Hox genes in hematopoiesis and leukemogenesis (original) (raw)
Afonja O, Smith Jr JE, Cheng DM, Goldenberg AS, Amorosi E, Shimamoto T et al. (2000). MEIS1 and HOXA7 genes in human acute myeloid leukemia. Leuk Res24: 849–855. CASPubMed Google Scholar
Alcalay M, Tiacci E, Bergomas R, Bigerna B, Venturini E, Minardi SP et al. (2005). Acute myeloid leukemia bearing cytoplasmic nucleophosmin (NPMc+AML) shows a distinct gene expression profile characterized by up-regulation of genes involved in stem-cell maintenance. Blood106: 899–902. CASPubMed Google Scholar
Amsellem S, Pflumio F, Bardinet D, Izac B, Charneau P, Romeo PH et al. (2003). Ex vivo expansion of human hematopoietic stem cells by direct delivery of the HOXB4 homeoprotein. Nat Med9: 1423–1427. CASPubMed Google Scholar
Antonchuk J, Sauvageau G, Humphries RK . (2001). HOXB4 overexpression mediates very rapid stem cell regeneration and competitive hematopoietic repopulation. Exp Hematol29: 1125–1134. CASPubMed Google Scholar
Antonchuk J, Sauvageau G, Humphries RK . (2002). HOXB4-induced expansion of adult hematopoietic stem cells ex vivo. Cell109: 39–45. CASPubMed Google Scholar
Armstrong SA, Staunton JE, Silverman LB, Pieters R, den Boer ML, Minden MD et al. (2002). MLL translocations specify a distinct gene expression profile that distinguishes a unique leukemia. Nat Genet30: 41–47. ArticleCASPubMed Google Scholar
Ayton PM, Cleary ML . (2003). Transformation of myeloid progenitors by MLL oncoproteins is dependent on Hoxa7 and Hoxa9. Genes Dev17: 2298–2307. CASPubMedPubMed Central Google Scholar
Bai XT, Gu BW, Yin T, Niu C, Xi XD, Zhang J et al. (2006). Trans-repressive effect of NUP98-PMX1 on PMX1-regulated c-FOS gene through recruitment of histone deacetylase 1 by FG repeats. Cancer Res66: 4584–4590. CASPubMed Google Scholar
Bansal D, Scholl C, Frohling S, McDowell E, Lee BH, Dohner K et al. (2006). Cdx4 dysregulates Hox gene expression and generates acute myeloid leukemia alone and in cooperation with Meis1a in a murine model. Proc Natl Acad Sci USA103: 16924–16929. PubMedPubMed Central Google Scholar
Bergeron J, Clappier E, Cauwelier B, Dastugue N, Millien C, Delabesse E et al. (2006). HOXA cluster deregulation in T-ALL associated with both a TCRD-HOXA and a CALM-AF10 chromosomal translocation. Leukemia20: 1184–1187. CASPubMed Google Scholar
Beslu N, Krosl J, Laurin M, Mayotte N, Humphries KR, Sauvageau G . (2004). Molecular interactions involved in HOXB4-induced activation of HSC self-renewal. Blood104: 2307–2314. ArticleCASPubMed Google Scholar
Bhardwaj G, Murdoch B, Wu D, Baker DP, Williams KP, Chadwick K et al. (2001). Sonic hedgehog induces the proliferation of primitive human hematopoietic cells via BMP regulation. Nat Immunol2: 172–180. CASPubMed Google Scholar
Bijl J, Thompson A, Ramirez-Solis R, Krosl J, Grier DG, Lawrence HJ et al. (2006). Analysis of HSC activity and compensatory Hox gene expression profile in Hoxb cluster mutant fetal liver cells. Blood108: 116–122. CASPubMedPubMed Central Google Scholar
Bjornsson JM, Larsson N, Brun AC, Magnusson M, Andersson E, Lundstrom P et al. (2003). Reduced proliferative capacity of hematopoietic stem cells deficient in Hoxb3 and Hoxb4. Mol Cell Biol23: 3872–3883. CASPubMedPubMed Central Google Scholar
Blair A, Hogge DE, Sutherland HJ . (1998). Most acute myeloid leukemia progenitor cells with long-term proliferative ability in vitro and in vivo have the phenotype CD34(+)/CD71(−)/HLA-DR. Blood92: 4325–4335. CASPubMed Google Scholar
Bonnet D, Dick JE . (1997). Human acute myeloid leukemia is organized as a hierarchy that originates from a primitive hematopoietic cell. Nat Med3: 730–737. CASPubMed Google Scholar
Brun AC, Bjornsson JM, Magnusson M, Larsson N, Leveen P, Ehinger M et al. (2004). Hoxb4-deficient mice undergo normal hematopoietic development but exhibit a mild proliferation defect in hematopoietic stem cells. Blood103: 4126–4133. CASPubMed Google Scholar
Buske C, Feuring-Buske M, Abramovich C, Spiekermann K, Eaves CJ, Coulombel L et al. (2002). Deregulated expression of HOXB4 enhances the primitive growth activity of human hematopoietic cells. Blood100: 862–868. CASPubMed Google Scholar
Calvo KR, Sykes DB, Pasillas MP, Kamps MP . (2002). Nup98-HoxA9 immortalizes myeloid progenitors, enforces expression of Hoxa9, Hoxa7 and Meis1, and alters cytokine-specific responses in a manner similar to that induced by retroviral co-expression of Hoxa9 and Meis1. Oncogene21: 4247–4256. CASPubMed Google Scholar
Camos M, Esteve J, Jares P, Colomer D, Rozman M, Villamor N et al. (2006). Gene expression profiling of acute myeloid leukemia with translocation t(8;16)(p11;p13) and MYST3-CREBBP rearrangement reveals a distinctive signature with a specific pattern of HOX gene expression. Cancer Res66: 6947–6954. CASPubMed Google Scholar
Cauwelier B, Cave H, Gervais C, Lessard M, Barin C, Perot C et al. (2007). Clinical, cytogenetic and molecular characteristics of 14 T-ALL patients carrying the TCRbeta-HOXA rearrangement: a study of the Groupe Francophone de Cytogenetique Hematologique. Leukemia21: 121–128. CASPubMed Google Scholar
Cellot S, Krosl J, Chagraoui J, Meloche S, Humphries RK, Sauvageau G . (2007). Sustained in vitro trigger of self-renewal divisions in Hoxb4hiPbxl(10) hematopoietic stem cells. Exp Hematol35: 802–816. CASPubMedPubMed Central Google Scholar
Chen F, Capecchi MR . (1997). Targeted mutations in hoxa-9 and hoxb-9 reveal synergistic interactions. Dev Biol181: 186–196. CASPubMed Google Scholar
Chung KY, Morrone G, Schuringa JJ, Plasilova M, Shieh JH, Zhang Y et al. (2006). Enforced expression of NUP98-HOXA9 in human CD34(+) cells enhances stem cell proliferation. Cancer Res66: 11781–11791. CASPubMed Google Scholar
Cozzio A, Passegue E, Ayton PM, Karsunky H, Cleary ML, Weissman IL . (2003). Similar MLL-associated leukemias arising from self-renewing stem cells and short-lived myeloid progenitors. Genes Dev17: 3029–3035. CASPubMedPubMed Central Google Scholar
Crump JG, Swartz ME, Eberhart JK, Kimmel CB . (2006). Moz-dependent Hox expression controls segment-specific fate maps of skeletal precursors in the face. Development133: 2661–2669. CASPubMed Google Scholar
Daser A, Rabbitts TH . (2005). The versatile mixed lineage leukaemia gene MLL and its many associations in leukaemogenesis. Semin Cancer Biol15: 175–188. CASPubMed Google Scholar
Davidson AJ, Ernst P, Wang Y, Dekens MP, Kingsley PD, Palis J et al. (2003). cdx4 mutants fail to specify blood progenitors and can be rescued by multiple hox genes. Nature425: 300–306. CASPubMed Google Scholar
Davidson AJ, Zon LI . (2006). The caudal-related homeobox genes cdx1a and cdx4 act redundantly to regulate hox gene expression and the formation of putative hematopoietic stem cells during zebrafish embryogenesis. Dev Biol292: 506–518. CASPubMed Google Scholar
De Braekeleer M, Morel F, Le Bris MJ, Herry A, Douet-Guilbert N . (2005). The MLL gene and translocations involving chromosomal band 11q23 in acute leukemia. Anticancer Res25: 1931–1944. CASPubMed Google Scholar
Deshpande AJ, Cusan M, Rawat VP, Reuter H, Krause A, Pott C et al. (2006). Acute myeloid leukemia is propagated by a leukemic stem cell with lymphoid characteristics in a mouse model of CALM/AF10-positive leukemia. Cancer Cell10: 363–374. CASPubMed Google Scholar
Dik WA, Brahim W, Braun C, Asnafi V, Dastugue N, Bernard OA et al. (2005). CALM-AF10+ T-ALL expression profiles are characterized by overexpression of HOXA and BMI1 oncogenes. Leukemia19: 1948–1957. CASPubMed Google Scholar
DiMartino JF, Selleri L, Traver D, Firpo MT, Rhee J, Warnke R et al. (2001). The Hox cofactor and proto-oncogene Pbx1 is required for maintenance of definitive hematopoiesis in the fetal liver. Blood98: 618–626. CASPubMed Google Scholar
Drabkin HA, Parsy C, Ferguson K, Guilhot F, Lacotte L, Roy L et al. (2002). Quantitative HOX expression in chromosomally defined subsets of acute myelogenous leukemia. Leukemia16: 186–195. CASPubMed Google Scholar
Ekker SC, Jackson DG, von Kessler DP, Sun BI, Young KE, Beachy PA . (1994). The degree of variation in DNA sequence recognition among four Drosophila homeotic proteins. EMBO J13: 3551–3560. CASPubMedPubMed Central Google Scholar
Ernst P, Mabon M, Davidson AJ, Zon LI, Korsmeyer SJ . (2004). An Mll-dependent Hox program drives hematopoietic progenitor expansion. Curr Biol14: 2063–2069. CASPubMed Google Scholar
Ferrando AA, Armstrong SA, Neuberg DS, Sallan SE, Silverman LB, Korsmeyer SJ et al. (2003). Gene expression signatures in MLL-rearranged T-lineage and B-precursor acute leukemias: dominance of HOX dysregulation. Blood102: 262–268. CASPubMed Google Scholar
Fine BM, Stanulla M, Schrappe M, Ho M, Viehmann S, Harbott J et al. (2004). Gene expression patterns associated with recurrent chromosomal translocations in acute lymphoblastic leukemia. Blood103: 1043–1049. CASPubMed Google Scholar
Fischbach NA, Rozenfeld S, Shen W, Fong S, Chrobak D, Ginzinger D et al. (2005). HOXB6 overexpression in murine bone marrow immortalizes a myelomonocytic precursor in vitro and causes hematopoietic stem cell expansion and acute myeloid leukemia in vivo. Blood105: 1456–1466. CASPubMed Google Scholar
Fuller JF, McAdara J, Yaron Y, Sakaguchi M, Fraser JK, Gasson JC . (1999). Characterization of HOX gene expression during myelopoiesis: role of HOX A5 in lineage commitment and maturation. Blood93: 3391–3400. CASPubMed Google Scholar
Gehring WJ, Affolter M, Burglin T . (1994). Homeodomain proteins. Annu Rev Biochem63: 487–526. CASPubMed Google Scholar
Ghannam G, Takeda A, Camarata T, Moore MA, Viale A, Yaseen NR . (2004). The oncogene Nup98-HOXA9 induces gene transcription in myeloid cells. J Biol Chem279: 866–875. CASPubMed Google Scholar
Giampaolo A, Pelosi E, Valtieri M, Montesoro E, Sterpetti P, Samoggia P et al. (1995). HOXB gene expression and function in differentiating purified hematopoietic progenitors. Stem Cells13 (Suppl 1): 90–105. CASPubMed Google Scholar
Giampaolo A, Sterpetti P, Bulgarini D, Samoggia P, Pelosi E, Valtieri M et al. (1994). Key functional role and lineage-specific expression of selected HOXB genes in purified hematopoietic progenitor differentiation. Blood84: 3637–3647. CASPubMed Google Scholar
Golub TR, Slonim DK, Tamayo P, Huard C, Gaasenbeek M, Mesirov JP et al. (1999). Molecular classification of cancer: class discovery and class prediction by gene expression monitoring. Science286: 531–537. CASPubMed Google Scholar
Greer JM, Puetz J, Thomas KR, Capecchi MR . (2000). Maintenance of functional equivalence during paralogous Hox gene evolution. Nature403: 661–665. CASPubMed Google Scholar
Grier DG, Thompson A, Kwasniewska A, McGonigle GJ, Halliday HL, Lappin TR . (2005). The pathophysiology of HOX genes and their role in cancer. J Pathol205: 154–171. CASPubMed Google Scholar
Hess JL, Bittner CB, Zeisig DT, Bach C, Fuchs U, Borkhardt A et al. (2006). c-Myb is an essential downstream target for homeobox-mediated transformation of hematopoietic cells. Blood108: 297–304. CASPubMedPubMed Central Google Scholar
Hisa T, Spence SE, Rachel RA, Fujita M, Nakamura T, Ward JM et al. (2004). Hematopoietic, angiogenic and eye defects in Meis1 mutant animals. EMBO J23: 450–459. CASPubMedPubMed Central Google Scholar
Hoey T, Levine M . (1988). Divergent homeo box proteins recognize similar DNA sequences in Drosophila. Nature332: 858–861. CASPubMed Google Scholar
Hope KJ, Jin L, Dick JE . (2004). Acute myeloid leukemia originates from a hierarchy of leukemic stem cell classes that differ in self-renewal capacity. Nat Immunol5: 738–743. CASPubMed Google Scholar
Horan GS, Kovacs EN, Behringer RR, Featherstone MS . (1995a). Mutations in paralogous Hox genes result in overlapping homeotic transformations of the axial skeleton: evidence for unique and redundant function. Dev Biol169: 359–372. CASPubMed Google Scholar
Horan GS, Ramirez-Solis R, Featherstone MS, Wolgemuth DJ, Bradley A, Behringer RR . (1995b). Compound mutants for the paralogous hoxa-4, hoxb-4, and hoxd-4 genes show more complete homeotic transformations and a dose-dependent increase in the number of vertebrae transformed. Genes Dev9: 1667–1677. CASPubMed Google Scholar
Horton SJ, Grier DG, McGonigle GJ, Thompson A, Morrow M, De Silva I et al. (2005). Continuous MLL-ENL expression is necessary to establish a ‘Hox Code’ and maintain immortalization of hematopoietic progenitor cells. Cancer Res65: 9245–9252. CASPubMed Google Scholar
Huntly BJ, Shigematsu H, Deguchi K, Lee BH, Mizuno S, Duclos N et al. (2004). MOZ-TIF2, but not BCR-ABL, confers properties of leukemic stem cells to committed murine hematopoietic progenitors. Cancer Cell6: 587–596. CASPubMed Google Scholar
Imamura T, Morimoto A, Takanashi M, Hibi S, Sugimoto T, Ishii E et al. (2002). Frequent co-expression of HoxA9 and Meis1 genes in infant acute lymphoblastic leukaemia with MLL rearrangement. Br J Haematol119: 119–121. CASPubMed Google Scholar
Iwama A, Oguro H, Negishi M, Kato Y, Morita Y, Tsukui H et al. (2004). Enhanced self-renewal of hematopoietic stem cells mediated by the polycomb gene product Bmi-1. Immunity21: 843–851. CASPubMed Google Scholar
Iwasaki M, Kuwata T, Yamazaki Y, Jenkins NA, Copeland NG, Osato M et al. (2005). Identification of cooperative genes for NUP98-HOXA9 in myeloid leukemogenesis using a mouse model. Blood105: 784–793. CASPubMed Google Scholar
Izon DJ, Rozenfeld S, Fong ST, Komuves L, Largman C, Lawrence HJ . (1998). Loss of function of the homeobox gene Hoxa-9 perturbs early T-cell development and induces apoptosis in primitive thymocytes. Blood92: 383–393. CASPubMed Google Scholar
Jacobs JJ, Kieboom K, Marino S, DePinho RA, van Lohuizen M . (1999). The oncogene and polycomb-group gene bmi-1 regulates cell proliferation and senescence through the ink4a locus. Nature397: 164–168. CASPubMed Google Scholar
Jin G, Yamazaki Y, Takuwa M, Takahara T, Kaneko K, Kuwata T et al. (2007). Trib1 and Evi1 cooperate with Hoxa and Meis1 in myeloid leukemogenesis. Blood109: 3998–4005. CASPubMed Google Scholar
Kappen C . (2000). Disruption of the homeobox gene Hoxb-6 in mice results in increased numbers of early erythrocyte progenitors. Am J Hematol65: 111–118. CASPubMed Google Scholar
Kasper LH, Brindle PK, Schnabel CA, Pritchard CE, Cleary ML, van Deursen JM . (1999). CREB binding protein interacts with nucleoporin-specific FG repeats that activate transcription and mediate NUP98-HOXA9 oncogenicity. Mol Cell Biol19: 764–776. CASPubMedPubMed Central Google Scholar
Kato Y, Iwama A, Tadokoro Y, Shimoda K, Minoguchi M, Akira S et al. (2005). Selective activation of STAT5 unveils its role in stem cell self-renewal in normal and leukemic hematopoiesis. J Exp Med202: 169–179. CASPubMedPubMed Central Google Scholar
Kawagoe H, Humphries RK, Blair A, Sutherland HJ, Hogge DE . (1999). Expression of HOX genes, HOX cofactors, and MLL in phenotypically and functionally defined subpopulations of leukemic and normal human hematopoietic cells. Leukemia13: 687–698. CASPubMed Google Scholar
Ko KH, Lam QL, Zhang M, Wong CK, Lo CK, Kahmeyer-Gabbe M et al. (2007). Hoxb3 deficiency impairs B lymphopoiesis in mouse bone marrow. Exp Hematol35: 465–475. CASPubMed Google Scholar
Kohlmann A, Schoch C, Schnittger S, Dugas M, Hiddemann W, Kern W et al. (2003). Molecular characterization of acute leukemias by use of microarray technology. Genes Chromosomes Cancer37: 396–405. CASPubMed Google Scholar
Krivtsov AV, Twomey D, Feng Z, Stubbs MC, Wang Y, Faber J et al. (2006). Transformation from committed progenitor to leukaemia stem cell initiated by MLL-AF9. Nature442: 818–822. CASPubMed Google Scholar
Kroon E, Krosl J, Thorsteinsdottir U, Baban S, Buchberg AM, Sauvageau G . (1998). Hoxa9 transforms primary bone marrow cells through specific collaboration with Meis1a but not Pbx1b. EMBO J17: 3714–3725. CASPubMedPubMed Central Google Scholar
Kroon E, Thorsteinsdottir U, Mayotte N, Nakamura T, Sauvageau G . (2001). NUP98-HOXA9 expression in hemopoietic stem cells induces chronic and acute myeloid leukemias in mice. EMBO J20: 350–361. CASPubMedPubMed Central Google Scholar
Krosl J, Beslu N, Mayotte N, Humphries RK, Sauvageau G . (2003). The competitive nature of HOXB4-transduced HSC is limited by PBX1: the generation of ultra-competitive stem cells retaining full differentiation potential. Immunity18: 561–571. CASPubMed Google Scholar
Krumlauf R . (1994). Hox genes in vertebrate development. Cell78: 191–201. CASPubMed Google Scholar
Kumar AR, Hudson WA, Chen W, Nishiuchi R, Yao Q, Kersey JH . (2004). Hoxa9 influences the phenotype but not the incidence of Mll-AF9 fusion gene leukemia. Blood103: 1823–1828. CASPubMed Google Scholar
Lam DH, Aplan PD . (2001). NUP98 gene fusions in hematologic malignancies. Leukemia15: 1689–1695. CASPubMed Google Scholar
Lawrence HJ, Christensen J, Fong S, Hu YL, Weissman I, Sauvageau G et al. (2005). Loss of expression of the Hoxa-9 homeobox gene impairs the proliferation and repopulating ability of hematopoietic stem cells. Blood106: 3988–3994. CASPubMedPubMed Central Google Scholar
Lawrence HJ, Helgason CD, Sauvageau G, Fong S, Izon DJ, Humphries RK et al. (1997). Mice bearing a targeted interruption of the homeobox gene HOXA9 have defects in myeloid, erythroid, and lymphoid hematopoiesis. Blood89: 1922–1930. CASPubMed Google Scholar
Lawrence HJ, Rozenfeld S, Cruz C, Matsukuma K, Kwong A, Komuves L et al. (1999). Frequent co-expression of the HOXA9 and MEIS1 homeobox genes in human myeloid leukemias. Leukemia13: 1993–1999. CASPubMed Google Scholar
Lawrence HJ, Sauvageau G, Humphries RK, Largman C . (1996). The role of HOX homeobox genes in normal and leukemic hematopoiesis. Stem Cells14: 281–291. CASPubMed Google Scholar
Lessard J, Sauvageau G . (2003). Bmi-1 determines the proliferative capacity of normal and leukaemic stem cells. Nature423: 255–260. CASPubMed Google Scholar
Lin YW, Slape C, Zhang Z, Aplan PD . (2005). NUP98-HOXD13 transgenic mice develop a highly penetrant, severe myelodysplastic syndrome that progresses to acute leukemia. Blood106: 287–295. CASPubMedPubMed Central Google Scholar
Mamo A, Krosl J, Kroon E, Bijl J, Thompson A, Mayotte N et al. (2006). Molecular dissection of Meis1 reveals 2 domains required for leukemia induction and a key role for Hoxa gene activation. Blood108: 622–629. CASPubMed Google Scholar
Mann RS . (1995). The specificity of homeotic gene function. BioEssays17: 855–863. CASPubMed Google Scholar
Matsui W, Huff CA, Wang Q, Malehorn MT, Barber J, Tanhehco Y et al. (2004). Characterization of clonogenic multiple myeloma cells. Blood103: 2332–2336. CASPubMed Google Scholar
Miller CT, Maves L, Kimmel CB . (2004). moz regulates Hox expression and pharyngeal segmental identity in zebrafish. Development131: 2443–2461. CASPubMed Google Scholar
Miyamoto T, Weissman IL, Akashi K . (2000). AML1/ETO-expressing nonleukemic stem cells in acute myelogenous leukemia with 8;21 chromosomal translocation. Proc Natl Acad Sci USA97: 7521–7526. CASPubMedPubMed Central Google Scholar
Moens CB, Selleri L . (2006). Hox cofactors in vertebrate development. Dev Biol291: 193–206. CASPubMed Google Scholar
Moretti P, Simmons P, Thomas P, Haylock D, Rathjen P, Vadas M et al. (1994). Identification of homeobox genes expressed in human haemopoietic progenitor cells. Gene144: 213–219. CASPubMed Google Scholar
Morgado E, Albouhair S, Lavau C . (2007). Flt3 is dispensable to the Hoxa9/Meis1 leukemogenic cooperation. Blood109: 4020–4022. CASPubMed Google Scholar
Moskow JJ, Bullrich F, Huebner K, Daar IO, Buchberg AM . (1995). Meis1, a _PBX1_-related homeobox gene involved in myeloid leukemia in BXH-2 mice. Mol Cell Biol15: 5434–5443. CASPubMedPubMed Central Google Scholar
Nakamura T . (2005). NUP98 fusion in human leukemia: dysregulation of the nuclear pore and homeodomain proteins. Int J Hematol82: 21–27. CASPubMed Google Scholar
O’Brien CA, Pollett A, Gallinger S, Dick JE . (2007). A human colon cancer cell capable of initiating tumour growth in immunodeficient mice. Nature445: 106–110. PubMed Google Scholar
Ohta H, Sekulovic S, Bakovic S, Eaves CJ, Pineault N, Gasparetto M et al. (2007). Near maximal-expansions of hematopoietic stem cells in culture using NUP98-HOX fusions. Exp Hematol35: 817–830. CASPubMedPubMed Central Google Scholar
Okada Y, Jiang Q, Lemieux M, Jeannotte L, Su L, Zhang Y . (2006). Leukaemic transformation by CALM-AF10 involves upregulation of Hoxa5 by hDOT1L. Nat Cell Biol8: 1017–1024. CASPubMedPubMed Central Google Scholar
Owens BM, Hawley RG . (2002). HOX and non-HOX homeobox genes in leukemic hematopoiesis. Stem Cells20: 364–379. CASPubMed Google Scholar
Ozeki K, Kiyoi H, Hirose Y, Iwai M, Ninomiya M, Kodera Y et al. (2004). Biologic and clinical significance of the FLT3 transcript level in acute myeloid leukemia. Blood103: 1901–1908. CASPubMed Google Scholar
Palmqvist L, Argiropoulos B, Pineault N, Abramovich C, Sly LM, Krystal G et al. (2006). The Flt3 receptor tyrosine kinase collaborates with NUP98-HOX fusions in acute myeloid leukemia. Blood108: 1030–1036. CASPubMed Google Scholar
Park IK, Qian D, Kiel M, Becker MW, Pihalja M, Weissman IL et al. (2003). Bmi-1 is required for maintenance of adult self-renewing haematopoietic stem cells. Nature423: 302–305. CASPubMed Google Scholar
Passegue E, Wagner EF, Weissman IL . (2004). JunB deficiency leads to a myeloproliferative disorder arising from hematopoietic stem cells. Cell119: 431–443. CASPubMed Google Scholar
Pineault N, Abramovich C, Humphries RK . (2005). Transplantable cell lines generated with NUP98-Hox fusion genes undergo leukemic progression by Meis1 independent of its binding to DNA. Leukemia19: 636–643. CASPubMed Google Scholar
Pineault N, Abramovich C, Ohta H, Humphries RK . (2004). Differential and common leukemogenic potentials of multiple NUP98-Hox fusion proteins alone or with Meis1. Mol Cell Biol24: 1907–1917. CASPubMedPubMed Central Google Scholar
Pineault N, Buske C, Feuring-Buske M, Abramovich C, Rosten P, Hogge DE et al. (2003). Induction of acute myeloid leukemia in mice by the human leukemia-specific fusion gene NUP98-HOXD13 in concert with Meis1. Blood101: 4529–4538. CASPubMed Google Scholar
Pineault N, Helgason CD, Lawrence HJ, Humphries RK . (2002). Differential expression of Hox, Meis1, and Pbx1 genes in primitive cells throughout murine hematopoietic ontogeny. Exp Hematol30: 49–57. CASPubMed Google Scholar
Ponti D, Costa A, Zaffaroni N, Pratesi G, Petrangolini G, Coradini D et al. (2005). Isolation and in vitro propagation of tumorigenic breast cancer cells with stem/progenitor cell properties. Cancer Res65: 5506–5511. CASPubMed Google Scholar
Quentmeier H, Dirks WG, Macleod RA, Reinhardt J, Zaborski M, Drexler HG . (2004). Expression of HOX genes in acute leukemia cell lines with and without MLL translocations. Leuk Lymphoma45: 567–574. CASPubMed Google Scholar
Reya T, Duncan AW, Ailles L, Domen J, Scherer DC, Willert K et al. (2003). A role for Wnt signalling in self-renewal of haematopoietic stem cells. Nature423: 409–414. CASPubMed Google Scholar
Rozovskaia T, Feinstein E, Mor O, Foa R, Blechman J, Nakamura T et al. (2001). Upregulation of Meis1 and HoxA9 in acute lymphocytic leukemias with the t(4:11) abnormality. Oncogene20: 874–878. CASPubMed Google Scholar
Satoh Y, Matsumura I, Tanaka H, Ezoe S, Sugahara H, Mizuki M et al. (2004). Roles for c-Myc in self-renewal of hematopoietic stem cells. J Biol Chem279: 24986–24993. CASPubMed Google Scholar
Sauvageau G, Lansdorp PM, Eaves CJ, Hogge DE, Dragowska WH, Reid DS et al. (1994). Differential expression of homeobox genes in functionally distinct CD34+ subpopulations of human bone marrow cells. Proc Natl Acad Sci USA91: 12223–12227. CASPubMedPubMed Central Google Scholar
Sauvageau G, Thorsteinsdottir U, Eaves CJ, Lawrence HJ, Largman C, Lansdorp PM et al. (1995). Overexpression of HOXB4 in hematopoietic cells causes the selective expansion of more primitive populations in vitro and in vivo. Genes Dev9: 1753–1765. CASPubMed Google Scholar
Sauvageau G, Thorsteinsdottir U, Hough MR, Hugo P, Lawrence HJ, Largman C et al. (1997). Overexpression of HOXB3 in hematopoietic cells causes defective lymphoid development and progressive myeloproliferation. Immunity6: 13–22. CASPubMed Google Scholar
Schreiner S, Birke M, Garcia-Cuellar MP, Zilles O, Greil J, Slany RK . (2001). MLL-ENL causes a reversible and myc-dependent block of myelomonocytic cell differentiation. Cancer Res61: 6480–6486. CASPubMed Google Scholar
Schuettengruber B, Chourrout D, Vervoort M, Leblanc B, Cavalli G . (2007). Genome regulation by polycomb and trithorax proteins. Cell128: 735–745. CASPubMed Google Scholar
Shen WF, Detmer K, Mathews CH, Hack FM, Morgan DA, Largman C et al. (1992). Modulation of homeobox gene expression alters the phenotype of human hematopoietic cell lines. EMBO J11: 983–989. CASPubMedPubMed Central Google Scholar
Shen WF, Montgomery JC, Rozenfeld S, Moskow JJ, Lawrence HJ, Buchberg AM et al. (1997). AbdB-like Hox proteins stabilize DNA binding by the Meis1 homeodomain proteins. Mol Cell Biol17: 6448–6458. CASPubMedPubMed Central Google Scholar
Shimamoto T, Tang Y, Naot Y, Nardi M, Brulet P, Bieberich CJ et al. (1999). Hematopoietic progenitor cell abnormalities in Hoxc-8 null mutant mice. J Exp Zool283: 186–193. CASPubMed Google Scholar
Singh SK, Hawkins C, Clarke ID, Squire JA, Bayani J, Hide T et al. (2004). Identification of human brain tumour initiating cells. Nature432: 396–401. CASPubMed Google Scholar
Slape C, Aplan PD . (2004). The role of NUP98 gene fusions in hematologic malignancy. Leuk Lymphoma45: 1341–1350. CASPubMed Google Scholar
So CW, Karsunky H, Wong P, Weissman IL, Cleary ML . (2004). Leukemic transformation of hematopoietic progenitors by MLL-GAS7 in the absence of Hoxa7 or Hoxa9. Blood103: 3192–3199. CASPubMed Google Scholar
Somervaille TC, Cleary ML . (2006). Identification and characterization of leukemia stem cells in murine MLL-AF9 acute myeloid leukemia. Cancer Cell10: 257–268. CASPubMed Google Scholar
Soulier J, Clappier E, Cayuela JM, Regnault A, Garcia-Peydro M, Dombret H et al. (2005). HOXA genes are included in genetic and biologic networks defining human acute T-cell leukemia (T-ALL). Blood106: 274–286. CASPubMed Google Scholar
Speleman F, Cauwelier B, Dastugue N, Cools J, Verhasselt B, Poppe B et al. (2005). A new recurrent inversion, inv(7)(p15q34), leads to transcriptional activation of HOXA10 and HOXA11 in a subset of T-cell acute lymphoblastic leukemias. Leukemia19: 358–366. CASPubMed Google Scholar
Suemori H, Noguchi S . (2000). Hox C cluster genes are dispensable for overall body plan of mouse embryonic development. Dev Biol220: 333–342. CASPubMed Google Scholar
Taussig DC, Pearce DJ, Simpson C, Rohatiner AZ, Lister TA, Kelly G et al. (2005). Hematopoietic stem cells express multiple myeloid markers: implications for the origin and targeted therapy of acute myeloid leukemia. Blood106: 4086–4092. CASPubMedPubMed Central Google Scholar
Thorsteinsdottir U, Kroon E, Jerome L, Blasi F, Sauvageau G . (2001). Defining roles for HOX and MEIS1 genes in induction of acute myeloid leukemia. Mol Cell Biol21: 224–234. CASPubMedPubMed Central Google Scholar
Thorsteinsdottir U, Mamo A, Kroon E, Jerome L, Bijl J, Lawrence HJ et al. (2002). Overexpression of the myeloid leukemia-associated Hoxa9 gene in bone marrow cells induces stem cell expansion. Blood99: 121–129. CASPubMed Google Scholar
Thorsteinsdottir U, Sauvageau G, Hough MR, Dragowska W, Lansdorp PM, Lawrence HJ et al. (1997). Overexpression of HOXA10 in murine hematopoietic cells perturbs both myeloid and lymphoid differentiation and leads to acute myeloid leukemia. Mol Cell Biol17: 495–505. CASPubMedPubMed Central Google Scholar
Thorsteinsdottir U, Sauvageau G, Humphries RK . (1999). Enhanced in vivo regenerative potential of HOXB4-transduced hematopoietic stem cells with regulation of their pool size. Blood94: 2605–2612. CASPubMed Google Scholar
Tsutsumi S, Taketani T, Nishimura K, Ge X, Taki T, Sugita K et al. (2003). Two distinct gene expression signatures in pediatric acute lymphoblastic leukemia with MLL rearrangements. Cancer Res63: 4882–4887. CASPubMed Google Scholar
Tupler R, Perini G, Green MR . (2001). Expressing the human genome. Nature409: 832–833. CASPubMed Google Scholar
Uchida N, Dykstra B, Lyons KJ, Leung FY, Eaves CJ . (2003). Different in vivo repopulating activities of purified hematopoietic stem cells before and after being stimulated to divide in vitro with the same kinetics. Exp Hematol31: 1338–1347. CASPubMed Google Scholar
van der Lugt NM, Alkema M, Berns A, Deschamps J . (1996). The polycomb-group homolog Bmi-1 is a regulator of murine Hox gene expression. Mech Dev58: 153–164. CASPubMed Google Scholar
Varnum-Finney B, Xu L, Brashem-Stein C, Nourigat C, Flowers D, Bakkour S et al. (2000). Pluripotent, cytokine-dependent, hematopoietic stem cells are immortalized by constitutive Notch1 signaling. Nat Med6: 1278–1281. CASPubMed Google Scholar
Wang GG, Pasillas MP, Kamps MP . (2005). Meis1 programs transcription of FLT3 and cancer stem cell character, using a mechanism that requires interaction with Pbx and a novel function of the Meis1 C-terminus. Blood106: 254–264. CASPubMedPubMed Central Google Scholar
Wang GG, Pasillas MP, Kamps MP . (2006). Persistent transactivation by meis1 replaces hox function in myeloid leukemogenesis models: evidence for co-occupancy of meis1-pbx and hox-pbx complexes on promoters of leukemia-associated genes. Mol Cell Biol26: 3902–3916. CASPubMedPubMed Central Google Scholar
Xin L, Lawson DA, Witte ON . (2005). The Sca-1 cell surface marker enriches for a prostate-regenerating cell subpopulation that can initiate prostate tumorigenesis. Proc Natl Acad Sci USA102: 6942–6947. CASPubMedPubMed Central Google Scholar
Yeoh EJ, Ross ME, Shurtleff SA, Williams WK, Patel D, Mahfouz R et al. (2002). Classification, subtype discovery, and prediction of outcome in pediatric acute lymphoblastic leukemia by gene expression profiling. Cancer Cell1: 133–143. CASPubMed Google Scholar
Zakany J, Fromental-Ramain C, Warot X, Duboule D . (1997). Regulation of number and size of digits by posterior Hox genes: a dose-dependent mechanism with potential evolutionary implications. Proc Natl Acad Sci USA94: 13695–13700. CASPubMedPubMed Central Google Scholar
Zakany J, Gerard M, Favier B, Potter SS, Duboule D . (1996). Functional equivalence and rescue among group 11 Hox gene products in vertebral patterning. Dev Biol176: 325–328. CASPubMed Google Scholar
Zeisig BB, Milne T, Garcia-Cuellar MP, Schreiner S, Martin ME, Fuchs U et al. (2004). Hoxa9 and Meis1 are key targets for MLL-ENL-mediated cellular immortalization. Mol Cell Biol24: 617–628. CASPubMedPubMed Central Google Scholar
Zhang XB, Beard BC, Beebe K, Storer B, Humphries RK, Kiem HP . (2006). Differential effects of HOXB4 on nonhuman primate short- and long-term repopulating cells. PLoS Med3: e173. PubMedPubMed Central Google Scholar