EGFR kinase domain mutations – functional impact and relevance for lung cancer therapy (original) (raw)
Amann J, Kalyankrishna S, Massion PP, Ohm JE, Girard L, Shigematsu H et al. (2005). Aberrant EGFR signalling and enhanced sensitivity to EGFR inhibitors in lung cancer. Cancer Res65: 226–235. CASPubMed Google Scholar
Ando K, Ohmori T, Inoue F, Kadofuku T, Hosaka T, Ishida H et al. (2005). Enhancement of sensitivity to TNF_α_ in NSCLC cells with acquired resistance to gefitinib. Clin Cancer Res11: 8872–8879. CASPubMed Google Scholar
Arao T, Fukumoto H, Takeda M, Tamura T, Saijo N, Nishio K . (2004). Small in-frame deletion in the EGFR as a target for ZD6474. Cancer Res64: 9101–9104. CASPubMed Google Scholar
Asahina H, Yamazaki K, Kinoshita I, Sukoh N, Harada M, Yokouchi H et al. (2006). A phase II trial of gefitinib as first-line therapy for advanced NSCLC with EGFR mutations. Br J Cancer95: 998–1004. CASPubMedPubMed Central Google Scholar
Barber TD, Vogelstein B, Kinzler KW, Velculescu VE . (2004). Somatic mutations of EGFR in colorectal cancers and glioblastomas. N Engl J Med351: 2883. CASPubMed Google Scholar
Bell DW, Gore I, Okimoto RA, Godin-Heymann N, Sordella R, Mulloy R et al. (2005b). Inherited susceptibility to lung cancer may be associated with the T790M drug resistance mutation in EGFR. Nat Genet37: 1315–1316. CASPubMed Google Scholar
Bell DW, Lynch TJ, Haserlat SM, Harris PL, Okimoto RA, Brannigan BW et al. (2005a). EGFR mutations and gene amplification in NSCLC: molecular analysis of the IDEAL/INTACT gefitinib trials. J Clin Oncol23: 8081–8092. CASPubMed Google Scholar
Blencke S, Ullrich A, Daub H . (2003). Mutation of threonine 766 in the EGFR reveals a hotspot for resistance formation against selective tyrosine kinase inhibitors. J Biol Chem278: 15435–15440. CASPubMed Google Scholar
Calvo E, Baselga J . (2006). Ethnic differences in response to EGFR tyrosine kinase inhibitors. J Clin Oncol24: 2158–2163. CASPubMed Google Scholar
Cappuzzo F, Hirsch FR, Rossi E, Bartolini S, Ceresoli GL, Bemis L et al. (2005a). EGFR gene and protein and gefitinib sensitivity in NSCLC. J Natl Cancer Inst97: 643–655. CASPubMed Google Scholar
Cappuzzo F, Magrini E, Ceresoli GL, Bartolini S, Rossi E, Ludovini V et al. (2004). Akt phosphorylation and gefitinib efficacy in patients with advanced NSCLC. J Natl Cancer Inst96: 1133–1141. CASPubMed Google Scholar
Carey KD, Garton AJ, Romero MS, Kahler J, Thomson S, Ross S et al. (2006). Kinetic analysis of EGFR somatic mutant proteins shows increased sensitivity to the EGFR tyrosine kinase inhibitor, erlotinib. Cancer Res66: 8163–8171. CASPubMed Google Scholar
Chen YR, Fu YN, Lin CH, Yang ST, Hu SF, Chen YT et al. (2006). Distinctive activation patterns in constitutively active and gefitinib-sensitive EGFR mutants. Oncogene25: 1205–1215. CASPubMed Google Scholar
Choong NW, Dietrich S, Seiwert TY, Tretiakova MS, Nallasura V, Davies GC et al. (2006). Gefitinib response of erlotinib-refractory lung cancer involving meninges--role of EGFR mutation. Nat Clin Pract Oncol3: 50–57. CASPubMed Google Scholar
Coldren CD, Helfrich BA, Witta SE, Sugita M, Lapadat R, Zeng C et al. (2006). Baseline gene expression predicts sensitivity to gefitinib in NSCLC cell lines. Mol Cancer Res4: 521–528. CASPubMed Google Scholar
Damstrup L, Wandahl PM, Bastholm L, Elling F, Skovgaard PH . (2002). EGFR mutation type III transfected into a SCLC cell line is predominantly localized at the cell surface and enhances the malignant phenotype. Int J Cancer97: 7–14. CASPubMed Google Scholar
Eberhard DA, Johnson BE, Amler LC, Goddard AD, Heldens SL, Herbst RS et al. (2005). Mutations in the EGFR and in KRAS are predictive and prognostic indicators in patients with NSCLC treated with chemotherapy alone and in combination with erlotinib. J Clin Oncol23: 5900–5909. CASPubMed Google Scholar
Engelman JA, Janne PA, Mermel C, Pearlberg J, Mukohara T, Fleet C et al. (2005). ErbB-3 mediates PI3K activity in gefitinib-sensitive NSCLC cell lines. Proc Natl Acad Sci USA102: 3788–3793. CASPubMedPubMed Central Google Scholar
Engelman JA, Mukohara T, Zejnullahu K, Lifshits E, Borras AM, Gale CM et al. (2006). Allelic dilution obscures detection of a biologically significant resistance mutation in EGFR-amplified lung cancer. J Clin Invest116: 2695–2706. CASPubMedPubMed Central Google Scholar
Fabian MA, Biggs WH, Treiber DK, Atteridge CE, Azimioara MD, Benedetti MG et al. (2005). A small molecule-kinase interaction map for clinical kinase inhibitors. Nat Biotechnol23: 329–336. CASPubMed Google Scholar
Fong KM, Sekido Y, Gazdar AF, Minna JD . (2003). Lung cancer. 9: Molecular biology of lung cancer: clinical implications. Thorax58: 892–900. CASPubMedPubMed Central Google Scholar
Fujimoto N, Wislez M, Zhang J, Iwanaga K, Dackor J, Hanna AE et al. (2005). High expression of ErbB family members and their ligands in lung adenocarcinomas that are sensitive to inhibition of EGFR. Cancer Res65: 11478–11485. CASPubMed Google Scholar
Gazdar AF, Shigematsu H, Herz J, Minna JD . (2004). Mutations and addiction to EGFR: the Achilles ‘heal’ of lung cancers? Trends Mol Med10: 481–486. CASPubMed Google Scholar
Giaccone G, Gallegos Ruiz M, Le Chevalier T, Thatcher N, Smit E, Rodriguez JA et al. (2006). Erlotinib for frontline treatment of advanced NSCLC: a phase II study. Clin Cancer Res12: 6049–6055. CASPubMed Google Scholar
Gow CH, Shih JY, Chang YL, Yu CJ . (2005). Acquired gefitinib-resistant mutation of EGFR in a chemo-naive lung adenocarcinoma harboring gefitinib-sensitive mutation L858R. PLoS Med2: e269. PubMedPubMed Central Google Scholar
Greulich H, Chen TH, Feng W, Janne PA, Alvarez JV, Zappaterra M et al. (2005). Oncogenic transformation by inhibitor-sensitive and -resistant EGFR mutants. PLoS Med2: e313. PubMedPubMed Central Google Scholar
Harari PM . (2004). EGFR inhibition strategies in oncology. Endocr Relat Cancer11: 689–708. CASPubMed Google Scholar
Heymach JV, Nilsson M, Blumenschein G, Papadimitrakopoulou V, Herbst R . (2006). EGFR inhibitors in development for the treatment of NSCLC. Clin Cancer Res12: 4441s–4445s. CASPubMed Google Scholar
Hirsch FR, Varella-Garcia M, Bunn Jr PA, Franklin WA, Dziadziuszko R, Thatcher N et al. (2006). Molecular predictors of outcome with gefitinib in a phase III placebo-controlled study in advanced NSCLC. J Clin Oncol24: 5034–5042. CASPubMed Google Scholar
Inukai M, Toyooka S, Ito S, Asano H, Ichihara S, Soh J et al. (2006). Presence of EGFR gene T790M mutation as a minor clone in NSCLC. Cancer Res66: 7854–7858. CASPubMed Google Scholar
Jackman DM, Yeap BY, Sequist LV, Lindeman N, Holmes AJ, Joshi VA . (2006). Exon 19 deletion mutations of EGFR are associated with prolonged survival in NSCLC patients treated with gefitinib or erlotinib. Clin Cancer Res12: 3908–3914. CASPubMed Google Scholar
Janmaat ML, Rodriguez JA, Gallegos-Ruiz M, Kruyt FA, Giaccone G . (2006). Enhanced cytotoxicity induced by gefitinib and specific inhibitors of the Ras or PI3K pathways in NSCLC cells. Int J Cancer118: 209–214. CASPubMed Google Scholar
Janne PA, Engelman JA, Johnson BE . (2005). EGFR mutations in NSCLC: implications for treatment and tumor biology. J Clin Oncol23: 3227–3234. CASPubMed Google Scholar
Ji H, Li D, Chen L, Shimamura T, Kobayashi S, McNamara K et al. (2006). The impact of human EGFR kinase domain mutations on lung tumorigenesis and in vivo sensitivity to EGFR-targeted therapies. Cancer Cell9: 485–495. CASPubMed Google Scholar
Jiang J, Greulich H, Janne PA, Sellers WR, Meyerson M, Griffin JD . (2005). EGF-independent transformation of Ba/F3 cells with cancer-derived EGFR mutants induces gefitinib-sensitive cell cycle progression. Cancer Res65: 8968–8974. CASPubMed Google Scholar
Johnson BE, Janne PA . (2005). Selecting patients for EGFR inhibitor treatment: A FISH story or a tale of mutations? J Clin Oncol23: 6813–6816. CASPubMed Google Scholar
Jones RB, Gordus A, Krall JA, MacBeath G . (2006). A quantitative protein interaction network for the ErbB receptors using protein microarrays. Nature439: 168–174. CASPubMed Google Scholar
Kobayashi S, Boggon TJ, Dayaram T, Janne PA, Kocher O, Meyerson M et al. (2005a). EGFR mutation and resistance of NSCLC to gefitinib. N Engl J Med352: 786–792. CASPubMed Google Scholar
Kobayashi S, Ji H, Yuza Y, Meyerson M, Wong KK, Tenen DG et al. (2005b). An alternative inhibitor overcomes resistance caused by a mutation of the EGFR. Cancer Res65: 7096–7101. CASPubMed Google Scholar
Kokubo Y, Gemma A, Noro R, Seike M, Kataoka K, Matsuda K et al. (2005). Reduction of PTEN protein and loss of EGFR gene mutation in lung cancer with natural resistance to gefitinib. Br J Cancer92: 1711–1719. CASPubMedPubMed Central Google Scholar
Kwak EL, Sordella R, Bell DW, Godin-Heymann N, Okimoto RA, Brannigan BW et al. (2005). Irreversible inhibitors of the EGFR may circumvent acquired resistance to gefitinib. Proc Natl Acad Sci USA102: 7665–7670. CASPubMedPubMed Central Google Scholar
Lee JW, Soung YH, Kim SY, Nam HK, Park WS, Nam SW et al. (2005). Somatic mutations of EGFR gene in SCCHN. Clin Cancer Res11: 2879–2882. CASPubMed Google Scholar
Lynch TJ, Bell DW, Sordella R, Gurubhagavatula S, Okimoto RA, Brannigan BW et al. (2004a). Activating mutations in the EGFR underlying responsiveness of NSCLC to gefitinib. N Engl J Med350: 2129–2139. CASPubMed Google Scholar
Lynch TJ, Lilenbaum RC, Bonomi P, Ansari R, Govindan R, Janne PA et al. (2004b). A phase II trial of cetuximab as therapy for recurrent NSCLC. 40th Annual Meeting of the American Society of Clinical Oncology; 5–8 June 2004 New Orleans: USA. Google Scholar
Marchetti A, Felicioni L, Buttitta F . (2006). Assessing EGFR mutations. N Engl J Med354: 526–528. CASPubMed Google Scholar
Mellstedt H . (2003). Monoclonal antibodies in human cancer. Drugs Today39: 1–16. CAS Google Scholar
Mitsudomi T, Kosaka T, Endoh H, Horio Y, Hida T, Mori S et al. (2005). Mutations of the EGFR gene predict prolonged survival after gefitinib treatment in patients with NSCLC with postoperative recurrence. J Clin Oncol23: 2513–2520. CASPubMed Google Scholar
Moscatello DK, Holgado-Madruga M, Godwin AK, Ramirez G, Gunn G, Zoltick PW et al. (1995). Frequent expression of a mutant EGFR in multiple human tumors. Cancer Res55: 5536–5539. CASPubMed Google Scholar
Mukohara T, Engelman JA, Hanna NH, Yeap BY, Kobayashi S, Lindeman N et al. (2005). Differential effects of gefitinib and cetuximab on NSCLC bearing EGFR mutations. J Natl Cancer Inst97: 1185–1194. CASPubMed Google Scholar
Nagai Y, Miyazawa H, Huqun, Tanaka T, Udagawa K, Kato M et al. (2005). Genetic heterogeneity of the EGFR in NSCLC cell lines revealed by a rapid and sensitive detection system, the peptide nucleic acid-locked nucleic acid PCR clamp. Cancer Res65: 7276–7282. CASPubMed Google Scholar
Niho S, Kubota K, Goto K, Yoh K, Ohmatsu H, Kakinuma R et al. (2006). First-line single agent treatment with gefitinib in patients with advanced NSCLC: a phase II study. J Clin Oncol24: 64–69. CASPubMed Google Scholar
Noble ME, Endicott JA, Johnson LN . (2004). Protein kinase inhibitors: insights into drug design from structure. Science303: 1800–1805. CASPubMed Google Scholar
Normanno N, Bianco C, Strizzi L, Mancino M, Maiello MR, De Luca A et al. (2005). The ErbB receptors and their ligands in cancer: an overview. Curr Drug Targets6: 243–257. CASPubMed Google Scholar
Okamoto I, Kenyon LC, Emlet DR, Mori T, Sasaki J, Hirosako et al. (2003). Expression of constitutively activated EGFRvIII in NSCLC. Cancer Sci94: 50–56. CASPubMed Google Scholar
Oliveira S, van Bergen en Henegouwen PM, Storm G, Schiffelers RM . (2006). Molecular biology of EGFR inhibition for cancer therapy. Expert Opin Biol Ther6: 605–617. CASPubMed Google Scholar
Paez JG, Janne PA, Lee JC, Tracy S, Greulich H, Gabriel S et al. (2004). EGFR mutations in lung cancer: correlation with clinical response to gefitinib therapy. Science304: 1497–1500. CASPubMed Google Scholar
Pao W, Miller VA . (2005). EGFR mutations, small-molecule kinase inhibitors, and NSCLC: current knowledge and future directions. J Clin Oncol23: 2556–2568. CASPubMed Google Scholar
Pao W, Miller VA, Politi KA, Riely GJ, Somwar R, Zakowski MF et al. (2005a). Acquired resistance of lung adenocarcinomas to gefitinib or erlotinib is associated with a second mutation in the EGFR kinase domain. PLoS Med2: e73. PubMedPubMed Central Google Scholar
Pao W, Miller V, Zakowski M, Doherty J, Politi K, Sarkaria I et al. (2004). EGFR gene mutations are common in lung cancers from ‘never-smokers’ and are associated with sensitivity of tumors to gefitinib and erlotinib. Proc Natl Acad Sci USA101: 13306–13311. CASPubMedPubMed Central Google Scholar
Pao W, Wang TY, Riely GJ, Miller VA, Pan Q, Ladanyi M et al. (2005b). KRAS mutations and primary resistance of lung adenocarcinomas to gefitinib or erlotinib. PLoS Med2: e17. PubMedPubMed Central Google Scholar
Pawson T, Gish GD, Nash P . (2001). SH2 domains, interaction modules and cellular wiring. Trends Cell Biol11: 504–511. CASPubMed Google Scholar
Paz-Ares L, Sanchez JM, Garcia-Velasco A, Massuti B, Lopez-Vivanco G, Provencio M et al. (2006). A prospective phase II trail of erlotinib in advanced NSCLC patients with mutations in the TK domain of the EGFR. 42nd Annual Meeting of the American Society of Clinical Oncology; 2–6 June 2006 Atlanta: USA. Google Scholar
Pedersen MW, Meltorn M, Damstrup L, Poulsen HS . (2001). The type III EGFR mutation. Biological significance and potential target for anti-cancer therapy. Ann Oncol12: 745–760. CASPubMed Google Scholar
Perez-Torres M, Guix M, Gonzalez A, Arteaga CL . (2006). EGFR antibody downregulates mutant receptors and inhibits tumors expressing EGFR mutations. J Biol Chem281: 40183–40192. CASPubMed Google Scholar
Politi K, Zakowski MF, Fan PD, Schonfeld EA, Pao W, Varmus HE . (2006). Lung adenocarcinomas induced in mice by mutant EGFR found in human lung cancers respond to a tyrosine kinase inhibitor or to downregulation of the receptors. Genes Dev20: 1496–1510. CASPubMedPubMed Central Google Scholar
Reis-Filho JS, Pinheiro C, Lambros MB, Milanezi F, Carvalho S, Savage K et al. (2006). EGFR amplification and lack of activating mutations in metaplastic breast carcinomas. J Pathol209: 445–453. CASPubMed Google Scholar
Riely GJ, Pao W, Pham D, Li AR, Rizvi N, Venkatraman ES et al. (2006). Clinical course of patients with NSCLC and EGFR exon 19 and exon 21 mutations treated with gefitinib or erlotinib. Clin Cancer Res12: 839–844. CASPubMed Google Scholar
Robertson J, Gutteridge E, Cheung KR, Owers MK, Hamilton L, Gee J et al. (2003). 39th Annual Meeting of the American Society of Clinical Oncology; 31 May-3 June 2003 Chicago: USA. Google Scholar
Roche-Lestienne C, Soenen-Cornu V, Grardel-Duflos N, Lai JL, Philippe N, Facon T et al. (2002). Several types of mutations of the Abl gene can be found in chronic myeloid leukemia patients resistant to STI571, and they can pre-exist to the onset of treatment. Blood100: 1014–1018. CASPubMed Google Scholar
Sato JD, Kawamoto T, Le AD, Mendelsohn J, Polikoff J, Sato GH . (1983). Biological effects in vitro of monoclonal antibodies to human EGFR. Mol Biol Med1: 511–529. CASPubMed Google Scholar
Shepherd FA, Tsao MS . (2006). Unraveling the mystery of prognostic and predictive factors in EGFR therapy. J Clin Oncol24: 1219–1220. PubMed Google Scholar
Shigematsu H, Lin L, Takahashi T, Nomura M, Suzuki M, Wistuba II et al. (2005a). Clinical and biological features associated with EGFR gene mutations in lung cancers. J Natl Cancer Inst97: 339–346. CASPubMed Google Scholar
Shimamura T, Lowell AM, Engelman JA, Shapiro GI . (2005). EGFR harboring kinase domain mutations associate with the Hsp90 chaperone and are destabilized following exposure to geldanamycins. Cancer Res65: 6401–6408. CASPubMed Google Scholar
Sihto H, Puputti M, Pulli L, Tynninen O, Koskinen W, Aaltonen LM et al. (2005). EGFR domain II, IV, and kinase domain mutations in human solid tumors. J Mol Med83: 976–983. CASPubMed Google Scholar
Singh AB, Harris RC . (2005). Autocrine, paracrine and juxtacrine signaling by EGFR ligands. Cell Signal17: 1183–1193. CASPubMed Google Scholar
Sordella R, Bell DW, Haber DA, Settleman J . (2004). Gefitinib-sensitizing EGFR mutations in lung cancer activate anti-apoptotic pathways. Science305: 1163–1167. CASPubMed Google Scholar
Takano T, Ohe Y, Sakamoto H, Tsuta K, Matsuno Y, Tateishi U et al. (2005). EGFR gene mutations and increased copy numbers predict gefitinib sensitivity in patients with recurrent NSCLC. J Clin Oncol23: 6829–6837. CASPubMed Google Scholar
Toyooka S, Kiura K, Mitsudomi T . (2005). EGFR mutation and response of lung cancer to gefitinib. N Engl J Med352: 2136. CASPubMed Google Scholar
Tracy S, Mukohara T, Hansen M, Meyerson M, Johnson BE, Janne PA . (2004). Gefitinib induces apoptosis in the EGFR-L858R NSCLC cell line H3255. Cancer Res64: 7241–7244. CASPubMed Google Scholar
Tsao MS, Sakurada A, Cutz JC, Zhu CQ, Kamel-Reid S, Squire J et al. (2005). Erlotinib in lung cancer – molecular and clinical predictors of outcome. N Engl J Med353: 133–144. CASPubMed Google Scholar
Tsuchihashi Z, Khambata-Ford S, Hanna N, Janne PA . (2005). Responsiveness to cetuximab without mutations in EGFR. N Engl J Med353: 208–209. CASPubMed Google Scholar
Worthylake R, Opresko LK, Wiley HS . (1999). ErbB-2 amplification inhibits downregulation and induces constitutive activation of both ErbB-2 and EGFR. J Biol Chem274: 8865–8874. CASPubMed Google Scholar
Yarden Y . (2001). The EGFR family and its ligands in human cancer signalling mechanisms and therapeutic opportunities. Eur J Cancer37: S3–S8. CASPubMed Google Scholar