A novel tyrosine kinase switch is a mechanism of imatinib resistance in gastrointestinal stromal tumors (original) (raw)
References
Allinen M, Beroukhim R, Cai L, Brennan C, Lahti-Domenici J, Huang H et al. (2004). Molecular characterization of the tumor microenvironment in breast cancer. Cancer Cell6: 17–32. ArticleCAS Google Scholar
Andreasen PA, Egelund R, Petersen HH . (2000). The plasminogen activation system in tumor growth, invasion, and metastasis. Cell Mol Life Sci57: 25–40. ArticleCAS Google Scholar
Antonescu CR, Besmer P, Guo T, Arkun K, Hom G, Koryotowski B . (2005). Acquired resistance to imatinib in gastrointestinal stromal tumor occurs through secondary gene mutation. Clin Cancer Res11: 4182–4190. ArticleCAS Google Scholar
Bauer S, Hubert C, Heinrich MC, Cohen P, Bertagnolli M, Demetri GD et al. (2005). KIT hyperactivation in imatinib-resistant GIST: implications for salvage therapies. ASCO#903423: 824s. Google Scholar
Buchholz M, Biebl A, Neebetae A, Wagner M, Iwamura T, Leder G et al. (2003). SERPINE2 (protease nexin I) promotes extracellular matrix production and local invasion of pancreatic tumors in vivo. Cancer Res63: 4945–4951. CASPubMed Google Scholar
Chen J, Carey K, Godowski PJ . (1997). Identification of Gas6 as a ligand for Mer, a neural cell adhesion molecule related receptor tyrosine kinase implicated in cellular transformation. Oncogene14: 2033–2039. ArticleCAS Google Scholar
Chen LL, Sabripour M, Andtbacka RH, Patel SR, Feig BW, Macapinlac HA et al. (2005). Imatinib resistance in gastrointestinal stromal tumors. Curr Oncol Rep7: 293–299. ArticleCAS Google Scholar
Chen LL, Trent JC, Wu EF, Fuller GN, Ramdas L, Zhang W et al. (2004). A missense mutation in KIT kinase domain 1 correlates with imatinib resistance in gastrointestinal stromal tumors. Cancer Res64: 5913–5919. ArticleCAS Google Scholar
Corless CL, Fletcher JA, Heinrich MC . (2004). Biology of gastrointestinal stromal tumors. J Clin Oncol22: 3813–3825. ArticleCAS Google Scholar
Debiec-Rychter M, Cools J, Dumez H, Sciot R, Stul M, Mentens N et al. (2005). Mechanisms of resistance to imatinib mesylate in gastrointestinal stromal tumors and activity of the PKC412 inhibitor against imatinib-resistant mutants. Gastroenterology128: 270–279. ArticleCAS Google Scholar
Dematteo RP, Heinrich MC, El-Rifai WM, Demetri G . (2002). Clinical management of gastrointestinal stromal tumors: before and after STI-571. Hum Pathol33: 466–477. ArticleCAS Google Scholar
Dematteo RP, Lewis JJ, Leung D, Mudan SS, Woodruff JM, Brennan MF . (2000). Two hundred gastrointestinal stromal tumors: recurrence patterns and prognostic factors for survival. Ann Surg231: 51–58. ArticleCAS Google Scholar
Duffaud F, Blay JY . (2003). Gastrointestinal stromal tumors: biology and treatment. Oncology65: 187–197. Article Google Scholar
Haldar S, Basu A, Croce CM . (1997). Bcl2 is the guardian of microtubule integrity. Cancer Res57: 229–233. CAS Google Scholar
Heinrich MC, Corless CL, Duensing A, McGreevey L, Chen CJ, Joseph N et al. (2003). PDGFRA activating mutations in gastrointestinal stromal tumors. Science299: 708–710. ArticleCAS Google Scholar
Hirota S, Isozaki K, Moriyama Y, Hashimoto K, Nishida T, Ishiguro S et al. (1998). Gain-of-function mutations of c-kit in human gastrointestinal stromal tumors. Science279: 577–580. ArticleCAS Google Scholar
Holland S, Powell M, Franci C, Chan E, Friera A, Atchison R et al. (2005). Multiple roles for the receptor tyrosine kinase axl in tumor formation. Cancer Res65: 9294–9303. ArticleCAS Google Scholar
Kelley LA, MacCallum RM, Sternberg MJ . (2000). Enhanced genome annotation using structural profiles in the program 3D-PSSM. J Mol Biol299: 499–520. ArticleCAS Google Scholar
Kitamura Y, Hirotab S . (2004). Kit as a human oncogenic tyrosine kinase. Cell Mol Life Sci61: 2924–2931. ArticleCAS Google Scholar
Kristiansen G, Sammar M, Altevogt P . (2004). Tumour biological aspects of CD24, a mucin-like adhesion molecule. J Mol Histol35: 255–262. ArticleCAS Google Scholar
Laskowski R, MacArthur M, Moss D, Thornton J . (1993). PROCHECK: a program to check the stereochemical quality of protein structures. J Appl Cryst26: 283–291. ArticleCAS Google Scholar
Mahadevan D, Riley C, Simons B, Della Croce K, Wisner L, Iorio M . (2005a). Mechanisms of gleevec resistance in GIST and potential therapeutic interventions. AACR #507, 96th Annual Meeting April 16–20, 2005. Anaheim/Orange County, CA.
Mahadevan D, Spier C, Della Croce K, Miller S, George B, Riley C et al. (2005b). Transcript profiling in peripheral T-cell lymphoma, not otherwise specified, and diffuse large B-cell lymphoma identifies distinct tumor profile signatures. Mol Cancer Ther4: 1867–1879. ArticleCAS Google Scholar
McLean SR, Gana-Weisz M, Hartzoulakis B, Frow R, Whelan J, Selwood D et al. (2005). Imatinib binding and cKIT inhibition is abrogated by the cKIT kinase domain I missense mutation Val654Ala. Mol Cancer Ther4: 2004–2015. Article Google Scholar
Michieli P, Mazzone M, Basilico C, Cavassa S, Sottile A, Naldini L et al. (2004). Targeting the tumor and its microenvironment by a dual-function decoy Met receptor. Cancer Cell6: 61–73. ArticleCAS Google Scholar
Mol CD, Dougan DR, Schneider TR, Skene RJ, Kraus ML, Scheibe DN et al. (2004). Structural basis for the autoinhibition and STI-571 inhibition of c-Kit tyrosine kinase. J Biol Chem279: 31655–31663. ArticleCAS Google Scholar
Mol CD, Lim KB, Sridhar V, Zou H, Chien EY, Sang BC et al. (2003). Structure of a c-kit product complex reveals the basis for kinase transactivation. J Biol Chem278: 31461–31464. ArticleCAS Google Scholar
O'Bryan JP, Frye RA, Cogswell PC, Neubauer A, Kitch B, Prokop C et al. (1991). Axl, a transforming gene isolated from primary human myeloid leukemia cells, encodes a novel receptor tyrosine kinase. Mol Cell Biol11: 5016–5031. ArticleCAS Google Scholar
Pautsch A, Zoephel A, Ahorn H, Spevak W, Hauptmann R, Nar H . (2001). Crystal structure of bisphosphorylated IGF-1 receptor kinase: insight into domain movements upon kinase activation. Structure9: 955–965. ArticleCAS Google Scholar
Perez-Atayde AR, Shamberger RC, Kozakewich HW . (1993). Neuroectodermal differentiation of the gastrointestinal tumors in the Carney triad. An ultrastructural and immunohistochemical study. Am J Surg Pathol17: 706–714. ArticleCAS Google Scholar
Schiering N, Knapp S, Marconi M, Flocco MM, Cui J, Perego R et al. (2003). Crystal structure of the tyrosine kinase domain of the hepatocyte growth factor receptor c-Met and its complex with the microbial alkaloid K-252a. Proc Natl Acad Sci USA100: 12654–12659. ArticleCAS Google Scholar
Sekiya T, Adachi S, Kohu K, Yamada T, Higuchi O, Furukawa Y et al. (2004). Identification of BMP and activin membrane-bound inhibitor (BAMBI), an inhibitor of transforming growth factor-beta signaling, as a target of the beta-catenin pathway in colorectal tumor cells. J Biol Chem279: 6840–6848. ArticleCAS Google Scholar
Stitt TN, Conn G, Gore M, Lai C, Bruno J, Radziejewski C et al. (1995). The anticoagulation factor protein S and its relative, Gas6, are ligands for the Tyro 3/Axl family of receptor tyrosine kinases. Cell80: 661–670. ArticleCAS Google Scholar
Theou N, Gil S, Devocelle A, Julie C, Lavergne-Slove A, Beauchet A et al. (2005). Multidrug resistance proteins in gastrointestinal stromal tumors: site-dependent expression and initial response to imatinib. Clin Cancer Res11: 7593–7598. ArticleCAS Google Scholar
Tuveson DA, Willis NA, Jacks T, Griffin JD, Singer S, Fletcher CD et al. (2001). STI571 inactivation of the gastrointestinal stromal tumor c-KIT oncoprotein: biological and clinical implications. Oncogene20: 5054–5058. ArticleCAS Google Scholar
Verweij J, Casali PG, Zalcberg J, LeCesne A, Reichardt P, Blay JY et al. (2004). Progression-free survival in gastrointestinal stromal tumours with high-dose imatinib: randomised trial. Lancet364: 1127–1134. ArticleCAS Google Scholar
Wang LG, Liu XM, Kreis W, Budman DR . (1999). The effect of antimicrotubule agents on signal transduction pathways of apoptosis: a review. Cancer Chemother Pharmacol44: 355–361. ArticleCAS Google Scholar