GSK-3β inhibition reverses axonal transport defects and behavioural phenotypes in Drosophila (original) (raw)
Heutink P . Untangling tau-related dementia. Hum Mol Genet 2000; 9: 979–986. ArticleCAS Google Scholar
Williams DW, Tyrer M, Shepherd D . Tau and tau reporters disrupt central projections of sensory neurons in Drosophila. J Comp Neurol 2000; 428: 630–640. ArticleCAS Google Scholar
Wittmann CW, Wszolek MF, Shulman JM, Salvaterra PM, Lewis J, Hutton M et al. Tauopathy in Drosophila: neurodegeneration without neurofibrillary tangles. Science 2001; 293: 711–714. ArticleCAS Google Scholar
Jackson GR, Wiedau-Pazos M, Sang TK, Wagle N, Brown CA, Massachi S et al. Human wild-type tau interacts with wingless pathway components and produces neurofibrillary pathology in Drosophila. Neuron 2002; 34: 509–519. ArticleCAS Google Scholar
Jancsik V, Filliol D, Rendon A . Tau proteins bind to kinesin and modulate its activation by microtubules. Neurobiology 1996; 4: 417–429. PubMedCAS Google Scholar
Ebneth A, Godemann R, Stamer K, Illenberger S, Trinczek B, Mandelkow E . Overexpression of tau protein inhibits kinesin-dependent trafficking of vesicles, mitochondria, and endoplasmic reticulum: implications for Alzheimer's disease. J Cell Biol 1998; 143: 777–794. ArticleCAS Google Scholar
Nuydens R, Van Den Kieboom G, Nolten C, Verhulst C, Van Osta P, Spittaels K et al. Coexpression of GSK-3beta corrects phenotypic aberrations of dorsal root ganglion cells, cultured from adult transgenic mice overexpressing human protein tau. Neurobiol Dis 2002; 9: 38–48. ArticleCAS Google Scholar
Stamer K, Vogel R, Thies E, Mandelkow E, Mandelkow EM . Tau blocks traffic of organelles, neurofilaments, and APP vesicles in neurons and enhances oxidative stress. J Cell Biol 2002; 156: 1051–1063. ArticleCAS Google Scholar
Gindhart Jr JG, Desai CJ, Beushausen S, Zinn K, Goldstein LS . Kinesin light chains are essential for axonal transport in Drosophila. J Cell Biol 1998; 141: 443–454. ArticleCAS Google Scholar
Martin M, Iyadurai SJ, Gassman A, Gindhart Jr JG, Hays TS, Saxton WM . Cytoplasmic dynein, the dynactin complex, and kinesin are interdependent and essential for fast axonal transport. Mol Biol Cell 1999; 10: 3717–3728. ArticleCAS Google Scholar
Bowman AB, Kamal A, Ritchings BW, Philp AV, McGrail M, Gindhart JG et al. Kinesin-dependent axonal transport is mediated by the sunday driver (SYD) protein. Cell 2000; 103: 583–594. ArticleCAS Google Scholar
Bowman AB, Patel-King RS, Benashski SE, McCaffery JM, Goldstein LS, King SM . Drosophila roadblock and Chlamydomonas LC7: a conserved family of dynein-associated proteins involved in axonal transport, flagellar motility, and mitosis. J Cell Biol 1999; 146: 165–180. PubMedPubMed CentralCAS Google Scholar
Saxton WM, Hicks J, Goldstein LS, Raff EC . Kinesin heavy chain is essential for viability and neuromuscular functions in Drosophila, but mutants show no defects in mitosis. Cell 1991; 64: 1093–1102. ArticleCAS Google Scholar
Hurd DD, Stern M, Saxton WM . Mutation of the axonal transport motor kinesin enhances paralytic and suppresses Shaker in Drosophila. Genetics 1996; 142: 195–204. PubMedPubMed CentralCAS Google Scholar
Williams DW, Shepherd D . Persistent larval sensory neurones are required for the normal development of the adult sensory afferent projections in Drosophila. Development 2002; 129: 617–624. PubMedCAS Google Scholar
Feany MB, Bender WW . A Drosophila model of Parkinson's disease. Nature 2000; 404: 394–398. ArticleCAS Google Scholar
Shepherd D, Block L, Folwell J, Williams DW . Studying cell interactions during development of the nervous system in Drosophila. In: Tom F (ed). Cell–Cell interactions. Oxford University Press: Oxford, 2002 pp 119–151. Google Scholar
Suster ML, Bate M . Embryonic assembly of a central pattern generator without sensory input. Nature 2002; 416: 174–178. ArticleCAS Google Scholar
Klein PS, Melton DA . A molecular mechanism for the effect of lithium on development. Proc Natl Acad Sci USA 1996; 93: 8455–8459. ArticleCAS Google Scholar
Trinczek B, Ebneth A, Mandelkow EM, Mandelkow E . Tau regulates the attachment/detachment but not the speed of motors in microtubule-dependent transport of single vesicles and organelles. J Cell Sci 1999; 112(Part 14): 2355–2367. PubMedCAS Google Scholar
Ishihara T, Hong M, Zhang B, Nakagawa Y, Lee MK, Trojanowski JQ et al. Age-dependent emergence and progression of a tauopathy in transgenic mice overexpressing the shortest human tau isoform. Neuron 1999; 24: 751–762. ArticleCAS Google Scholar
Probst A, Gotz J, Wiederhold KH, Tolnay M, Mistl C, Jaton AL et al. Axonopathy and amyotrophy in mice transgenic for human four-repeat tau protein. Acta Neuropathol (Berl) 2000; 99: 469–481. ArticleCAS Google Scholar
Spittaels K, Van den Haute C, Van Dorpe J, Bruynseels K, Vandezande K, Laenen I et al. Prominent axonopathy in the brain and spinal cord of transgenic mice overexpressing four-repeat human tau protein. Am J Pathol 1999; 155: 2153–2165. ArticleCAS Google Scholar
Khatoon S, Grundke-Iqbal I, Iqbal K . Brain levels of microtubule-associated protein tau are elevated in Alzheimer's disease: a radioimmuno-slot-blot assay for nanograms of the protein. J Neurochem 1992; 59: 750–753. ArticleCAS Google Scholar
Su JH, Cummings BJ, Cotman CW . Early phosphorylation of tau in Alzheimer's disease occurs at Ser-202 and is preferentially located within neurites. Neuroreport 1994; 5: 2358–2362. ArticleCAS Google Scholar
Spittaels K, Van den Haute C, Van Dorpe J, Geerts H, Mercken M, Bruynseels K et al. Glycogen synthase kinase-3beta phosphorylates protein tau and rescues the axonopathy in the central nervous system of human four-repeat tau transgenic mice. J Biol Chem 2000; 275: 41340–41349. ArticleCAS Google Scholar
Lovestone S, Davis DR, Webster MT, Kaech S, Brion JP, Matus A et al. Lithium reduces tau phosphorylation: effects in living cells and in neurons at therapeutic concentrations. Biol Psychiatry 1999; 45: 995–1003. ArticleCAS Google Scholar
Alonso AC, Zaidi T, Grundke-Iqbal I, Iqbal K . Role of abnormally phosphorylated tau in the breakdown of microtubules in Alzheimer disease. Proc Natl Acad Sci USA 1994; 91: 5562–5566. ArticleCAS Google Scholar
Almenar-Queralt A, Goldstein LS . Linkers, packages and pathways: new concepts in axonal transport. Curr Opin Neurobiol 2001; 11: 550–557. ArticleCAS Google Scholar
Goldstein LS . Kinesin molecular motors: transport pathways, receptors, and human disease. Proc Natl Acad Sci USA 2001; 98: 6999–7003. ArticleCAS Google Scholar
Kamal A, Stokin GB, Yang Z, Xia CH, Goldstein LS . Axonal transport of amyloid precursor protein is mediated by direct binding to the kinesin light chain subunit of kinesin-I. Neuron 2000; 28: 449–459. ArticleCAS Google Scholar
Kamal A, Almenar-Queralt A, LeBlanc JF, Roberts EA, Goldstein LS . Kinesin-mediated axonal transport of a membrane compartment containing beta-secretase and presenilin-1 requires APP. Nature 2001; 414: 643–648. ArticleCAS Google Scholar
Torroja L, Chu H, Kotovsky I, White K . Neuronal overexpression of APPL, the Drosophila homologue of the amyloid precursor protein (APP), disrupts axonal transport. Curr Biol 1999; 9: 489–492. ArticleCAS Google Scholar