, Grossmann A, Tolzin C-J, Schultz M, Schläfke D et al. Dysfunction of transcallosally mediated motor inhibition and callosal morphology in patients with schizophrenia. Acta Psychiat Scand 2001; 104: 227–235. PubMed Google Scholar
Frodl T, Meisenzhal EM, Müller D, Greiner J, Juckel G, Leisinger G et al. Corpus callosum and P300 in schizophrenia. Schizophr Res 2001; 49: 107–120. CASPubMed Google Scholar
Bishop KM, Wahlsten D . Sex differences in the human corpus callosum: myth or reality? Neurosci Biobehav Rev 1997; 21: 581–601. CASPubMed Google Scholar
Schenton ME, Dickey CC, Frumin M, McCarley RW . A review of MRI findings in schizophrenia. Schizophr Res 2001; 49: 1–52. Google Scholar
De Lacoste MC, Kirkpatrick JB, Ross ED . Topography of the human corpus callosum. J Neuropat Exp Neur 1985; 44: 578–591. CAS Google Scholar
Koppel H, Innocenti GM . Is there genuine exuberancy of callosal projections in development? A quantitative electro-microscopic study. Neurosci Lett 1983; 41: 33–40. CASPubMed Google Scholar
Boroojerdi D, Töpper R, Foltys H, Meincke U . Transcallosal inhibition and motor conduction studies in patients with schizophrenia using transcranial magnetic stimulation. Br J Psychiatry 1999; 175: 375–379. CASPubMed Google Scholar
Schwartz BD, Winstead DK, Walker WG . A corpus callosum deficit in sequential analysis by schizophrenics. Biol Psychiatry 1984; 19: 1667–1676. CASPubMed Google Scholar
Gulmann NC, Widshiödtz G, Örbaek K . Alterations of interhemispheric conduction through the corpus callosum in chronic schizophrenia. Biol Psychiatry 1982; 17: 585–594. CASPubMed Google Scholar
Luria AR . The Working Brain. Basic Books, Inc.: New York, 1973; p 398. Google Scholar
Innocenti GM, Manzoni T, Spidalieri G . Relevance of the callosal transfer in defining the peripheral reactivity of somesthesic cortical neurons. Arch Ital Biol 1973; 3: 187–221. Google Scholar
Picard N, Lepore F, Ptito M, Guillemot JP . Bilateral interaction in the second somatosensory area (SII) of the cat and contribution of the corpus callosum. Brain Res 1990; 17(536): 97–104. Google Scholar
Fabri M, Polonara G, Quattrini A, Salvolini U, Del Pesce M, Manzoni T . Role of the corpus callosum in the somatosensory activation of the ipsilateral cerebral cortex: an fMRI study of callosotomized patients. Eur J Neurosci 1999; 11: 3983–3994. CASPubMed Google Scholar
Salamy A . Commissural transmission: maturational changes in humans. Science 1978; 200: 1409–1411. CASPubMed Google Scholar
Engel AK, König P, Kreiter AK, Singer W . Interhemispheric synchronization of oscillatory neuronal responses in cat visual cortex. Science 1991; 252: 1177–1179. CASPubMed Google Scholar
Nowak LG, Munk MHJ, Nelson JI, James AC, Bullier J . Structural basis of cortical synchronization. I. Three types of interhemispheric coupling. J Neurophysiol 1995; 74: 2379–2400. CASPubMed Google Scholar
Munk MHJ, Nowak LG, Nelson JI, Bullier J . Structural basis of cortical synchronization. II. Effects of cortical lesions. J Neurophysiol 1995; 74: 2401–2414. CASPubMed Google Scholar
Knyazeva MG, Kiper DC, Vildavski VY, Desplands PA, Maeder-Ingvar M, Innocenti GM . Visual-stimulus-dependent changes in interhemispheric EEG coherence in humans. J Neurophysiol 1999; 82: 3095–3107. CASPubMed Google Scholar
Merrin EL, Floyd TC, Fein G . EEG coherence in unmedicated schizophrenic patients. Biol Psychiatry 1989; 25: 60–66. CASPubMed Google Scholar
Michelogiannis S, Paritsis N, Trikas P . EEG coherence during hemispheric activation in schizophrenics. Eur Arch Psy Clin N 1991; 241: 31–34. CAS Google Scholar
Nagase Y, Okubo Y, Matsuura M, Kojima T, Toru M . EEG coherence in unmedicated schizophrenic patients: topographical study of predominantly never medicated cases. Biol Psychiatry 1992; 32: 1028–1034. CASPubMed Google Scholar
Morrison-Stewart SL, Velikonja D, Corning WC, Williamson P . Aberrant interhemispheric alpha coherence on electroencephalography in schizophrenic patients during activation tasks. Psychol Med 1996; 26: 605–612. CASPubMed Google Scholar
Merrin EL, Floyd T . Negative symptoms and EEG alpha in schizophrenia: a replication. Schizophr Res 1996; 19: 151–161. CASPubMed Google Scholar
Mann K, Maier W, Franke P, Röschke J, Gänsicke M . Intra- and interhemispheric electroencephalogram coherence in siblings discordant for schizophrenia and healthy volunteers. Biol Psychiatry 1997; 42: 655–663. CASPubMed Google Scholar
Norman RMG, Malla AK, Williamson PC, Morrison-Stewart SL, Helmes E, Cortese L . EEG coherence and syndromes in schizophrenia. Br J Psychiatry 1997; 170: 411–415. CASPubMed Google Scholar
Pinkofsky HB, Struve FA, Meyer MA, Patrick G, Reeves RR . Decreased multi-band posterior interhemispheric coherence with a lipoma on the corpus callosum: a case report of a possible association. Clin Electroencephal 1997; 28: 155–159. CAS Google Scholar
Tauscher J, Fischer P, Neumeister A, Rappelsberger P, Kasper S . Low frontal electroencephalographic coherence in neuroleptic-free schizophrenic patients. Biol Psychiat 1998; 44: 438–447. CASPubMed Google Scholar
Wada Y, Nanbu Y, Jiang Z, Koshino Y, Hashimoto T . Interhemispheric EEG coherence in never-medicated patients with paranoid schizophrenia: analysis at rest and during photic stimulation. Clin Electroencephal 1998; 29: 170–176. CAS Google Scholar
Wada Y, Nanbu Y, Kikuchi M, Koshino Y, Hashimoto T . Aberrant functional organization in schizophrenia: analysis of EEG coherence during rest and photic stimulation in drug-naive patients. Neuropsychobiol 1998; 38: 63–69. CAS Google Scholar
Winterer G, Egan MF, Rädler T, Hyde T, Coppola R, Weinberger DR . An association between reduced interhemispheric EEG coherence in the temporal lobe and genetic risk for schizophrenia. Schizophr Res 2001; 49: 129–143. CASPubMed Google Scholar
Beaumont JG, Dimond S . Brain disconnection and schizophrenia. Br J Psychiatry 1973; 123: 661–662. CASPubMed Google Scholar
Mohr B, Pulvermüller F, Cohen R, Rockstroh B . Interhemispheric cooperation during word processing: evidence for callosal transfer dysfunction in schizophrenic patients. Schizophr Res 2000; 46: 231–239. CASPubMed Google Scholar
Spivak B, Elimelech D, Ocring R, Mester R, Kotler M, Weizman A . Hemispheric function in disorganized type schizophrenia: performance on the quality extinction test. Eur Psychiatry 2000; 15: 402–406. CASPubMed Google Scholar
Bellgrove MA, Bradshaw JL, Velakoulis D, Johnson KA, Rogers MA, Smith D et al. Bimanual coordination in chronic schizophrenia. Brain Cognition 2001; 45: 325–341. CASPubMed Google Scholar
David AS . Stroop effects within and between the cerebral hemispheres: studies in normals and acallosals. Neuropsychologia 1992; 30: 161–175. CASPubMed Google Scholar
David AS . Callosal transfer in schizophrenia: too much or too little? J Abnorm Psychol 1993; 102: 573–579. CASPubMed Google Scholar
David AS . Severe psychiatric disturbance and abnormalities of the corpus callosum: review and case series. J Neurol Neurosurg Ps 1993; 56: 85–93. CAS Google Scholar
Audenaert K, Lahorte P, Brans B, van Laere K, Goethals I, van Heeringen K et al. The classical stroop interference task as a prefrontal activation probe:a validation study using 99Tcm-ECD brain SPECT. Nucl Med Commun 2001; 22: 135–143. CASPubMed Google Scholar
Phillips ML, Woodruff PWR, David AS . Stroop interference and facilitation in the cerebral hemispheres in schizophrenia. Schizophr Res 1996; 20: 57–68. CASPubMed Google Scholar
David AS . Schizophrenia and the corpus callosum: developmental. Structural and functional relationships. Behav Brain Res 1994; 64: 203–211. CASPubMed Google Scholar
Günther W, Petschs R, Steinberg R, Moser E, Streck P, Heller H et al. Brain disfunction during motor activation and corpus callosum alteration in schizophrenia measured by cerebral blood flow and magnetic resonance imaging. Biol Psychiatry 1991; 29: 535–555. PubMed Google Scholar
Merrin EL, Floyd TC . Negative symptoms and EEG alpha activity in schizophrenic patients. Schizophr Res 1992; 8: 11–20. CASPubMed Google Scholar
Eckhorn R, Bauer R, Jordan W, Brosch M, Kruse W, Munk M et al. Coherent oscillations: a mechanism of feature linking in the visual cortex? Multiple electrode and correlation analyses in the cat. Biol Cybern 1988; 60: 121–130. CASPubMed Google Scholar
Gray CM, König P, Engel AK, Singer W . Oscillatory responses in cat visual cortex exhibit inter-columnar synchronization which reflects global stimulus properties. Nature 1989; 338: 334–337. CASPubMed Google Scholar
Joliot M, Ribary U, Llinás R . Human oscillatory brain activity near 40 Hz coexists with cognitive temporal binding. Proc Natl Acad Sci USA 1994; 91: 11 748–11 751. Google Scholar
Singer W, Gray CM . Visual feature integration and the temporal correlation hypothesis. Annu Rev Neurosci 1995; 18: 555–586. CASPubMed Google Scholar
Stransky E . Zur Auffassung gewisser Symptome der Dementia praecox. Neurolog Centralbl 1904; 23: 1074–1143. Google Scholar
Bleuler E . Dementia Preacox oder Gruppe der Schizophrenien. Frantz Deuticke: Leipzig und Wien, 1911, p 420. Google Scholar
Meehl PE . Schizotaxia, schizotypy, schizophrenia. Am Psychol 1962; 17: 827–838. Google Scholar
Kwoon JS, O'Donnell BF, Wallenstein GV, Greene RW, Hirayasu Y, Nestor PG et al. Gamma frequency-range abnormalities to auditory stimulation in schizophrenia. Arch Gen Psychiatry 1999; 56: 1001–1005. Google Scholar
Green MF, Neuchterlein KH . Cortical oscillations and schizophrenia. Timing is of the essence. Arch Gen Psychiatry 1999; 56: 1007–1008. CASPubMed Google Scholar
Haig AR, Gordon E, De Pascalis V, Meares RA, Bahramali H, Harris A . Gamma activity in schizophrenia: evidence of impaired network binding? Clin Neurophysiol 2000; 111: 1461–1468. CASPubMed Google Scholar
Lee K-H, Williams LM, Haig A, Goldberg E, Gordon E . An integration of 40 Hz Gamma and phasic arousal: novelty and routinization processing in schizophrenia. Clin Neurophysiol 2001; 112: 1499–1507. CASPubMed Google Scholar
Parnas J, Vianin P, Saebye D, Jansson L, Volmer Larsen A, Bovet P . Visual binding abilities in the initial and advanced stages of schizophrenia. Acta Psychiat Scand 2001; 103: 1–10. Google Scholar
Wright, IC, Rabe-Hesketh S, Woodruff P, David AS, Murray RM, Bullmore ET . Meta-analysis of regional brain volumes in schizophrenia. Am J Psychiatry 2000; 157: 16–25. CASPubMed Google Scholar
Gazzaniga S, Ivry RB, Mangoun GR . Cognitive Neuroscience. Norton and Company: New York, 1998. Google Scholar
Petty RG . Structural asymmetries of the human brain and their disturbance in schizophrenia. Schizophr Bull 2000; 25: 121–139. Google Scholar
Crow TJ, Commentary on Annett, Yeo et al., Klar, Saugstadt and Orr: cerebral asymmetry language and psychosis—the case for a _Homo sapiens-_specific sex-linked gene for brain growth. Schizophr Res 1999; 39: 219–231. CASPubMed Google Scholar
Crow TJ . Schizophrenia as the price that homo sapiens pays for language: a resolution of the central paradox in the origin of the species. Brain Res Rev 2000; 31: 118–129. CASPubMed Google Scholar
Annett M . The theory of an agnostic right shift gene in schizophrenia and autism. Schizophr Res 1999; 39: 177–182. CASPubMed Google Scholar
Yeo RA, Gangestadt SW, Edgar C, Thoma R . The evolutionary genetic underpinning of schizophrenia: the developmental instability model. Schizophr Res 1999; 39: 197–206. CASPubMed Google Scholar
Lee Y-J, Zhu Y-S, Shen M-F, Tong S-B, Thakor NV . The nonlinear dynamical analysis of the EEG in schizophrenia with temporal and spatial embedding dimension. J Med Eng Technol 2001; 25: 79–83. CASPubMed Google Scholar