Linkages between stratospheric ozone, UV radiation and climate change and their implications for terrestrial ecosystems (original) (raw)

References

  1. IPCC, Climate Change 2014: Impacts, Adaptation, and Vulnerability. Part A: Global and Sectoral Aspects. Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, ed. C. B. Field, V. R. Barros, D. J. Dokken, K. J. Mach, M. D. Mastrandrea, T. E. Bilir, M. Chatterjee, K. L. Ebi, Y. O. Estrada, R. C. Genova, B. Girma, E. S. Kissel, A. N. Levy, S. MacCracken, P. R. Mastrandrea and L. L. White, Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 2014.
  2. G. T. Pecl, M. B. Araújo, J. D. Bell, J. Blanchard, T. C. Bonebrake, I.-C. Chen, T. D. Clark, R. K. Colwell, F. Danielsen, B. Evengård, L. Falconi, S. Ferrier, S. Frusher, R. A. Garcia, R. B. Griffis, A. J. Hobday, C. Janion-Scheepers, M. A. Jarzyna, S. Jennings, J. Lenoir, H. I. Linnetved, V. Y. Martin, P. C. McCormack, J. McDonald, N. J. Mitchell, T. Mustonen, J. M. Pandolfi, N. Pettorelli, E. Popova, S. A. Robinson, B. R. Scheffers, J. D. Shaw, C. J. B. Sorte, J. M. Strugnell, J. M. Sunday, M.-N. Tuanmu, A. Vergés, C. Villanueva, T. Wernberg, E. Wapstra and S. E. Williams, Biodiversity redistribution under climate change: Impacts on ecosystems and human well-being, Science, 2017, 355, eaai9214.
  3. USGCRP, Climate Science Special Report: Fourth National Climate Assessment, U.S. Global Change Research Program, Washington, DC, USA, 2017, vol. I, p. 470.
  4. A. F. Bais, G. Bernhard, R. L. McKenzie, P. J. Aucamp, P. J. Young, M. Ilyas, P. Jöckel and M. Deushi, Ozoneclimate interactions and effects on solar ultraviolet radiation, Photochem. Photobiol. Sci., 2019, 18, DOI: 10.1039/C8PP90059K.
  5. S. A. Robinson and D. J. Erickson III, Not just about sunburn—the ozone hole’s profound effect on climate has significant implications for Southern Hemisphere ecosystems, Glob. Change Biol., 2015, 21, 515–527.
    Article Google Scholar
  6. M. M. Caldwell, J. F. Bornman, C. L. Ballaré, S. D. Flint and G. Kulandaivelu, Terrestrial ecosystems, increased solar ultraviolet radiation, and interactions with other climate change factors, Photochem. Photobiol. Sci., 2007, 6, 252–266.
    Article CAS PubMed Google Scholar
  7. C. L. Ballaré, M. M. Caldwell, S. D. Flint, S. A. Robinson and J. F. Bornman, Effects of solar ultraviolet radiation on terrestrial ecosystems. Patterns, mechanisms, and interactions with climate change, Photochem. Photobiol. Sci., 2011, 10, 226–241.
    Article PubMed CAS Google Scholar
  8. J. F. Bornman, P. W. Barnes, S. A. Robinson, C. L. Ballaré, S. D. Flint and M. M. Caldwell, Solar ultraviolet radiation and ozone depletion-driven climate change: effects on terrestrial ecosystems, _Photochem. Photobiol. S_ci., 2015, 14, 88–107.
  9. E. E. Cleland, I. Chuine, A. Menzel, H. A. Mooney and M. D. Schwartz, Shifting plant phenology in response to global change, Trends Ecol. Evol., 2007, 22, 357–365.
    Article PubMed Google Scholar
  10. C. Körner and D. Basler, Phenology under global warming, Science, 2010, 327, 1461.
    Article PubMed Google Scholar
  11. C. Both and L. teMarvelde, Climate change and timing of avian breeding and migration throughout Europe, Clim. Res., 2007, 35, 93–105.
    Article Google Scholar
  12. B. M. Tomotani, H. Jeugd, P. Gienapp, I. Hera, J. Pilzecker, C. Teichmann and M. E. Visser, Climate change leads to differential shifts in the timing of annual cycle stages in a migratory bird, Glob. Change Biol., 2017, 24, 823–835.
    Article Google Scholar
  13. K. Skarbø and K. VanderMolen, Maize migration: key crop expands to higher altitudes under climate change in the Andes, Clim. Dev., 2016, 8, 245–255.
    Article Google Scholar
  14. C. Parmesan and G. Yohe, A globally coherent fingerprint of climate change impacts across natural systems, Nature, 2003, 421, 37.
    Article CAS PubMed Google Scholar
  15. M. J. Steinbauer, J.-A. Grytnes, G. Jurasinski, A. Kulonen, J. Lenoir, H. Pauli, C. Rixen, M. Winkler, M. Bardy-Durchhalter, E. Barni, A. D. Bjorkman, F. T. Breiner, S. Burg, P. Czortek, M. A. Dawes, A. Delimat, S. Dullinger, B. Erschbamer, V. A. Felde, O. Fernández-Arberas, K. F. Fossheim, D. Gómez-García, D. Georges, E. T. Grindrud, S. Haider, S. V. Haugum, H. Henriksen, M. J. Herreros, B. Jaroszewicz, F. Jaroszynska, R. Kanka, J. Kapfer, K. Klanderud, I. Kühn, A. Lamprecht, M. Matteodo, U. M. di Cella, S. Normand, A. Odland, S. L. Olsen, S. Palacio, M. Petey, V. Piscová, B. Sedlakova, K. Steinbauer, V. Stöckli, J.-C. Svenning, G. Teppa, J.-P. Theurillat, P. Vittoz, S. J. Woodin, N. E. Zimmermann and S. Wipf, Accelerated increase in plant species richness on mountain summits is linked to warming, Nature, 2018, 556, 231–234.
    Article CAS PubMed Google Scholar
  16. M. M. Caldwell, R. Robberecht and W. D. Billings, A steep latitudinal gradient of solar ultraviolet-B radiation in the arctic-alpine life zone, Ecology, 1980, 61, 600–611.
    Article Google Scholar
  17. M. Blumthaler, W. Ambach and R. Ellinger, Increase in solar UV radiation with altitude, J. Photochem. Photobiol., B. 1997, 39, 130–134.
  18. R.L. McKenzie, P. V. Johnston, D. Smale, B. A. Bodhaine and S. Madronich, Altitude effects on UV spectral irradiance deduced from measurements at Lauder, New Zealand, and at Mauna Loa Observatory, Hawaii, J. Geophys. Res.: Atmos., 2001, 106, 22845–22860.
    Article Google Scholar
  19. D. Verdaguer, M. A. K. Jansen, L. Llorens, L. O. Morales and S. Neugart, UV-A radiation effects on higher plants: Exploring the known unknown, Plant Sci., 2017, 255, 72–81.
    Article CAS PubMed Google Scholar
  20. C. A. Mazza, J. Zavala, A. L. Scopel and C. L. Ballaré, Perception of solar UVB radiation by phytophagous insects: Behavioral responses and ecosystem implications, Proc. Natl. Acad. Sci. U. S. A., 1999, 96, 980–985.
    Article CAS PubMed PubMed Central Google Scholar
  21. I. C. Cuthill, W. L. Allen, K. Arbuckle, B. Caspers, G. Chaplin, M. E. Hauber, G. E. Hill, N. G. Jablonski, C. D. Jiggins, A. Kelber, J. Mappes, J. Marshall, R. Merrill, D. Osorio, R. Prum, N. W. Roberts, A. Roulin, H. M. Rowland, T. N. Sherratt, J. Skelhorn, M. P. Speed, M. Stevens, M. C. Stoddard, D. Stuart-Fox, L. Talas, E. Tibbetts and T. Caro, The biology of color, Science, 2017, 357, eaan0221.
  22. G. I. Jenkins, The UV-B Photoreceptor UVR8: From Structure to Physiology, Plant Cell, 2014, 26, 21–37.
    Article CAS PubMed PubMed Central Google Scholar
  23. P. J. Aphalo, M. A. K. Jansen, A. R. McLeod and O. Urban, Ultraviolet radiation research: From the field to the laboratory and back, Plant., Cell Environ., 2015, 38, 853–855.
    Article Google Scholar
  24. L. O. Björn, On the history of phyto-photo UV science (not to be left in skoto toto and silence), Plant Physiol. Biochem., 2015, 93, 3–8.
    Article PubMed CAS Google Scholar
  25. P. W. Barnes, Understanding the ecological role of solar ultraviolet radiation in the life (and death) of terrestrial plants: An historical perspective, UV4 Plants Bull., 2017, 2, 7–15.
    Google Scholar
  26. E. L. Fiscus and F. L. Booker, Is increased UV-B a threat to crop photosynthesis and productivity?, Photosynth. Res., 1995, 43, 81–92.
    Article CAS PubMed Google Scholar
  27. J. J. Wargent, B. C. W. Nelson, T. K. McGhie and P. W. Barnes, Acclimation to UV-B radiation and visible light in Lactuca sativa involves up-regulation of photosynthetic performance and orchestration of metabolomewide responses, Plant., Cell Environ., 2015, 38, 929–940.
    CAS Google Scholar
  28. M. A. K. Jansen and J. F. Bornman, UV-B radiation: from generic stressor to specific regulator, Physiol. Plant., 2012, 145, 501–504.
    Article CAS PubMed Google Scholar
  29. P. S. Searles, S. D. Flint and M. M. Caldwell, A meta-analysis of plant field studies simulating stratospheric ozone depletion, Oecologia, 2001, 127, 1–10.
    Article PubMed Google Scholar
  30. K. K. Newsham and S. A. Robinson, Responses of plants in polar regions to UVB exposure: a meta-analysis, Glob. Change Biol., 2009, 15, 2574–2589.
    Article Google Scholar
  31. B. R. Jordan, UV-B radiation and plant life: Molecular biology to ecology, CABI Press, Wallingford, UK, 2017.
    Book Google Scholar
  32. G. I. Jenkins, Photomorphogenic responses to ultraviolet-B light, Plant., Cell Environ., 2017, 40, 2544–2557.
    Article CAS Google Scholar
  33. J. J. Biever and G. Gardner, The relationship between multiple UV-B perception mechanisms and DNA repair pathways in plants, Environ. Exp. Bot., 2016, 124, 89–99.
    Article CAS Google Scholar
  34. R. Yin and R. Ulm, How plants cope with UV-B: from perception to response, Curr. Opin. Plant Biol., 2017, 37, 42–48.
    Article CAS PubMed Google Scholar
  35. M. A. K. Jansen and O. Urban, UV-B-induced morphological changes—an enigma in UV-B radiation and plant life: Molecular biology to ecology, ed. B. R. Jordan, CABI, Oxfordshire, UK, 2017, pp. 58–71.
  36. V. Manova and D. Gruszka, DNA damage and repair in plants - from models to crops, Front. Plant Sci., 2015, 6, 885, DOI: 10.3389/fpls.2015.00885.
  37. S. Neugart and M. Schreiner, UVB and UVA as eustressors in horticultural and agricultural crops, Sci. Hortic., 2018, 234, 370–381.
    Article CAS Google Scholar
  38. C. L. Ballaré, C. A. Mazza, A. T. Austin and R. Pierik, Canopy light and plant health, Plant Physiol., 2012, 160, 145–155.
    Article PubMed PubMed Central CAS Google Scholar
  39. A. F. Bais, R. M. Lucas, J. F. Bornman, C. E. Williamson, B. Sulzberger, A. T. Austin, S. R. Wilson, A. L. Andrady, G. Bernhard, R. L. McKenzie, P. J. Aucamp, S. Madronich, R. E. Neale, S. Yazar, A. R. Young, F. R. de Gruijl, M. Norval, Y. Takizawa, P. W. Barnes, T. M. Robson, S. A. Robinson, C. L. Ballaré, S. D. Flint, P. J. Neale, S. Hylander, K. C. Rose, S. A. Wangberg, D.-P. Häder, R. C. Worrest, R. G. Zepp, N. D. Paul, R. M. Cory, K. R. Solomon, J. Longstreth, K. K. Pandey, H. H. Redhwi, A. Torikai and A. M. Heikkila, Environmental effects of ozone depletion, UV radiation and interactions with climate change: UNEP Environmental Effects Assessment Panel, update 2017, Photochem. Photobiol. Sci., 2018, 17, 127–179.
    Article CAS PubMed PubMed Central Google Scholar
  40. S. Pawson, W. L. A. Steinbrecht, S. Bekki and J. Perlwitz, Update on global ozone: past, present, and future, Chapter 3 in Scientific Assessment of Ozone Depletion: 2014, Report No, World Meteorological Organization, Geneva, Switzerland, 2014.
    Google Scholar
  41. A. F. Bais, G. Bernhard, R. L. McKenzie, P. J. Aucamp, P. J. Young, M. Ilyas, P. Jöckel and M. Deushi, Ozoneclimate interactions and effects on solar ultraviolet radiation, Photochem. Photobiol. Sci., 2019, 18, DOI: 10.1039/C8PP90059K.
  42. T. M. Robson, S. M. Hartikainen and P. J. Aphalo, How does solar ultraviolet-B radiation improve drought tolerance of silver birch (Betula pendula Roth.) seedlings?, Plant., Cell Environ., 2015, 38, 953–967.
    CAS Google Scholar
  43. J. Martínez-Lüscher, M. Sánchez-Díaz, S. Delrot, J. Aguirreolea, I. Pascual and E. Gomès, Ultraviolet-B alleviates the uncoupling effect of elevated CO2 and increased temperature on grape berry (Vitis vinifera cv. Tempranillo) anthocyanin and sugar accumulation, Aust. J. Grape Wine Res., 2016, 22, 87–95.
    Google Scholar
  44. V. Virjamo, S. Sutinen and R. Julkunen-Tiitto, Combined effect of elevated UVB, elevated temperature and fertilization on growth, needle structure and phytochemistry of young Norway spruce (Picea abies) seedlings, Glob. Change Biol., 2014, 20, 2252–2260.
    Google Scholar
  45. M. M. Caldwell, P. S. Searles, S. D. Flint and P. W. Barnes, Terrestrial ecosystem responses to solar UV-B radiation mediated by vegetation, microbes and abiotic photochemistry, in Physiological Plant Ecology, ed. M. C. Press, J. D. Scholes and M. G. Barker, Blackwell Science Ltd., Oxford, 1999, pp. 241–262.
    Google Scholar
  46. J. J. Wargent and B. R. Jordan, From ozone depletion to agriculture: understanding the role of UV radiation in sustainable crop production, New Phytol., 2013, 197, 1058–1076.
    Article CAS PubMed Google Scholar
  47. C. L. Ballaré and A. T. Austin, UV radiation and terrestrial ecosystems: Emerging perspectives, in UV-B Radiation and Plant Life: Molecular Biology to Ecology, ed. B. Jordan, CABI, Oxfordshire, UK, 2017, pp. 23–38.
    Book Google Scholar
  48. T. M. Robson, V. A. Pancotto, S. D. Flint, C. L. Ballaré, O. E. Sala, A. L. Scopel and M. M. Caldwell, Six years of solar UV-B manipulations affect growth of Sphagnum and vascular plants in a Tierra del Fuego peatland, New Phytol., 2003, 160, 379–389.
    Google Scholar
  49. P. W. Barnes, J. R. Shinkle, S. D. Flint and R. J. Ryel, UV-B radiation, photomorphogenesis and plant-plant interactions, Prog. Bot., 2005, 66, 313–340.
    Google Scholar
  50. H. Lee, T. Rahn and H. L. Throop, An accounting of C-based trace gas release during abiotic plant litter degradation, Glob. Change Biol., 2012, 18, 1185–1195.
    Article Google Scholar
  51. L. A. Brandt, C. Bohnet and J. Y. King, Photochemically induced carbon dioxide production as a mechanism for carbon loss from plant litter in arid ecosystems, J. Geophys. Res.: Biogeosci., 2009, 114, G02004.
  52. L. Díaz-Guerra, D. Verdaguer, M. Gispert, G. Pardini, J. Font, J. A. González, E. Peruzzi, G. Masciandaro and L. Llorens, Effects of UV radiation and rainfall reduction on leaf and soil parameters related to C and N cycles of a Mediterranean shrubland before and after a controlled fire, Plant Soil, 2018, 424(1–2), 503–524.
  53. N. R. Baker and S. D. Allison, Ultraviolet photodegradation facilitates microbial litter decomposition in a Mediterranean climate, Ecology, 2015, 96, 1994–2003.
    Article PubMed Google Scholar
  54. S. Rutledge, D. I. Campbell, D. Baldocchi and L. A. Schipper, Photodegradation leads to increased carbon dioxide losses from terrestrial organic matter, Glob. Change Biol., 2010, 16, 3065–3074.
    Google Scholar
  55. A. T. Austin, M. S. Méndez and C. L. Ballaré, Photodegradation alleviates the lignin bottleneck for carbon turnover in terrestrial ecosystems, Proc. Natl. Acad. Sci. U. S. A., 2016, 113, 4392–4397.
    Article CAS PubMed PubMed Central Google Scholar
  56. E. C. Adair, W. J. Parton, J. Y. King, L. A. Brandt and Y. Lin, Accounting for photodegradation dramatically improves prediction of carbon losses in dryland systems, Ecosphere, 2017, 8, e01892.
  57. M. Almagro, F. T. Maestre, J. Martínez-López, E. Valencia and A. Rey, Climate change may reduce litter decomposition while enhancing the contribution of photodegradation in dry perennial Mediterranean grasslands, Soil Biol. Biochem., 2015, 90, 214–223.
    Article CAS Google Scholar
  58. J. Arblaster, N. Gillett, N. Calvo, P. Forster, L. Polvani, S. Son, D. Waugh and P. Young, Stratospheric ozone changes and climate, Chapter 4 in Scientific Assessment of Ozone Depletion: 2014, Global Ozone Research and Monitoring Project-Report No. 55, World Meteorological Organization, Geneva, Switzerland, 2014.
    Google Scholar
  59. F. N. M. Oliveira and T. Ambrizzi, The effects of ENSO-types and SAM on the large-scale southern blockings, Int. J. Climatol., 2017, 37, 3067–3081.
    Article Google Scholar
  60. Y. Kostov, J. Marshall, U. Hausmann, K. C. Armour, D. Ferreira and M. M. Holland, Fast and slow responses of Southern Ocean sea surface temperature to SAM in coupled climate models, Clim. Dyn., 2017, 48, 1595–1609.
    Article Google Scholar
  61. K. R. Clem, J. A. Renwick, J. McGregor and R. L. Fogt, The relative influence of ENSO and SAM on Antarctic Peninsula climate, J. Geophys. Res.: Atmos., 2016, 121, 9324–9341.
    Article Google Scholar
  62. E. P. Lim, H. H. Hendon, J. M. Arblaster, F. Delage, H. Nguyen, S. K. Min and M. C. Wheeler, The impact of the Southern Annular Mode on future changes in Southern Hemisphere rainfall, Geophys. Res. Lett., 2016, 43, 7160–7167.
    Article Google Scholar
  63. A. Holz, J. Paritsis, I. A. Mundo, T. T. Veblen, T. Kitzberger, G. J. Williamson, E. Aráoz, C. Bustos-Schindler, M. E. González, H. R. Grau and J. M. Quezada, Southern Annular Mode drives multicentury wildfire activity in southern South America, Proc. Natl. Acad. Sci. U. S. A., 2017, 114, 9552–9557.
    Article CAS PubMed PubMed Central Google Scholar
  64. N. J. Abram, R. Mulvaney, F. Vimeux, S. J. Phipps, J. Turner and M. H. England, Evolution of the Southern Annular Mode during the past millennium, Nat. Clim. Change, 2014, 4, 564–569.
    Article CAS Google Scholar
  65. J. Perlwitz, Tug of war on the jet stream, Nat. Clim. Change, 2011, 1, 29–31.
    Article Google Scholar
  66. NASA, Ozone Hole Watch, National Aeronautics and Space Administration. Goddard Space Flight Center, http://ozo-newatch.gsfc.nasa.gov/, updated, 18/05/2014.
  67. A. Hessl, K. J. Allen, T. Vance, N. J. Abram and K. M. Saunders, Reconstructions of the southern annular mode (SAM) during the last millennium, Prog. Phys. Geogr., 2017, 41, 834–849.
    Article Google Scholar
  68. C. E. Williamson, P. J. Neale, S. Hylander, K. C. Rose, F. L. Figueroa, S. A. Robinson, D.-P. Häder, S.-Å. Wängberg and R. C. Worrest, The interactive effects of stratospheric ozone depletion, UV radiation, and climate change on aquatic ecosystems, Photochem. Photobiol. Sci., 2019, 18, DOI: 10.1039/C8PP90062K.
  69. D. J. Erickson, B. Sulzberger, R. G. Zepp and A. T Austin, Effects of stratospheric ozone depletion, solar UV radiation, and climate change on biogeochemical cycling: interactions and feedbacks, Photochem. Photobiol. Sci., 2015, 14, 127–148.
    Article CAS PubMed Google Scholar
  70. WMO, Scientific Assessment of Ozone Depletion: 2018, Global Ozone Research and Monitoring Project, Report No. 58, Geneva, Switzerland, 2018, 588 pp.
  71. WMO, Assessment for Decision-Makers: Scientific Assessment of Ozone Depletion: 2014, Global Ozone Research and Monitoring Project, Report No. 56, Geneva, Switzerland, 2014, 88 pp.
  72. F. W. Dennison, A. McDonald and O. Morgenstern, The influence of ozone forcing on blocking in the Southern Hemisphere, J. Geophys. Res.: Atmos., 2016, 121, 14358–14371.
    Article CAS Google Scholar
  73. A. Solomon and L. M. Polvani, Highly significant responses to anthropogenic forcings of the midlatitude jet in the Southern Hemisphere, J. Clim., 2016, 29, 3463–3470.
    Article Google Scholar
  74. L. Tao, Y. Hu and J. Liu, Anthropogenic forcing on the Hadley circulation in CMIP5 simulations, Clim. Dyn., 2016, 46, 3337–3350.
    Article Google Scholar
  75. D. J. Ivy, S. Solomon, D. Kinnison, M. J. Mills, A. Schmidt and R. R. Neely, The influence of the Calbuco eruption on the 2015 Antarctic ozone hole in a fully coupled chemistry-climate model, Geophys. Res. Lett., 2017, 44, 2556–2561.
    Article CAS Google Scholar
  76. D. W. Waugh, C. I. Garfinkel and L. M. Polvani, Drivers of the recent tropical expansion in the Southern Hemisphere: Changing SSTs or ozone depletion?, J. Clim., 2015, 28, 6581–6586.
    Article Google Scholar
  77. P. Ceppi and D. L. Hartmann, On the speed of the eddy-driven jet and the width of the Hadley Cell in the Southern Hemisphere, J. Clim., 2013, 26, 3450–3465.
    Article Google Scholar
  78. H. H. Hendon, E.-P. Lim, J. M. Arblaster and D. L. T. Anderson, Causes and predictability of the record wet east Australian spring 2010, Clim. Dyn., 2014, 42, 1155–1174.
    Article Google Scholar
  79. P. L. M. Gonzalez, L. M. Polvani, R. Seager and G. J. P. Correa, Stratospheric ozone depletion: a key driver of recent precipitation trends in South Eastern South America, Clim. Dyn., 2014, 42, 1775–1792.
    Article Google Scholar
  80. C. S. Vera and L. Díaz, Anthropogenic influence on summer precipitation trends over South America in CMIP5 models, _Int. J. Climato_l., 2015, 35, 3172–3177.
  81. L. B. Díaz and C. S. Vera, Austral summer precipitation interannual variability and trends over Southeastern South America in CMIP5 models, _Int. J. Climato_l., 2017, 37, 681–695.
  82. Y. Wu and L. M. Polvani, Recent trends in extreme precipitation and temperature over southeastern South America: The dominant role of stratospheric ozone depletion in the CESM large ensemble, J. Clim., 2017, 30, 6433–6441.
    Article Google Scholar
  83. J. Zhang, W. Tian, M. P. Chipperfield, F. Xie and J. Huang, Persistent shift of the Arctic polar vortex towards the Eurasian continent in recent decades, Nat. Clim. Change, 2016, 6, 1094.
    Article Google Scholar
  84. D. Manatsa, Y. Morioka, S. K. Behera, T. Yamagata and C. H. Matarira, Link between Antarctic ozone depletion and summer warming over southern Africa, Nat. Geosci., 2013, 6 ,934–939.
    Article CAS Google Scholar
  85. D. Manatsa, C. Mudavanhu, T. D. Mushore and E. Mavhura, Linking major shifts in East Africa ‘short rains’ to the Southern Annular Mode, _Int. J. Climato_l., 2016, 36, 1590–1599.
  86. S. Bronnimann, M. Jacques-Coper, E. Rozanov, A. M. Fischer, O. Morgenstern, G. Zeng, H. Akiyoshi and Y. Yamashita, Tropical circulation and precipitation response to ozone depletion and recovery, Environ. Res. Lett., 2017, 12, 064011.
    Article Google Scholar
  87. K. X. Bai, N. B. Chang and W. Gao, Quantification of relative contribution of Antarctic ozone depletion to increased austral extratropical precipitation during 1979–2013, J. Geophys. Res.: Atmos., 2016, 121, 1459–1474.
    Article CAS Google Scholar
  88. S. M. Kang, L. M. Polvani, J. C. Fyfe, S. W. Son, M. Sigmond and G. J. P. Correa, Modeling evidence that ozone depletion has impacted extreme precipitation in the austral summer, Geophys. Res. Lett., 2013, 40, 4054–4059.
    Article Google Scholar
  89. L. Lopez, D. Stahle, R. Villalba, M. Torbenson, S. Feng and E. Cook, Tree ring reconstructed rainfall over the southern Amazon Basin, Geophys. Res. Lett., 2017, 44, 7410–7418.
    Article Google Scholar
  90. A. A. Munoz, A. Gonzalez-Reyes, A. Lara, D. Sauchyn, D. Christie, P. Puchi, R. Urrutia-Jalabert, I. Toledo-Guerrero, I. Aguilera-Betti, I. Mundo, P. R. Sheppard, D. Stahle, R. Villalba, P. Szejner, C. LeQuesne and J. Vanstone, Streamflow variability in the Chilean Temperate-Mediterranean climate transition (35 degrees S-42 degrees S) during the last 400 years inferred from tree-ring records, Clim. Dyn., 2016, 47, 4051–4066.
    Article Google Scholar
  91. B. Liebmann, C. S. Vera, L. M. V. Carvalho, I. A. Camilloni, M. P. Hoerling, D. Allured, V. R. Barros, J. Báez and M. Bidegain, An observed trend in central South American precipitation, J. Clim., 2004, 17, 4357–4367.
    Article Google Scholar
  92. T. S. M. Randriamahefasoa and C. J. C. Reason, Interannual variability of rainfall characteristics over southwestern Madagascar, _Theor. Appl. Climato_l., 2017, 128, 421–437.
  93. S. M. Kang, L. M. Polvani, J. C. Fyfe and M. Sigmond, Impact of polar ozone depletion on subtropical precipitation, Nat. Geosci., 2011, 332, 951–954.
    CAS Google Scholar
  94. H. H. Hendon, D. W. J. Thompson and M. C. Wheeler, Australian rainfall and surface temperature variations associated with the Southern Hemisphere Annular Mode, J. Clim., 2007, 20, 2452–2467.
    Article Google Scholar
  95. W. J. M. Seviour, A. Gnanadesikan and D. W. Waugh, The transient response of the Southern Ocean to stratospheric ozone depletion, J. Clim., 2016, 29, 7383–7396.
    Article Google Scholar
  96. D. J. Ivy, C. Hilgenbrink, D. Kinnison, R. Alan Plumb, A. Sheshadri, S. Solomon and D. W. J. Thompson, Observed Changes in the Southern Hemispheric Circulation in May, J. Clim., 2017, 30, 527–536.
    Article Google Scholar
  97. J. Bandoro, S. Solomon, A. Donohoe, D. W. J. Thompson and B. D. Santer, Influences of the Antarctic Ozone Hole on Southern Hemispheric Summer Climate Change, J. Clim., 2014, 27, 6245–6264.
    Article Google Scholar
  98. A. Solomon, L. M. Polvani, K. L. Smith and R. P. Abernathey, The impact of ozone depleting substances on the circulation, temperature, and salinity of the Southern Ocean: An attribution study with CESM1(WACCM), Geophys. Res. Lett., 2015, 42, 5547–5555.
    Article Google Scholar
  99. S. L. Deppeler and A. T. Davidson, Southern ocean phytoplankton in a changing climate, Front. Mar. Sci., 2017, 4, 40.
    Article Google Scholar
  100. M. M. Holland, L. Landrum, M. Raphael and S. Stammerjohn, Springtime winds drive Ross Sea ice variability and change in the following autumn, Nat. Commun., 2017, 8, 731.
    Article PubMed PubMed Central CAS Google Scholar
  101. M. Mariani and M.-S. Fletcher, The Southern Annular Mode determines interannual and centennial-scale fire activity in temperate southwest Tasmania, Australia, Geophys. Res. Lett., 2016, 43, 1702–1709.
    Article Google Scholar
  102. B. Sulzberger, A. T. Austin, R. M. Cory, R. G. Zepp and N. D. Paul, Solar UV radiation in a changing world: Roles of cryosphere– land-water-atmosphere interfaces in global biogeochemical cycles, Photochem. Photobiol. Sci., 2019, 18, DOI: 10.1039/C8PP90063A.
  103. A. Holz and T. T. Veblen, Variability in the Southern Annular Mode determines wildfire activity in Patagonia, Geophys. Res. Lett., 2011, 38, L14710, DOI: 10.1029/2011GL047674.
  104. S. R. Wilson, S. Madronich, J. D. Longstreth and K. R. Solomon, Interactive effects of changing stratospheric ozone and climate on tropospheric composition and air quality, and the consequences for human and ecosystem health, Photochem. Photobiol. Sci., 2019, 18, DOI:10.1039/C8PP90064G.
  105. A. L. Andrady, K. K. Pandey and A. M. Heikkilä, Interactive effects of solar UV radiation and climate change on material damage, Photochem. Photobiol. Sci., 2019, 18, DOI: 10.1039/C8PP90065E.
  106. R. Villalba, A. Lara, M. H. Masiokas, R. Urrutia, B. H. Luckman, G. J. Marshall, I. A. Mundo, D. A. Christie, E. R. Cook, R. Neukom, K. Allen, P. Fenwick, J. A. Boninsegna, A. M. Srur, M. S. Morales, D. Araneo, J. G. Palmer, E. Cuq, J. C. Aravena, A. Holz and C. LeQuesne, Unusual Southern Hemisphere tree growth patterns induced by changes in the Southern Annular Mode, Nat. Geosci., 2012, 5, 793–798.
    Article CAS Google Scholar
  107. G. A. E. Cuyckens, D. A. Christie, A. I. Domic, L. R. Malizia and D. Renison, Climate change and the distribution and conservation of the world’s highest elevation woodlands in the South American Altiplano, Glob. Planet. Change, 2016, 137 ,79–87.
    Article Google Scholar
  108. S. A. Robinson, D. H. King, J. Bramley-Alves, M. J. Waterman, M. B. Ashcroft, J. Wasley, J. D. Turnbull, R. E. Miller, E. Ryan-Colton, T. Benny, K. Mullany, L. J. Clarke, L. A. Barry and Q. Hua, Rapid change in East Antarctic terrestrial vegetation in response to regional drying, Nat. Clim. Change, 2018, 8, 879–884.
    Article CAS Google Scholar
  109. L. J. Clarke, S. A. Robinson, Q. Hua, D. J. Ayre and D. Fink, Radiocarbon bomb spike reveals biological effects of Antarctic climate change, Glob. Change Biol., 2012, 18, 301–310.
    Article Google Scholar
  110. D. A. Hodgson, D. Roberts, A. McMinn, E. Verleyen, B. Terry, C. Corbett and W. Vyverman, Recent rapid salinity rise in three East Antarctic lakes, J. Paleolimnol., 2006, 36, 385–406.
    Article Google Scholar
  111. D. M. Bergstrom, P. K. Bricher, B. Raymond, A. Terauds, D. Doley, M. A. McGeoch, J. Whinam, M. Glen, Z. Yuan, K. Kiefer, D. Shaw Justine, J. Bramely-Alves, T. Rudman, C. Mohammed, A. Lucieer, M. Visoiu, B. Jansen van Vuuren and M. C. Ball, Rapid collapse of a sub-Antarctic alpine ecosystem: the role of climate and pathogens, J. Appl. Ecol., 2015, 52, 774–783.
    Article Google Scholar
  112. C. Coviaga, A. Rizzo, P. Perez, R. Daga, D. Poire, G. Cusminsky and S. R. Guevara, Reconstruction of the hydrologic history of a shallow Patagonian steppe lake during the past 700 yr, using chemical, geologic, and biological proxies, Quat. Res., 2017, 87, 208–226.
    Article CAS Google Scholar
  113. A. M. Greene, L. Goddard, P. L. M. Gonzalez, A. V. M. Ines and J. Chryssanthacopoulos, A climate generator for agricultural planning in southeastern South America, Agric For. Meteorol., 2015, 203, 217–228.
    Article Google Scholar
  114. J. Royles, M. J. Amesbury, P. Convey, H. Griffiths, D. A. Hodgson, M. J. Leng and D. J. Charman, Plants and soil microbes respond to recent warming on the Antarctic Peninsula, Curr. Biol., 2013, 23, 1702–1706.
    Article CAS PubMed Google Scholar
  115. Z. Yu, D. W. Beilman and J. Loisel, Transformations of landscape and peat-forming ecosystems in response to late Holocene climate change in the western Antarctic Peninsula, Geophys. Res. Lett., 2016, 43, 7186–7195.
    Article Google Scholar
  116. M. J. Amesbury, T. P. Roland, J. Royles, D. A. Hodgson, P. Convey, H. Griffiths and D. J. Charman, Widespread biological response to rapid warming on the Antarctic peninsula, Curr. Biol., 2017, **27(**11), 1616–1622.
  117. Y. Frenot, S. L. Chown, J. Whinam, P. M. Selkirk, P. Convey, M. Skotnicki and D. M. Bergstrom, Biological invasions in the Antarctic: extent, impacts and implications, Biol. Rev., 2005, 80, 45–72.
    Article PubMed Google Scholar
  118. J. R. McConnell, A. J. Aristarain, J. R. Banta, P. R. Edwards and J. C. Simões, 20 -Century doubling in dust archived in an Antarctic Peninsula ice core parallels climate change and desertification in South America, Proc. Natl. Acad. Sci. U. S. A., 2007, 104, 5743–5748.
    Article CAS PubMed PubMed Central Google Scholar
  119. M. Cataldo, H. Evangelista, J. C. Simoes, R. H. M. Godoi, I. Simmonds, M. H. Hollanda, I. Wainer, F. Aquino and R. Van Grieken, Mineral dust variability in central West Antarctica associated with ozone depletion, Atmos. Chem. Phys., 2013, 13, 2165–2175.
    Article CAS Google Scholar
  120. P. A. Mayewski, K. A. Maasch and D. Dixon, West Antarctica’s sensitivity to natural and human-forced climate change over the Holocene, J. Quat. Sci., 2013, 28, 40–48.
    Article Google Scholar
  121. C. Colesie, B. Büdel, V. Hurry and T. G. A. Green, Can Antarctic lichens acclimatize to changes in temperature?, Glob. Change Biol., 2018, 24, 1123–1135.
    Article Google Scholar
  122. M. T. Trest, S. Will-Wolf, R. Keuler, N. Shay, K. Hill, A. Studer, A. Muench, Z. Alexander, A. Adams, L. Dittberner, M. Feehan, H. Lee, N. Galleguillos-Katz, J. B. Zedler, L. Graham and P. Arancibia-Avila, Potential impacts of UV exposure on lichen communities: a pilot study of Nothofagus dombeyi, trunks in southernmost Chile, Ecosys. Health Sustain., 2015, 1, art14.
  123. P. Convey, S. L. Chown, A. Clarke, D. K. A. Barnes, S. Bokhorst, V. Cummings, H. W. Ducklow, F. Frati, T. G. A. Green, S. Gordon, H. J. Griffiths, C. Howard-Williams, A. H. L. Huiskes, J. Laybourn-Parry, W. B. Lyons, A. McMinn, S. A. Morley, L. S. Peck, A. Quesada, S. A. Robinson, S. Schiaparelli and D. H. Wall, The spatial structure of Antarctic biodiversity, Ecol. Monogr., 2014, 84, 203–244.
    Article Google Scholar
  124. K. L. Smith and L. M. Polvani, Spatial patterns of recent Antarctic surface temperature trends and the importance of natural variability: lessons from multiple reconstructions and the CMIP5 models, Clim. Dyn., 2017, 48, 2653–2670.
    Article Google Scholar
  125. G. Chiodo and M. Polvani Lorenzo, Reduced Southern Hemispheric circulation response to quadrupled CO2 due to stratospheric ozone feedback, Geophys. Res. Lett., 2017, 44, 465–474.
    Article CAS Google Scholar
  126. T. R. Jones, W. H. G. Roberts, E. J. Steig, K. M. Cuffey, B. R. Markle and J. W. C. White, Southern Hemisphere climate variability forced by Northern Hemisphere ice-sheet topography, Nature, 2018, 554, 351–355.
    Article CAS PubMed Google Scholar
  127. M. Oliva, F. Navarro, F. Hrbacek, A. Hernandez, D. Nyvlt, P. Pereira, J. Ruiz-Fernandez and R. Trigo, Recent regional climate cooling on the Antarctic Peninsula and associated impacts on the cryosphere, Sci. Total Environ., 2017, 580, 210–223.
    Article CAS PubMed Google Scholar
  128. J. Turner, H. Lu, I. White, J. C. King, T. Phillips, J. S. Hosking, T. J. Bracegirdle, G. J. Marshall, R. Mulvaney and P. Deb, Absence of 21st century warming on Antarctic Peninsula consistent with natural variability, Nature, 2016, 535, 411–415.
    Article CAS PubMed Google Scholar
  129. Z. Malenovský, A. Lucieer, H. King Diana, D. Turnbull Johanna, A. Robinson Sharon and N. Lecomte, Unmanned aircraft system advances health mapping of fragile polar vegetation, Methods Ecol. Evolut., 2017, 8, 1842–1857.
    Article Google Scholar
  130. Z. Malenovský, J. D. Turnbull, A. Lucieer and S. A. Robinson, Antarctic moss stress assessment based on chlorophyll content and leaf density retrieved from imaging spectroscopy data, _New Phyto_l., 2015, 208, 608–624.
  131. H. E. Epstein and U. S. Bhatt, Tundra Greenness, NOAA, http://www.arctic.noaa.gov/reportcard/, updated, accessed December 18, 2015.
  132. G. K. Phoenix and J. W. Bjerke, Arctic browning: extreme events and trends reversing arctic greening, Glob. Change Biol., 2016, 22, 2960–2962.
    Article Google Scholar
  133. S. W. Son, A. Purich, H. Hendon Harry, B. M. Kim and M. Polvani Lorenzo, Improved seasonal forecast using ozone hole variability?, Geophys. Res. Lett., 2013, 40, 6231–6235.
    Article CAS Google Scholar
  134. A. L. Andrady, P. J. Aucamp, A. T Austin, A. F. Bais, C. L. Ballaré, P. W. Barnes, G. H. Bernhard, L. O. Björn, J. F. Bornman, D. J. Erickson, F. R. de Gruijl, D.-P. Häder, A. M. Heikkilä, S. Hylander, J. D. Longstreth, R. M. Lucas, S. Madronich, R. L. Mckenzie, P. J. Neale, R. E. Neale, M. Norval, K. K. Pandey, N. D. Paul, M. Rautio, H. H. Redhwi, S. A. Robinson, K. C. Rose, K. R. Solomon, B. Sulzberger, S.-Å. Wängberg, C. R. Williamson, S. R. Wilson, R. C. Worrest, A. R. Young and R. G. Zepp, United Nations Environment Programme. Environmental Effects Assessment Panel. Environmental effects of ozone depletion and its interactions with climate change: Progress report, 2016, Photochem. Photobiol. Sci., 2017, 16(2), 107–145.
  135. M. M. Caldwell, Solar UV irradiation and the growth and development of higher plants, Photophysiology, 1971, 6, 131–177.
    Article CAS Google Scholar
  136. S. D. Flint and M. M. Caldwell, A biological spectral weighting function for ozone depletion research with higher plants, Physiol. Plant., 2003, 117, 137–144.
    Article CAS Google Scholar
  137. R. J. Ritchie, Modelling photosynthetic photon flux density and maximum potential gross photosynthesis, Photosynthetica, 2010, 48, 596–609.
    Article CAS Google Scholar
  138. S. D. Flint and M. M. Caldwell, Scaling plant ultraviolet spectral responses from laboratory action spectra to field spectral weighting factors, J. Plant Physiol., 1996, 148, 107–114.
    Article CAS Google Scholar
  139. C. B. Field and J. R. Ehleringer, Introduction: questions of scale, in Scaling Physiological Processes, Elsevier, 1993, pp. 1–4.
  140. J. Martínez-Lüscher, F. Morales, M. Sánchez-Díaz, S. Delrot, J. Aguirreolea, E. Gomès and I. Pascual, Climate change conditions (elevated CO2 and temperature) and UV-B radiation affect grapevine (Vitis vinifera cv. Tempranillo) leaf carbon assimilation, altering fruit ripening rates, Plant Sci., 2015, 236, 168–176.
    Google Scholar
  141. C. Wijewardana, W. B. Henry, W. Gao and K. R. Reddy, Interactive effects on CO2, drought, and ultraviolet-B radiation on maize growth and development, J. Photochem. Photobiol., B, 2016, 160 ,198–209.
    Article CAS Google Scholar
  142. B. Mao, Y. Wang, T.-H. Zhao, R.-R. Tian, W. Wang and J.-S. Ye, Combined effects of elevated O3 concentrations and enhanced UV-B radiation of the biometric and biochemical properties of soybean roots, Front. Plant Sci., 2017, 8, 1568, DOI: 10.3389/fpls.2017.01568.
  143. P. J. Aphalo, A. Albert, L. O. Björn, A. McLeod, T. M. Robson and E. Rosenqvist, Beyond the visible: A handbook of best practice in plant UV photobiology, in COST Action FA0906 UV4growth, University of Helsinki, Department of Biosciences, Division of Plant Biology Helsinki, Finland, http://hdl.handle.net/10138/37558,2012, p. 176.
  144. L. Rizzini, J.-J. Favory, C. Cloix, D. Faggionato, A. O’Hara, E. Kaiserli, R. Baumeister, E. Schäfer, F. Nagy, G. I. Jenkins and R. Ulm, Perception of UV-B by the Arabidopsis UVR8 protein, Science, 2011, 332, 103–106.
    CAS Google Scholar
  145. J. F. Bornman and T. C. Vogelmann, Penetration of blue and UV radiation measured by fiber optics in spruce and fir needles, Physiol. Plant., 1988, 72, 699–705.
    Article Google Scholar
  146. T. A. Day, T. C. Vogelmann and E. H. DeLucia, Are some plant life forms more effective than others in screening out ultraviolet-B radiation?, Oecologia, 1992, 92, 513–519.
    Article CAS PubMed Google Scholar
  147. P. Bernula, C. D. Crocco, A. B. Arongaus, R. Ulm, F. Nagy and A. Viczián, Expression of the UVR8 photoreceptor in different tissues reveals tissue-autonomous features of UV-B signalling, Plant., Cell Environ., 2017, 40, 1104–1114.
    Article CAS Google Scholar
  148. N. Li, M. Teranishi, H. Yamaguchi, T. Matsushita, M. K. Watahiki, T. Tsuge, S. S. Li and J. Hidema, UV-B-induced CPD photolyase gene expression is regulated by UVR8-dependent and -independent pathways in Arabidopsis, Plant Cell Physiol., 2015, 56, 2014–2023.
    Article CAS PubMed Google Scholar
  149. J. J. Biever, D. Brinkman and G. Gardner, UV-B inhibition of hypocotyl growth in etiolated Arabidopsis thaliana seedlings is a consequence of cell cycle arrest initiated by photodimer accumulation, J. Exp. Bot., 2014, 65, 2949–2961.
    CAS Google Scholar
  150. É. Hideg, M. A. K. Jansen and Å. Strid, UV-B exposure, ROS, and stress: inseparable companions or loosely linked associates?, Trends Plant Sci., 2013, 18, 107–115.
    Article CAS PubMed Google Scholar
  151. V. Tossi, L. Lamattina, G. I. Jenkins and R. O. Cassia, Ultraviolet-B-induced stomatal closure in Arabidopsis is regulated by the UV RESISTANCE LOCUS8 photoreceptor in a nitric oxide-dependent mechanism, Plant Physiol., 2014, 164, 2220–2230.
    Article CAS PubMed PubMed Central Google Scholar
  152. P. W. Barnes, A. R. Kersting, S. D. Flint, W. Beyschlag and R. J. Ryel, Adjustments in epidermal UV-transmittance of leaves in sun-shade transitions, Physiol. Plant., 2013, 149, 200–213.
    Article CAS PubMed Google Scholar
  153. V. Müller, A. Albert, J. Barbro Winkler, C. Lankes, G. Noga and M. Hunsche, Ecologically relevant UV-B dose combined with high PAR intensity distinctly affect plant growth and accumulation of secondary metabolites in leaves of Centella asiatica L. Urban, J. Photochem. Photobio_l., B_, 2013, 127, 161–169.
    Google Scholar
  154. N. J. Atkinson and P. E. Urwin, The interaction of plant biotic and abiotic stresses: from genes to the field, J. Exp. Bot., 2012, 63, 3523–3543.
    Article CAS PubMed Google Scholar
  155. Z. Zhou, D. Schenke, Y. Miao and D. Cai, Investigation of the crosstalk between the flg22 and the UV-B-induced flavonol pathway in Arabidopsis thaliana seedlings, Plant., Cell Environ., 2017, 40, 453–458.
    Google Scholar
  156. C. L. Ballaré, Light regulation of plant defense, Annu. Rev. Plant Biol., 2014, 65, 335–363.
    Article PubMed CAS Google Scholar
  157. T. Liang, S. Mei, C. Shi, Y. Yang, Y. Peng, L. Ma, F. Wang, X. Li, X. Huang, Y. Yin and H. Liu, UVR8 interacts with BES1 and BIM1 to regulate transcription and photomorphogenesis in Arabidopsis, Dev. Cell, 2018, 44, 512–523.
    Article CAS PubMed Google Scholar
  158. H. Savenstrand, M. Brosche and Å. Strid, Ultraviolet-B signalling: Arabidopsis brassinosteroid mutants are defective in UV-B regulated defence gene expression, Plant Physiol. Biochem., 2004, 42, 687–694.
    Article PubMed CAS Google Scholar
  159. J. Fina, R. Casadevall, H. AbdElgawad, E. Prinsen, M. N. Markakis, G. T. S. Beemster and P. Casati, UV-B inhibits leaf growth through changes in growth regulating factors and gibberellin levels, Plant Physiol., 2017, 174, 1110.
    Article CAS PubMed PubMed Central Google Scholar
  160. J. Martínez-Lüscher, F. Morales, S. Delrot, M. Sánchez-Díaz, E. Gomès, J. Aguirreolea and I. Pascual, Characterization of the adaptive response of grapevine (cv. Tempranillo) to UV-B radiation under water deficit conditions, Plant Sci., 2015, 232, 13–22.
    Article PubMed CAS Google Scholar
  161. V. Kovács, O. K. Gondor, G. Szalai, I. Majláth, T. Janda and M. Pál, UV-B radiation modifies the acclimation processes to drought or cadmium in wheat, Environ. Exp. Bot., 2014, 100, 122–131.
    Article CAS Google Scholar
  162. J. A. Hernández, P. Diaz-Vivancos, G. Barba-Espín and M. J. Clemente-Moreno, On the role of salicylic acid in plant responses to environmental stresses, in Salicylic Acid: A Multifaceted Hormone, ed. R. Nazar, N. Iqbal and N. A. Khan, Springer Singapore, Singapore, 2017, pp. 17–34.
    Book Google Scholar
  163. H. Bandurska, J. Niedziela and T. Chadzinikolau, Separate and combined responses to water deficit and UV-B radiation, Plant Sci., 2013, 213, 98–105.
    Article CAS PubMed Google Scholar
  164. A. F. Bais, R. L. McKenzie, G. Bernhard, P. J. Aucamp, M. Ilyas, S. Madronich and K. Tourpali, Ozone depletion and climate change: Impacts on UV radiation, _Photochem. Photobio_l. Sci., 2015, 14, 19–52.
    Article CAS Google Scholar
  165. A. Sanchez-Lorenzo, A. Enriquez-Alonso, J. Calbó, J. A. González, M. Wild, D. Folini, J. R. Norris and S. M. Vicente-Serrano, Fewer clouds in the Mediterranean: consistency of observations and climate simulations, Sci. Rep., 2017, 7, 41475.
    Article CAS PubMed PubMed Central Google Scholar
  166. D. Verdaguer, L. Díaz-Guerra, J. Font, J. A. González and L. Llorens, Contrasting seasonal morphological and physio-biochemical responses to UV radiation and reduced rainfall of two mature naturally growing Mediterranean shrubs in the context of climate change, Environ. Exp. Bot., 2018, 147, 189–201.
    Article CAS Google Scholar
  167. R. Alonso, F. J. Berli, R. Bottini and P. Piccoli, Acclimation mechanisms elicited by sprayed abscisic acid, solar UV-B and water deficit in leaf tissues of field-grown grapevines, Plant Physiol. Biochem., 2015, 91, 56–60.
    Article CAS PubMed Google Scholar
  168. R. Fasano, N. Gonzalez, A. Tosco, F. Dal Piaz, T. Docimo, R. Serrano, S. Grillo, A. Leone and D. Inzé, Role of Arabidopsis UV Resistance Locus 8 in Plant Growth Reduction under Osmotic Stress and Low Levels of UV-B, Mol. Plant., 2014, 7, 773–791.
    CAS Google Scholar
  169. K. Novotná, K. Klem, P. Holub, B. Rapantová and O. Urban, Evaluation of drought and UV radiation impacts on above-ground biomass of mountain grassland by spectral reflectance and thermal imaging techniques, Beskydy, 2016, 9, 21–30.
    Article Google Scholar
  170. S. I. Seneviratne, M. G. Donat, B. Mueller and L. V. Alexander, No pause in the increase of hot temperature extremes, Nat. Clim. Change, 2014, 4, 161.
    Article Google Scholar
  171. D. K. Perovich, Light reflection and transmission by a temperate snow cover, J. Glaciol., 2007, 53, 201–210.
    Article Google Scholar
  172. C. Körner, Alpine Plant Life: Functional Plant Ecology of High Mountain Ecosystems, Springer-Verlag, New York, 2nd edn, 2003.
    Book Google Scholar
  173. H. Liu, X. Cao, X. Liu, R. Xin, J. Wang, J. Gao, B. Wu, L. Gao, C. Xu, B. Zhang, D. Grierson and K. Chen, UV-B irradiation differentially regulates terpene synthases and terpene content of peach, Plant., Cell Environ., 2017, 40, 2261–2275.
    Article CAS Google Scholar
  174. S. Hantson, W. Knorr, G. Schurgers, T. A. M. Pugh and A. Arneth, Global isoprene and monoterpene emissions under changing climate, vegetation, CO2 and land use, Atmos. Environ., 2017, 155, 35–45.
    Article CAS Google Scholar
  175. M. M. Maja, A. Kasurinen, T. Holopainen, R. Julkunen-Tiitto and J. K. Holopainen, The effect of warming and enhanced ultraviolet radiation on gender-specific emissions of volatile organic compounds from European aspen, Sci. Total Environ., 2016, 547, 39–47.
    Article CAS PubMed Google Scholar
  176. R. Escobar-Bravo, P. G. L. Klinkhamer and K. A. Leiss, Interactive effects of UV-B light with abiotic factors on plant growth and chemistry, and their consequences for defense against arthropod herbivores, Front. Plant Sci., 2017, 8, 278.
    Article PubMed PubMed Central Google Scholar
  177. T. R. Randriamanana, A. Lavola and R. Julkunen-Tiitto, Interactive effects of supplemental UV-B and temperature in European aspen seedlings: Implications for growth, leaf traits, phenolic defense and associated organisms, Plant Physiol. Biochem., 2015, 93, 84–93.
    Article CAS PubMed Google Scholar
  178. L. Nybakken, R. Hörkkä and R. Julkunen-Tiitto, Combined enhancements of temperature and UVB influence growth and phenolics in clones of the sexually dimorphic Salix myrsinifolia, Physiol. Plant., 2012, 145, 551–564.
    Article CAS PubMed Google Scholar
  179. L. C. Olsson, M. Veit, G. Weissenböck and J. F. Bornman, Differential flavonoid response to enhanced UV-B radiation in Brassica napus, Phytochemistry, 1998, 49, 1021–1028.
    Article CAS Google Scholar
  180. G. Wu, J. F. Bornman, S. J. Bennett, M. W. Clarke, Z. Fang and S. K. Johnson, Individual polyphenolic profiles and antioxidant activity in sorghum grains are influenced by very low and high solar UV radiation and genotype, J. Cereal Sci., 2017, 77, 17–23.
    Article CAS Google Scholar
  181. S. Neugart, M. Fiol, M. Schreiner, S. Rohn, R. Zrenner, L. W. Kroh and A. Krumbein, Interaction of moderate UV-B exposure and temperature on the formation of structurally different flavonol glycosides and hydroxycinnamic acid derivatives in kale (Brassica oleracea var. sabellica), J. Agric. Food Chem., 2014, 62, 4054–4062.
    CAS Google Scholar
  182. A. Petridis, S. Döll, L. Nichelmann, W. Bilger and H. P. Mock, Arabidopsis thaliana G2-G2-like flavonoid regulator and brassinosteroid enhanced expression1 are low-temperature regulators of flavonoid accumulation, New Phytol., 2016, 211, 912–925.
    CAS Google Scholar
  183. A. Coffey, E. Prinsen, M. A. K. Jansen and J. Conway, The UVB photoreceptor UVR8 mediates accumulation of UV-absorbing pigments, but not changes in plant morphology, under outdoor conditions, Plant., Cell Environ., 2017, 40, 2250–2260.
    Article CAS Google Scholar
  184. R. M. Lucas, S. Yazar, A. R. Young, M. Norval, F. R. de Gruijl, Y. Takizawa, L. E. Rhodes, C. A. Sinclair and R. E. Neale, Human health in relation to exposure to solar ultraviolet radiation under changing stratospheric ozone and climate, Photochem. Photobiol. Sci., 2019, 18, DOI:10.1039/C8PP90060D.
  185. A. R. Blaustein and L. B. Kats, Amphibians in a very bad light, Bioscience, 2003, 53, 1028–1029.
    Article Google Scholar
  186. B. A. Bancroft, N. J. Baker and A. R. Blaustein, A meta-analysis of the effects of ultraviolet B radiation and its synergistic interactions with pH, contaminants, and disease on amphibian survival, Conserv. Biol., 2008, 22, 987–996.
    Article PubMed Google Scholar
  187. A. P. Schuch, M. B. dos Santos, V. M. Lipinski, L. V. Peres, C. P. dos Santos, S. Z. Cechin, N. J. Schuch, D. K. Pinheiro and E. L. da Silva Loreto, Identification of influential events concerning the Antarctic ozone hole over southern Brazil and the biological effects induced by UVB and UVA radiation in an endemic treefrog species, Ecotoxicol. Environ. Saf., 2015, 118, 190–198.
    Article CAS Google Scholar
  188. V. M. Lipinski, T. G. Santos and A. P. Schuch, An UV-sensitive anuran species as an indicator of environmental quality of the Southern Atlantic Rainforest, J. Photochem. Photobiol., B, 2016, 165, 174–181.
    Article CAS Google Scholar
  189. J. E. L. Londero, C. P. Dos Santos, A. L. A. Segatto and A. P. Schuch, Impacts of UVB radiation on food consumption of forest specialist tadpoles, Ecotoxicol. Environ. Saf., 2017, 143, 12–18.
    Article CAS PubMed Google Scholar
  190. T. Carvalho, C. G. Becker and L. F. Toledo, Historical amphibian declines and extinctions in Brazil linked to chytridiomycosis, Proc. R. Soc. B, 2017, 284, DOI: 10.1098/rspb.2016.2254.
  191. W. D. McEnroe and K. Dronka, Color vision in the adult female two-spotted spider mite, Science, 1966, 154, 782.
    Article CAS PubMed Google Scholar
  192. R. Guillermo-Ferreira, E. M. Therézio, M. H. Gehlen, P. C. Bispo and A. Marletta, The role of wing pigmentation, UV and fluorescence as signals in a neotropical damselfly, J. Insect Behav., 2014, 27, 67–80.
    Article Google Scholar
  193. S. T. O’Daniels, D. C. Kesler, J. D. Mihail, E. B. Webb and S. J. Werner, Functional visual sensitivity to ultraviolet wavelengths in the Pileated Woodpecker (Dryocopus pileatus), and its influence on foraging substrate selection, Physiol. Behav., 2017, 174, 144–154.
    Google Scholar
  194. I. Galván, A. Jorge, C. Pacheco, D. Spencer, D. J. Halley, C. Itty, J. Kornan, J. T. Nielsen, T. Ollila, G. Sein, M. Stój and J. J. Negro, Solar and terrestrial radiations explain continental-scale variation in bird pigmentation, Oecologia, 2018, 188, 683–693.
    Article PubMed Google Scholar
  195. D. R. de Zwaan, J. L. Greenwood and K. Martin, Feather melanin and microstructure variation in dark-eyed junco Junco hyemalis across an elevational gradient in the Selkirk Mountains, J. Avian Biol., 2016, 48, 552–562.
    Google Scholar
  196. P. Mullen and G. Pohland, Studies on UV reflection in feathers of some 1000 bird species: are UV peaks in feathers correlated with violet-sensitive and ultraviolet-sensitive cones?, IBIS, 2008, 150, 59–68.
    Article Google Scholar
  197. C. Yang, J. Wang and W. Liang, Blocking of ultraviolet reflectance on bird eggs reduces nest predation by aerial predators, J. Ornithol., 2016, 157, 43–47.
    Article Google Scholar
  198. O. Lind, M. J. Henze, A. Kelber and D. Osorio, Coevolution of coloration and colour vision?, Philos. Trans. R. Soc. B, 2017, 372, DOI: 10.1098/rstb.2016.0338.
  199. M. Martin, M. Théry, G. Rodgers, D. Goven, S. Sourice, P. Mège and J. Secondi, UV wavelengths experienced during development affect larval newt visual sensitivity and predation efficiency, Biol. Lett., 2016, 12, DOI:10.1098/rsbl.2015.0954.
  200. L. Franco-Belussi, L. Z. Fanali and C. De Oliveira, UV-B affects the immune system and promotes nuclear abnormalities in pigmented and non-pigmented bullfrog tadpoles, J. Photochem. Photobiol., B, 2018, 180, 109–117.
    Article CAS Google Scholar
  201. J. Secondi, M. Martin, D. Goven, P. Mege, S. Sourice and M. Thery, Habitat-related variation in the plasticity of a UV-sensitive photoreceptor over a small spatial scale in the palmate newt, J. Evol. Biol., 2017, 30, 1229–1235.
    Article CAS PubMed Google Scholar
  202. J. J. E. Diehl, F. M. Baines, A. C. Heijboer, J. P. van Leeuwen, M. Kik, W. H. Hendriks and D. G. A. B. Oonincx, A comparison of UVb compact lamps in enabling cutaneous vitamin D synthesis in growing bearded dragons, J. Anim. Physiol. Anim. Nutr., 2018, 102 ,308–316.
    Article CAS Google Scholar
  203. M. Martin, S. Meylan, S. Perret and J.-F. Le Galliard, UV coloration influences spatial dominance but not agonistic behaviors in male wall lizards, Behav. Ecol. Sociobiol., 2015, 69, 1483–1491.
    Article Google Scholar
  204. M. Martin, S. Meylan, C. Haussy, B. Decencière, S. Perret and J.-F. Le Galliard, UV color determines the issue of conflicts but does not covary with individual quality in a lizard, _Behav. Eco_l., 2016, 27, 262–270.
  205. L. Huché-Thélier, L. Crespel, J. L. Gourrierec, P. Morel, S. Sakr and N. Leduc, Light signaling and plant responses to blue and UV radiations—Perspectives for applications in horticulture, Environ. Exp. Bot., 2016, 121, 22–38.
    Article CAS Google Scholar
  206. J. J. Wargent, Turning UV-B Photobiology into Commercial Reality, in The Role of UV-B Radiation in Plant Growth and Development, ed. B. R. Jordan, CABI Press, Oxford, UK, 2017, pp. 163–176.
    Google Scholar
  207. J. K. Holopainen, M. Kivimäenpää and R. Julkunen-Tiitto, New light for phytochemicals, Trends Biotechnol., 2018, 36, 7–10.
    Article CAS PubMed Google Scholar
  208. E. Elfadly, H. Abd El-Aal, A. Rizk and W. Sobeih, Ambient UV manipulation in greenhouses: plant responses and insect pest management in cucumber, International Society for Horticultural Science (ISHS), Leuven, Belgium, 1134 edn, 2016, pp. 343–350.
  209. H. A. Abd El-Aal, A. M. Rizk and I. E. Mousa, Evaluation of new greenhouse covers with modified light regime to control cotton aphid and cucumber (Cucumis sativus L.) productivity, Crop Prot, 2018, 107, 64–70.
    Google Scholar
  210. R. Tripathi and S. B. Agrawal, Effect of supplemental UV-B on yield, seed quality, oil content and fatty acid composition of Brassica campestris L. under natural field conditions, Qual. Assur. Saf. Crops Foods, 2016, 8, 11–20.
    CAS Google Scholar
  211. A. L. Escobar, F. M. de Oliveira Silva, P. Acevedo, A. Nunes-Nesi, M. Alberdi and M. Reyes-Díaz, Different levels of UV-B resistance in Vaccinium corymbosum cultivars reveal distinct backgrounds of phenylpropanoid metabolites, Plant Physiol. Biochem., 2017, 118, 541–550.
    Google Scholar
  212. M. Di Ferdinando, C. Brunetti, G. Agati and M. Tattini, Multiple functions of polyphenols in plants inhabiting unfavorable Mediterranean areas, Environ. Exp. Bot., 2014, 103, 107–116.
    Article CAS Google Scholar
  213. G. Wu, S. Johnson, K. J. Bornman, F. S. Bennett, V. Singh and Z. Fang, Effect of genotype and growth temperature on sorghum grain physical characteristics, polyphenol content, and antioxidant activity, Cereal Chem., 2016, 93, 419–425.
    Article CAS Google Scholar
  214. G. Wu, S. K. Johnson, J. F. Bornman, S. J. Bennett, M. W. Clarke, V. Singh and Z. Fang, Growth temperature and genotype both play important roles in sorghum grain phenolic composition, Sci. Rep., 2016, 6, 21835.
    Article CAS PubMed PubMed Central Google Scholar
  215. L. Palmieri, D. Masuero, P. Martinatti, G. Baratto, S. Martens and U. Vrhovsek, Genotype-by-environment effect on bioactive compounds in strawberry (Fragaria x ananassa Duch.), _J. Sci. Food Agri_c., 2017, 97, 4180–4189.
  216. S. H. Nile and S. W. Park, Edible berries: Bioactive components and their effect on human health, Nutrition, 2014, 30, 134–144.
    Article CAS PubMed Google Scholar
  217. J. D. Wightman and R. A. Heuberger, Effect of grape and other berries on cardiovascular health, _J. Sci. Food Agri_c., 2015, 95, 1584–1597.
  218. A. Umeno, M. Horie, K. Murotomi, Y. Nakajima and Y. Yoshida, Antioxidative and antidiabetic effects of natural polyphenols and isoflavones, Molecules, 2016, 21, 708.
    Article PubMed Central CAS Google Scholar
  219. Z. Rasines-Perea and P.-L. Teissedre, Grape polyphenols’ effects in human cardiovascular diseases and diabetes, Molecules, 2017, 22, 68.
    Article PubMed Central CAS Google Scholar
  220. F. A. Tomás-Barberán and C. Espín Juan, Phenolic compounds and related enzymes as determinants of quality in fruits and vegetables, _J. Sci. Food Agri_c., 2001, 81, 853–876.
  221. H. Wang, M. Gui, X. Tian, X. Xin, T. Wang and J. li, Effects of UV-B on vitamin C, phenolics, flavonoids and their related enzyme activities in mung bean sprouts (Vigna radiata), Int. J. Food Sci. Technol., 2017, 52, 827–833.
    Article CAS Google Scholar
  222. R. Julkunen-Tiitto, N. Nenadis, S. Neugart, M. Robson, G. Agati, J. Vepsäläinen, G. Zipoli, L. Nybakken, B. Winkler and M. A. K. Jansen, Assessing the response of plant flavonoids to UV radiation: an overview of appropriate techniques, Phytochem. Rev., 2015, 14, 273–297.
    Article CAS Google Scholar
  223. K. Suklje, G. Antalick, Z. Coetzee, L. M. Schmidtke, H. B. Cesnik, J. Brandt, W. J. du Toit, K. Lisjak and A. Deloire, Effect of leaf removal and ultraviolet radiation on the composition and sensory perception of Vitis viniferaL. cv. Sauvignon Blanc wine, Aust. J. Grape Wine Res., 2014, 20, 223–233.
    CAS Google Scholar
  224. P. Carbonell-Bejerano, M. P. Diago, J. Martínez-Abaigar, J. M. Martínez-Zapater, J. Tardáguila and E. Núñez-Olivera, Solar ultraviolet radiation is necessary to enhance grapevine fruit ripening transcriptional and phenolic responses, BMC Plant Biol., 2014, 14, 183.
    Article PubMed PubMed Central CAS Google Scholar
  225. J. Martínez-Lüscher, N. Torres, G. Hilbert, T. Richard, M. Sánchez-Díaz, S. Delrot, J. Aguirreolea, I. Pascual and E. Gomès, Ultraviolet-B radiation modifies the quantitative and qualitative profile of flavonoids and amino acids in grape berries, Phytochemistry, 2014, 102, 106–114.
    Article PubMed CAS Google Scholar
  226. A. Soto-Vaca, A. Gutierrez, J. N. Losso, Z. Xu and J. W. Finley, Evolution of phenolic compounds from color and flavor problems to health benefits, J. Agric. Food Chem., 2012, 60, 6658–6677.
    Article CAS PubMed Google Scholar
  227. T. Shoji, Polyphenols as natural food pigments: Changes during food processing, Am. J. Food Physiol., 2007, 2, 570–581.
    Google Scholar
  228. K. R. Reddy, H. Patro, S. Lokhande, N. Bellaloui and W. Gao, Ultraviolet-B radiation alters soybean growth and seed quality, Food Nutr. Sci., 2016, 7, 55.
    CAS Google Scholar
  229. L. Liu, S. Gregan, C. Winefield and B. Jordan, From UVR8 to flavonol synthase: UV-B-induced gene expression in Sauvignon blanc grape berry, Plant., Cell Environ., 2015, 38, 905–919.
    Article CAS Google Scholar
  230. M. Á. Del-Castillo-Alonso, A. Castagna, K. Csepregi, É. Hideg, G. Jakab, M. A. K. Jansen, T. Jug, L. Llorens, A. Mátai, J. Martínez-Lüscher and L. Monforte, Environmental factors correlated with the metabolite profile of Vitis vinifera cv. Pinot Noir berry skins along a European latitudinal gradient, J. Agric. Food Chem., 2016, 64, 8722–8734.
    Google Scholar
  231. N. D. Paul and D. Gwynn-Jones, Ecological roles of solar UV radiation: towards an integrated approach, Trees, 2003, 18, 48–55.
    Google Scholar
  232. D. Gwynn-Jones, A. G. Jones, A. Waterhouse, A. Winters, D. Comont, J. Scullion, R. Gardias, B. J. Graae, J. A. Lee and T. V. Callaghan, Enhanced UV-B and elevated CO2 impacts sub-Arctic shrub berry abundance, quality and seed germination, Ambio, 2012, 41, 256–268.
    Article CAS PubMed PubMed Central Google Scholar
  233. R. Henry-Kirk, A. B. Plunkett, M. Hall, T. McGhie, C. Allan Andrew, J. Wargent Jason and V. Espley Richard, Solar UV light regulates flavonoid metabolism in apple (Malus x domestica), Plant., Cell Environ., 2018, 41, 675–688.
    CAS Google Scholar
  234. J. Q. Song, R. Smart, H. Wang, B. Dambergs, A. Sparrow and M. C. Qian, Effect of grape bunch sunlight exposure and UV radiation on phenolics and volatile composition of Vitis vinifera L. cv. Pinot noir wine, Food Chem., 2015, 173, 424–431.
    CAS Google Scholar
  235. M. Heinze, F. S. Hanschen, M. Wiesner-Reinhold, S. Baldermann, J. Grafe, M. Schreiner and S. Neugart, Effects of developmental stages and reduced UVB and low UV conditions on plant secondary metabolite profiles in pak choi (Brassica rapa subsp. chinensis), J. Agric. Food Chem., 2018, 66, 1678–1692.
    CAS Google Scholar
  236. J. Weber, C. J. Halsall, J. J. Wargent and N. D. Paul, The aqueous photodegradation of fenitrothion under various agricultural plastics: Implications for pesticide longevity in agricultural ‘micro-environments’, Chemosphere, 2009, 76, 147–150.
    Article CAS PubMed Google Scholar
  237. S. Rani and D. Sud, Role of enhanced solar radiation for degradation of triazophos pesticide in soil matrix, Sol. Energy, 2015, 120 ,494–504.
    Article CAS Google Scholar
  238. H. Leach, J. C. Wise and R. Isaacs, Reduced ultraviolet light transmission increases insecticide longevity in protected culture raspberry production, Chemosphere, 2017, 189, 454–465.
    Article CAS PubMed Google Scholar
  239. Y. Antignus, Management of air-borne viruses by “optical barriers” in protected agriculture and open-field crops, Adv. Virus Res., 2014, 90, 1–33.
    Article PubMed Google Scholar
  240. M. Lapidot, J. P. Legg, W. M. Wintermantel and J. E. Polston, Management of whitefly-transmitted viruses in open-field production systems, Adv. Virus Res., 2014, 90, 147–206.
    Article Google Scholar
  241. F. Kuhlmann and C. Muller, Development-dependent effects of UV radiation exposure on broccoli plants and interactions with herbivorous insects, J. Environ. Exp. Bot., 2009, 66, 61–68.
    Article CAS Google Scholar
  242. L. Llorens, F. Ruben Badenes-Perez, R. Julkunen-Tiitto, C. Zidorn, A. Fereres and M. A. K. Jansen, The role of UV-B radiation in plant sexual reproduction, Perspect. Plant Ecol., 2015, 17, 243–254.
    Article Google Scholar
  243. J. K. Kwon, B. Khoshimkhujaev, J. H. Lee, I. H. Yu, K. S. Park and H. G. Choi, Growth and yield of tomato and cucumber plants in polycarbonate or glass greenhouses, Korean J. Hortic. Sci., 2017, 35, 79–87.
    CAS Google Scholar
  244. N. Mariz-Ponte, R. J. Mendes, S. Sario, J. M. P. Ferreira de Oliveira, P. Melo and C. Santos, Tomato plants use non-enzymatic antioxidant pathways to cope with moderate UV-A/B irradiation: A contribution to the use of UV-A/B in horticulture, J. Plant Physiol., 2018, 221 ,32–42.
  245. Z. S. Ilić and E. Fallik, Light quality manipulation improves vegetable quality at harvest and postharvest: A review, Environ. Exp. Bot., 2017, 139 ,79–90.
    Article CAS Google Scholar
  246. S. K. Singh, K. R. Reddy, V. R. Reddy and W. Gao, Maize growth and developmental responses to temperature and ultraviolet-B radiation interaction, Photosynthetica, 2014, 52, 262–271.
    Article CAS Google Scholar
  247. U. Sivadasan, T. R. Randriamanana, R. Julkunen-Tiitto and L. Nybakken, The vegetative buds of Salix myrsinifolia are responsive to elevated UV-B and temperature, Plant Physiol. Biochem., 2015, 93, 66–73.
    CAS Google Scholar
  248. I. Niang, O. Ruppel, M. Abdrabo, A. Essel, C. Lennard, J. Padgham and P. Urquhart, Africa, climate change 2014: Impacts, adaptation and vulnerability_—_Contributions of the Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. 1199–1265, Report No., 2014.
  249. Y. Yang, K. Niu, Z. Hu, K. J. Niklas and S. Sun, Linking species performance to community structure as affected by UV-B radiation: an attenuation experiment, J. Plant Ecol., 2018, 11, 286–296.
    Article Google Scholar
  250. V. A. Suchar and R. Robberecht, Integration and scaling of UV-B radiation effects on plants: the relative sensitivity of growth forms and interspecies interactions, J. Plant Ecol., 2017, 11, 656–670.
    Article Google Scholar
  251. S. Hayes, C. N. Velanis, G. I. Jenkins and K. A. Franklin, UV-B detected by the UVR8 photoreceptor antagonizes auxin signaling and plant shade avoidance, Proc. Natl. Acad. Sci. U. S. A., 2014, 111, 11894–11899.
    Article CAS PubMed PubMed Central Google Scholar
  252. C. A. Mazza and C. L. Ballaré, Photoreceptors UVR8 and phytochrome B cooperate to optimize plant growth and defense in patchy canopies, New Phytol., 2015, 207, 4–9.
    Article PubMed Google Scholar
  253. C. L. Ballaré and R. Pierik, The shade-avoidance syndrome: multiple signals and ecological consequences, Plant., Cell Environ., 2017, 40, 2530–2543.
    Article CAS Google Scholar
  254. C. A. Mazza, M. M. Izaguirre, J. Zavala, A. L. Scopel and C. L. Ballaré, Insect perception of ambient ultraviolet-B radiation, Ecol. Lett., 2002, 5, 722–726.
    Article Google Scholar
  255. P. V. Demkura and C. L. Ballaré, UVR8 mediates UV-B-induced Arabidopsis defense responses against Botrytis cinerea by controlling sinapate accumulation, Mol. Plant., 2012, 5, 642–652.
    Google Scholar
  256. M. M. Izaguirre, C. A. Mazza, M. Biondini, I. T. Baldwin and C. L. Ballaré, Remote sensing of future competitors: Impacts on plant defenses, Proc. Natl. Acad. Sci. U. S. A., 2006, 103, 7170–7174.
    Article CAS PubMed PubMed Central Google Scholar
  257. J. E. Moreno, Y. Tao, J. Chory and C. L. Ballaré, Ecological modulation of plant defense via phytochrome control of jasmonate sensitivity, Proc. Natl. Acad. Sci. U. S. A., 2009, 106, 4935–4940.
    Article CAS PubMed PubMed Central Google Scholar
  258. M. Leone, M. M. Keller, I. Cerrudo and C. L. Ballaré, To grow or defend? Low red : far-red ratios reduce jasmonate sensitivity in Arabidopsis seedlings by promoting DELLA degradation and increasing JAZ10 stability, _New Phyto_l., 2014, 204, 355–367.
  259. P. V. Demkura, G. Abdala, I. T. Baldwin and C. L. Ballaré, Jasmonate-dependent and -independent pathways mediate specific effects of solar ultraviolet B radiation on leaf phenolics and antiherbivore defense, Plant Physiol., 2010, 152, 1084–1095.
    Article CAS PubMed PubMed Central Google Scholar
  260. C. E. Williamson, R. G. Zepp, R. M. Lucas, S. Madronich, A. T. Austin, C. L. Ballaré, M. Norval, B. Sulzberger, A. F. Bais, R. L. McKenzie, S. A. Robinson, D.-P. Häder, N. D. Paul and J. F. Bornman, Solar ultraviolet radiation in a changing climate, Nat. Clim. Change, 2014, 4, 434–441.
    Article Google Scholar
  261. M. M. Izaguirre, C. A. Mazza, A. Svatos, I. T. Baldwin and C. L. Ballaré, Solar ultraviolet-B radiation and insect herbivory trigger partially overlapping phenolic responses in Nicotiana attenuata and Nicotiana longiflora, Ann. Bot., 2007, 99, 103–109.
    CAS Google Scholar
  262. J. A. Zavala, C. A. Mazza, F. M. Dillon, H. D. Chludil and C. L. Ballaré, Soybean resistance to stink bugs (Nezara viridula and Piezodorus guildinii) increases with exposure to solar UV-B radiation and correlates with isoflavonoid content in pods under field conditions, Plant., Cell Environ., 2015, 38, 920–928.
    CAS Google Scholar
  263. F. M. Dillon, M. D. Tejedor, N. Ilina, H. D. Chludil, A. Mithöfer, E. A. Pagano and J. A. Zavala, Solar UV-B radiation and ethylene play a key role in modulating effective defenses against Anticarsia gemmatalis larvae in field-grown soybean, Plant., Cell Environ., 2018, 41, 383–394.
    CAS Google Scholar
  264. F. Kuhlmann and C. Müller, UV-B impact on aphid performance mediated by plant quality and plant changes induced by aphids, Plant Biol., 2010, 12, 676–684.
    CAS PubMed Google Scholar
  265. J. W. Stratmann, B. A. Stelmach, E. W. Weller and C. A. Ryan, UVB/UVA radiation activates a 48 kDa myelin basic protein kinase and potentiates wound signaling in tomato leaves, Photochem. Photobiol., 2000, 71, 116–123.
    Article CAS PubMed Google Scholar
  266. M. M. Izaguirre, A. L. Scopel, I. T. Baldwin and C. L. Ballaré, Convergent responses to stress. Solar ultraviolet-B radiation and Manduca sexta herbivory elicit overlapping transcriptional responses in field-grown plants of Nicotiana longiflora, Plant Physiol., 2003, 132, 1755–1767.
    CAS Google Scholar
  267. S. T. Đinh, I. Gális and I. T. Baldwin, UVB radiation and 17-hydroxygeranyllinalool diterpene glycosides provide durable resistance against mirid (Tupiocoris notatus) attack in field-grown Nicotiana attenuata plants, Plant., Cell Environ., 2013, 36, 590–606.
    Google Scholar
  268. L. O. Morales, M. Brosché, J. Vainonen, G. I. Jenkins, J. J. Wargent, N. Sipari, Å. Strid, A. V. Lindfors, R. Tegelberg and P. J. Aphalo, Multiple roles for UV RESISTANCE LOCUS8 in regulating gene expression and metabolite accumulation in Arabidopsis under solar ultraviolet radiation, Plant Physiol., 2013, 161, 744–759.
    Article CAS PubMed Google Scholar
  269. C. Caputo, M. Rutitzky and C. L. Ballaré, Solar ultraviolet-B radiation alters the attractiveness of Arabidopsis plants to diamondback moths (Plutella xylostella L.): impacts on oviposition and involvement of the jasmonic acid pathway, Oecologia, 2006, 149, 81–90.
    Google Scholar
  270. J. Qi, M. Zhang, C. Lu, C. Hettenhausen, Q. Tan, G. Cao, X. Zhu, G. Wu and J. Wu, Ultraviolet-B enhances the resistance of multiple plant species to lepidopteran insect herbivory through the jasmonic acid pathway, Sci. Rep., 2018, 8 ,277.
    Article PubMed PubMed Central CAS Google Scholar
  271. J. Y. King, L. A. Brandt and E. C. Adair, Shedding light on plant litter decomposition: advances, implications and new directions in understanding the role of photodegradation, Biogeochemistry, 2012, 111, 57–81.
    Article Google Scholar
  272. P. W. Barnes, H. L. Throop, S. R. Archer, D. D. Breshears, R. L. McCulley and M. A. Tobler, Sunlight and soil-litter mixing: drivers of litter decomposition in drylands, Prog. Bot., 2015, 76, 273–302.
    CAS Google Scholar
  273. Y. Lin, R. D. Scarlett and J. Y. King, Effects of UV photodegradation on subsequent microbial decomposition of Bromus diandrus litter, Plant Soil, 2015, 395, 263–271.
    CAS Google Scholar
  274. Y. Lin, S. D. Karlen, J. Ralph and J. Y. King, Short-term facilitation of microbial litter decomposition by ultraviolet radiation, Sci. Total Environ., 2018, 615, 838–848.
    Article CAS PubMed Google Scholar
  275. J. Wang, S. Yang, B. Zhang, W. Liu, M. Deng, S. Chen and L. Liu, Temporal dynamics of ultraviolet radiation impacts on litter decomposition in a semi-arid ecosystem, Plant Soil, 2017, 419, 71–81.
    Article CAS Google Scholar
  276. D. Gliksman, A. Rey, R. Seligmann, R. Dumbur, O. Sperling, Y. Navon, S. Haenel, P. De Angelis, A. Arnone John and M. Grünzweig José, Biotic degradation at night, abiotic degradation at day: positive feedbacks on litter decomposition in drylands, Glob. Change Biol., 2017, 23, 1564–1574.
    Article Google Scholar
  277. G. Huang and Y. Li, Photodegradation effects are related to precipitation amount, precipitation frequency and litter traits in a desert ecosystem, Soil Biol. Biochem., 2017, 115, 383–392.
    Article CAS Google Scholar
  278. J. Wang, L. Liu, X. Wang, S. Yang, B. Zhang, P. Li, C. Qiao, M. Deng and W. Liu, High night-time humidity and dissolved organic carbon content support rapid decomposition of standing litter in a semi-arid landscape, Funct. Ecol., 2017, 31, 1659–1668.
    Article Google Scholar
  279. M. Almagro, J. Martínez-López, F. T. Maestre and A. Rey, The contribution of photodegradation to litter decomposition in semiarid Mediterranean grasslands depends on its interaction with local humidity conditions, litter quality and position, Ecosystems, 2017, 20, 527–542.
    Article CAS Google Scholar
  280. C. Wu, Z. Zhang, H. Wang, C. Li, Q. Mo and Y. Liu, Photodegradation accelerates coarse woody debris decomposition in subtropical Chinese forests, For. Ecol. Manage., 2018, 409, 225–232.
    Article Google Scholar
  281. V. A. Pancotto, O. E. Sala, M. Cabello, N. I. Lopez, T. M. Robson, C. L. Ballaré, M. M. Caldwell and A. L. Scopel, Solar UV-B decreases decomposition in herbaceous plant litter in Tierra del Fuego, Argentina: potential role of an altered decomposer community, Glob. Change Biol., 2003, 9, 1465–1474.
    Article Google Scholar
  282. W. K. Smith, W. Gao, H. Steltzer, M. D. Wallenstein and R. Tree, Moisture availability influences the effect of ultraviolet-B radiation on leaf litter decomposition., Glob. Change Biol., 2010, 16, 484–495.
    Article Google Scholar
  283. Z. Ma, W. Yang, F. Wu and B. Tan, Effects of light intensity on litter decomposition in a subtropical region, Ecosphere, 2017, 8, e01770.
  284. S. D. Flint and M. M. Caldwell, Solar UV-B and visible radiation in tropical forest gaps: measurements partitioning direct and diffuse radiation, Glob. Change Biol., 1998, 4, 863–870.
    Article Google Scholar
  285. P. I. Araujo and A. T. Austin, A shady business: pine afforestation alters the primary controls on litter decomposition along a precipitation gradient in Patagonia, Argentina, J. Ecol., 2015, 103, 1408–1420.
    Article CAS Google Scholar
  286. K. I. Predick, S. R. Archer, S. M. Aguillon, D. A. Keller, H. L. Throop and P. W. Barnes, UV-B radiation and shrub canopy effects on surface litter decomposition in a shrubinvaded dry grassland, J. Arid Environ., 2018, 157, 13–21.
    Article Google Scholar
  287. A. Bravo-Oviedo, R. Ruiz-Peinado, R. Onrubia and M. del Río, Thinning alters the early-decomposition rate and nutrient immobilization-release pattern of foliar litter in Mediterranean oak-pine mixed stands, For. Ecol. Manage., 2017, 391, 309–320.
    Article Google Scholar
  288. D. B. Hewins and H. L. Throop, Leaf litter decomposition is rapidly enhanced by the co-occurrence of monsoon rainfall and soil-litter mixing across a gradient of coppice dune development in the Chihuahuan Desert, J. Arid Environ., 2016, 129, 111–118.
    Article Google Scholar
  289. T. Bosco, M. B. Bertiller and A. L. Carrera, Combined effects of litter features, UV radiation, and soil water on litter decomposition in denuded areas of the arid Patagonian Monte, Plant Soil, 2016, 406, 71–82.
    Article CAS Google Scholar
  290. X. Pan, Y.-B. Song, G.-F. Liu, Y.-K. Hu, X.-H. Ye, W. K. Cornwell, A. Prinzing, M. Dong and J. H. C. Cornelissen, Functional traits drive the contribution of solar radiation to leaf litter decomposition among multiple arid-zone species, Sci. Rep., 2015, 5, 13217.
    Article CAS PubMed PubMed Central Google Scholar
  291. D. B. Hewins, R. L. Sinsabaugh, S. R. Archer and H. L. Throop, Soil-litter mixing and microbial activity mediate decomposition and soil aggregate formation in a sandy shrub-invaded Chihuahuan Desert grassland, Plant Ecol., 2017, 218, 459–474.
    Article Google Scholar
  292. P. W. Barnes, H. L. Throop, D. B. Hewins, M. L. Abbene and S. R. Archer, Soil coverage reduces photodegradation and promotes the development of soil-microbial films on dryland leaf litter, Ecosystems, 2012, 15, 311–321.
    Article CAS Google Scholar
  293. A. T. Austin and C. L. Ballaré, Dual role of lignin in plant litter decomposition in terrestrial ecosystems, Proc. Natl. Acad. Sci. U. S. A., 2010, 107, 4618–4622.
    Article CAS PubMed PubMed Central Google Scholar
  294. T. A. Day, R. Guénon and C. T. Ruhland, Photodegradation of plant litter in the Sonoran Desert varies by litter type and age, Soil Biol. Biochem., 2015, 89, 109–122.
    Article CAS Google Scholar
  295. M. Chen, W. J. Parton, E. C. Adair, S. Asao, M. D. Hartman and W. Gao, Simulation of the effects of photodecay on long-term litter decay using DayCent, Ecosphere, 2016, 7, e01631.
  296. M. Dainese, S. Aikio, P. E. Hulme, A. Bertolli, F. Prosser and L. Marini, Human disturbance and upward expansion of plants in a warming climate, Nat. Clim. Change, 2017, 7, 577–580.
    Article Google Scholar
  297. A. Wolf, N. B. Zimmerman, W. R. L. Anderegg, P. E. Busby and J. Christensen, Altitudinal shifts of the native and introduced flora of California in the context of 20th-century warming, Glob. Ecol. Biogeogr., 2016, 25, 418–429.
    Article Google Scholar
  298. C. Körner, The use of ‘altitude’ in ecological research, Trends Ecol. Evol., 2007, 22, 569–574.
    Article PubMed Google Scholar
  299. M. Sun, T. Su, S. B. Zhang, S. F. Li, J. Anberree-Lebreton and Z. K. Zhou, Variations in leaf morphological traits of Quercus guyavifolia (Fagaceae) were mainly influenced by water and ultraviolet irradiation at high elevations on the Qinghai-Tibet Plateau, China, Int. J. Agric. Biol., 2016, 18, 266–273.
    Google Scholar
  300. G. Fu and Z.-X. Shen, Effects of enhanced UV-B radiation on plant physiology and growth on the Tibetan Plateau: a meta-analysis, Acta Physiol. Plant., 2017, 39, 85.
    Article CAS Google Scholar
  301. Y. Zhang, L. Feng, H. Jiang, Y. Zhang and S. Zhang, Different proteome profiles between male and female Populus cathayana exposed to UV-B radiation, Front. Plant Sci., 2017, 8, 320.
    PubMed PubMed Central Google Scholar
  302. Q. W. Wang, C. Kamiyama, J. Hidema and K. Hikosaka, Ultraviolet-B-induced DNA damage and ultraviolet-B tolerance mechanisms in species with different functional groups coexisting in subalpine moorlands, Oecologia, 2016, 181, 1069–1082.
    Article PubMed Google Scholar
  303. J. C. Mejia-Giraldo, K. Henao-Zuluaga, C. Gallardo, L. Atehortua and M. A. Puertas-Mejia, Novel in vitro antioxidant and photoprotection capacity of plants from high altitude ecosystems of Colombia, Photochem. Photobiol., 2016, 92, 150–157.
    CAS Google Scholar
  304. A. Albert, V. Sareedenchai, W. Heller, H. K. Seidlitz and C. Zidorn, Temperature is the key to altitudinal variation of phenolics in Arnica montana L. cv. ARBO, Oecologia, 2009, 160, 1–8.
    Google Scholar
  305. R. G. León-Chan, M. López-Meyer, T. Osuna-Enciso, J. A. Sañudo-Barajas, J. B. Heredia and J. León-Félix, Low temperature and ultraviolet-B radiation affect chlorophyll content and induce the accumulation of UV-B-absorbing and antioxidant compounds in bell pepper (Capsicum annuum) plants, Environ. Exp. Bot., 2017, 139, 143–151.
    Google Scholar
  306. H. Kohler, R. A. Contreras, M. Pizarro, R. Cortes-Antiquera and G. E. Zuniga, Antioxidant responses induced by UVB radiation in Deschampsia antarctica Desv, Front. Plant Sci., 2017, 8, 921.
  307. M. J. Waterman, A. S. Nugraha, R. Hendra, G. E. Ball, S. A. Robinson and P. A. Keller, Antarctic moss biflavonoids show high antioxidant and ultraviolet-screening activity, J. Nat. Prod., 2017, 80, 2224–2231.
    Article CAS PubMed Google Scholar
  308. Q.-W. Wang, S. Nagano, H. Ozaki, S.-I. Morinaga, J. Hidema and K. Hikosaka, Functional differentiation in UV-B-induced DNA damage and growth inhibition between highland and lowland ecotypes of two Arabidopsis species, Environ. Exp. Bot., 2016, 131, 110–119.
    Article CAS Google Scholar
  309. V. N. Ibañez, F. J. Berli, R. W. Masuelli, R. A. Bottini and C. F. Marfil, Influence of altitude and enhanced ultraviolet-B radiation on tuber production, seed viability, leaf pigments and morphology in the wild potato species Solanum kurtzianum Bitter & Wittm collected from an elevational gradient, Plant Sci., 2017, 261, 60–68.
    Google Scholar
  310. H. Wang, X. C. Ma, L. Zhang, E. Siemann and J. W. Zou, UV-B has larger negative impacts on invasive populations of Triadica sebifera but ozone impacts do not vary, J. Plant Ecol., 2016, 9, 61–68.
    Google Scholar
  311. M. Hock, M. Beckmann, R. W. Hofmann, H. Bruelheide and A. Erfmeier, Effects of UV-B radiation on germination characteristics in invasive plants in New Zealand, NeoBiota, 2015, 26, 21–37.
    Article Google Scholar
  312. P. W. Barnes, T. M. Robson, M. A. Tobler, I. N. Bottger and S. D. Flint, Plant responses to fluctuating UV environments, in UV-B Radiation and Plant Life: Molecular Biology to Ecology, ed. B. Jordan, CABI, Oxfordshire, UK, 2017, pp. 72–89.
    Book Google Scholar
  313. M. Beckmann, M. Hock, H. Bruelheide and A. Erfmeier, The role of UV-B radiation in the invasion of Hieracium pilosella-A comparison of German and New Zealand plants, Environ. Exp. Bot., 2012**, 75**, 173–180.
  314. A. M. Davidson, M. Jennions and A. B. Nicotra, Do invasive species show higher phenotypic plasticity than native species and, if so, is it adaptive? A meta-analysis, Ecol. Lett., 2011, 14, 419–431.
    Article PubMed Google Scholar
  315. A. Castagna, K. Csepregi, S. Neugart, G. Zipoli, K. Večeřová, G. Jakab, T. Jug, L. Llorens, J. Martínez-Abaigar, J. Martínez-Lüscher, E. Núñez-Olivera, A. Ranieri, K. Schoedl-Hummel, M. Schreiner, P. Teszlák, S. Tittmann, O. Urban, D. Verdaguer, M. A. K. Jansen and É. Hideg, Environmental plasticity of Pinot noir grapevine leaves; a trans-European study of morphological and biochemical changes along a 1500 km latitudinal climatic gradient, Plant., Cell Environ., 2017, 40, 2790–2805.
    Article CAS Google Scholar
  316. G. P. Asner, R. E. Martin, C. B. Anderson, K. Kryston, N. Vaughn, D. E. Knapp, L. P. Bentley, A. Shenkin, N. Salinas, F. Sinca, R. Tupayachi, H. K. Quispe, P. M. Montoya, Á. Ccori, F. Delis, S. Díaz, B. J. Enquist and Y. Malhi, Scale dependence of canopy trait distributions along a tropical forest elevation gradient, New Phytol., 2017, 214, 973–988.
    Article CAS PubMed Google Scholar
  317. M. L. Lopez, G. G. Palancar and B. M. Toselli, Effects of stratocumulus, cumulus, and cirrus clouds on the UV-B diffuse to global ratio: Experimental and modeling results, J. Quant. Spectrosc. Radiat. Transfer, 2012, 113, 461–469.
    Article CAS Google Scholar
  318. U. Feister, N. Cabrol and D. Hader, UV irradiance enhancements by scattering of solar radiation from clouds, Atmosphere, 2015, 6, 1211–1228.
    Article Google Scholar
  319. N. Nenadis, L. Llorens, A. Koufogianni, L. Diaz, J. Font, J. Abel Gonzalez and D. Verdaguer, Interactive effects of UV radiation and reduced precipitation on the seasonal leaf phenolic content/composition and the antioxidant activity of naturally growing Arbutus unedo plants, J. Photochem. Photobiol., B, 2015, 153, 435–444.
    CAS Google Scholar
  320. J. H. Sullivan, D. C. Gitz, L. Liu-Gitz, C. P. Xu, W. Gao and J. Slusser, Coupling short-term changes in ambient UV-B levels with induction of UV-screening compounds, Photochem. Photobiol., 2007, 83, 863–870.
    Article CAS PubMed Google Scholar
  321. P. W. Barnes, S. D. Flint, R. J. Ryel, M. A. Tobler, A. E. Barkley and J. J. Wargent, Rediscovering leaf optical properties: New insights into plant acclimation to solar UV radiation, Plant Physiol. Biochem., 2015, 93, 94–100.
    Article CAS PubMed Google Scholar
  322. P. W. Barnes, S. D. Flint, M. A. Tobler and R. J. Ryel, Diurnal adjustment in UV-sunscreen protection is widespread among higher plants, Oecologia, 2016, 181, 55–63.
    Article PubMed Google Scholar
  323. D. Baldocchi, B. Hutchison, D. Matt and R. McMillen, Seasonal variations in the radiation regime within an oakhickory forest, Agric For. Meteorol., 1984, 33, 177–191.
    Article Google Scholar
  324. S. M. Hartikainen, A. Jach, A. Grané and T. M. Robson, Assessing scale-wise similarity of curves with a thick pen: As illustrated through comparisons of spectral irradiance, Ecol. Evol., 2018, 8, 10206–10218.
    Article PubMed PubMed Central Google Scholar
  325. M. J. Brown, G. G. Parker and N. E. Posner, A survey of ultraviolet-B radiation in forests, J. Ecol., 1994, 82, 843–854.
    Article Google Scholar
  326. R. H. Grant, K. Apostol and W. Gao, Biologically effective UV-B exposures of an oak-hickory forest understory during leaf-out, Agric For. Meteorol., 2005, 132, 28–43.
    Article Google Scholar
  327. G. H. Krause, E. Grube, A. Virgo and K. Winter, Sudden exposure to solar UV-B radiation reduces net CO2 uptake and photosystem I efficiency in shade-acclimated tropical tree seedlings, Plant Physiol., 2003, 131, 745–752.
    Article CAS PubMed PubMed Central Google Scholar
  328. G. H. Krause, E. Grube, O. Y. Koroleva, C. Barth and K. Winter, Do mature shade leaves of tropical tree seedlings acclimate to high sunlight and UV radiation?, Funct Plant Biol., 2004, 31, 743–756.
    Article PubMed Google Scholar
  329. T. Linkosalo and M. J. Lechowicz, Twilight far-red treatment advances leaf bud burst of silver birch (Betula pendula), Tree Physiol., 2006, 26, 1249–1256.
    Article PubMed Google Scholar
  330. S. Dengel, J. Grace, T. Aakala, P. Hari, S. L. Newberry and T. Mizunuma, Spectral characteristics of pine needles at the limit of tree growth in subarctic Finland, Plant Ecol. Divers., 2013, 6, 31–44.
    Article Google Scholar
  331. M. Leuchner, P. Fabian and H. Werner, Spectral multichannel monitoring of radiation within a mature mixed forest, Plant Biol., 2005, 7, 619–627.
    Article CAS PubMed Google Scholar
  332. S. J. Cheng, G. Bohrer, A. L. Steiner, D. Y. Hollinger, A. Suyker, R. P. Phillips and K. J. Nadelhoffer, Variations in the influence of diffuse light on gross primary productivity in temperate ecosystems, Agric For. Meteorol., 2015, 201, 98–110.
    Article Google Scholar
  333. O. Urban, K. Klem, A. Ač, K. Havránková, P. Holišová, M. Navrátil, M. Zitová, K. Kozlová, R. Pokorný, M. Šprtová, I. Tomášková, V. Špunda and J. Grace, Impact of clear and cloudy sky conditions on the vertical distribution of photosynthetic CO2 uptake within a spruce canopy, _Funct. Eco_l., 2012, 26, 46–55.
  334. O. Urban, M. Košvancová, M. V. Marek and H. K. Lichtenthaler, Induction of photosynthesis and importance of limitations during the induction phase in sun and shade leaves of five ecologically contrasting tree species from the temperate zone, Tree Physiol., 2007, 27, 1207–1215.
    Article PubMed Google Scholar
  335. L. M. Mercado, N. Bellouin, S. Sitch, O. Boucher, C. Huntingford, M. Wild and P. M. Cox, Impact of changes in diffuse radiation on the global land carbon sink, Nature, 2009, 458, 1014.
    Article CAS PubMed Google Scholar
  336. C. R. Brodersen, T. C. Vogelmann, W. E. Williams and H. L. Gorton, A new paradigm in leaf-level photosynthesis: direct and diffuse lights are not equal, Plant., Cell Environ., 2008, 31, 159–164.
    CAS Google Scholar
  337. R. Wyber, Z. Malenovský, M. Ashcroft, B. Osmond and S. Robinson, Do daily and seasonal trends in leaf solar induced fluorescence reflect changes in photosynthesis, growth or light exposure?, Remote Sens., 2017, 9, DOI:10.3390/rs9060604.
  338. J. P. Gastellu-Etchegorry, N. Lauret, T. Yin, L. Landier, A. Kallel, Z. Malenovský, A. A. Bitar, J. Aval, S. Benhmida, J. Qi, G. Medjdoub, J. Guilleux, E. Chavanon, B. Cook, D. Morton, N. Chrysoulakis and Z. Mitraka, DART: Recent Advances in Remote Sensing Data Modeling With Atmosphere, Polarization, and Chlorophyll Fluorescence, IEEE J. Select. Top. Appl. Earth Obs. Remote Sens., 2017, 10, 2640–2649.
    Article Google Scholar
  339. J. B. Féret, A. A. Gitelson, S. D. Noble and S. Jacquemoud, PROSPECT-D: Towards modeling leaf optical properties through a complete lifecycle, Rem. Sens. Environ., 2017, 193, 204–215.
    Article Google Scholar
  340. N. Vilfan, C. van der Tol, O. Muller, U. Rascher and W. Verhoef, Fluspect-B: A model for leaf fluorescence, reflectance and transmittance spectra, Rem. Sens. Environ., 2016, 186, 596–615.
    Article Google Scholar
  341. N. Vilfan, C. van der Tol, P. Yang, R. Wyber, Z. Malenovky, S. A. Robinson and W. Verhoef, Extending Fluspect to simulate xanthophyll driven leaf reflectance dynamics, Rem. Sens. Environ., 2018, 211, 345–356.
    Article Google Scholar
  342. C. Emde, R. Buras-Schnell, A. Kylling, B. Mayer, J. Gasteiger, U. Hamann, J. Kylling, B. Richter, C. Pause, T. Dowling and L. Bugliaro, The libRadtran software package for radiative transfer calculations (version 2.0.1), Geosci. Model Dev., 2016, 9, 1647–1672.
    Article Google Scholar
  343. M. Grašič, V. Budak, K. Klančnik and A. Gaberščik, Optical properties of halophyte leaves are affected by the presence of salt on the leaf surface, Biologia, 2017, 72, 1131.
    Article CAS Google Scholar
  344. R. Robberecht and M. M. Caldwell, Leaf epidermal transmittance of ultraviolet radiation and its implications for plant sensitivity to ultraviolet-radiation induced injury, Oecologia, 1978, 32, 277–287.
    Article PubMed Google Scholar
  345. S. J. Thackeray, P. A. Henrys, D. Hemming, J. R. Bell, M. S. Botham, S. Burthe, P. Helaouet, D. G. Johns, I. D. Jones, D. I. Leech, E. B. Mackay, D. Massimino, S. Atkinson, P. J. Bacon, T M. Brereton, L. Carvalho, T. H. Clutton-Brock, C. Duck, M. Edwards, J. M. Elliott, S. J. Hall, R. Harrington, J. W. Pearce-Higgins, T. T. Hoye, L. E. Kruuk, J. M. Pemberton, T. H. Sparks, P. M. Thompson, I. White, I. J. Winfield and S. Wanless, Phenological sensitivity to climate across taxa and trophic levels, Nature, 2016, 535, 241–245.
    Article CAS PubMed Google Scholar
  346. J. M. Cohen, M. J. Lajeunesse and J. R. Rohr, A global synthesis of animal phenological responses to climate change, Nat. Clim. Change, 2018, 8, 224–228.
    Article Google Scholar
  347. J. Tang, C. Körner, H. Muraoka, S. Piao, M. Shen, J. Thackeray Stephen and X. Yang, Emerging opportunities and challenges in phenology: a review, Ecosphere, 2016, 7, e01436.
  348. B. R. Scheffers, L. De Meester, T. C. L. Bridge, A. A. Hoffmann, J. M. Pandolfi, R. T. Corlett, S. H. M. Butchart, P. Pearce-Kelly, K. M. Kovacs, D. Dudgeon, M. Pacifici, C. Rondinini, W. B. Foden, T. G. Martin, C. Mora, D. Bickford and J. E. M. Watson, The broad footprint of climate change from genes to biomes to people, Science, 2016, 354, aaf7671.
  349. N. Kronfeld-Schor, M. E. Visser, L. Salis and J. A. van Gils, Chronobiology of interspecific interactions in a changing world, Philos. Trans. R. Soc. B, 2017, DOI: 10.1098/rstb.2016.0248.
  350. C. M. Zohner, B. M. Benito, J.-C. Svenning and S. S. Renner, Day length unlikely to constrain climate-driven shifts in leaf-out times of northern woody plants, Nat. Clim. Change, 2016, 6, 1120.
    Article Google Scholar
  351. N. E. Rafferty, Effects of global change on insect pollinators: Multiple drivers lead to novel communities, Curr. Opin. Insect Sci., 2017, 23, 22–27.
    Article PubMed Google Scholar
  352. H. Nottebrock, B. Schmid, K. Mayer, C. Devaux, K. J. Esler, K. Böhning-Gaese, M. Schleuning, J. Pagel and F. M. Schurr, Sugar landscapes and pollinator-mediated interactions in plant communities, Ecography, 2017, 40, 1129–1138.
    Article Google Scholar
  353. X. Morin, J. Roy, L. Sonié and I. Chuine, Changes in leaf phenology of three European oak species in response to experimental climate change, New Phytol., 2010, 186, 900–910.
    Article PubMed Google Scholar
  354. A. D. Bjorkman, M. Vellend, E. R. Frei and G. H. R. Henry, Climate adaptation is not enough: warming does not facilitate success of southern tundra plant populations in the high Arctic, Glob. Change Biol., 2017, 23, 1540–1551.
    Article Google Scholar
  355. D. A. Way and R. A. Montgomery, Photoperiod constraints on tree phenology, performance and migration in a warming world, Plant., Cell Environ., 2015, 38, 1725–1736.
    Article Google Scholar
  356. C. C. Brelsford and T. M. Robson, Blue light advances bud burst in branches of three deciduous tree species under short-day conditions, Trees, 2018, 32, 1157–1164.
    Article CAS Google Scholar
  357. W. T. Fraser, B. H. Lomax, P. E. Jardine, W. D. Gosling and M. A. Sephton, Pollen and spores as a passive monitor of ultraviolet radiation, Front. Ecol. Evolut., 2014, DOI: 10.3389/fevo.2014.00012.
  358. J. R. McConnell, A. Burke, N. W. Dunbar, P. Köhler, J. L. Thomas, M. M. Arienzo, N. J. Chellman, O. J. Maselli, M. Sigl, J. F. Adkins, D. Baggenstos, J. F. Burkhart, E. J. Brook, C. Buizert, J. Cole-Dai, T. J. Fudge, G. Knorr, H.-F. Graf, M. M. Grieman, N. Iverson, K. C. McGwire, R. Mulvaney, G. Paris, R. H. Rhodes, E. S. Saltzman, J. P. Severinghaus, J. P. Steffensen, K. C. Taylor and G. Winckler, Synchronous volcanic eruptions and abrupt climate change ≈17.7 ka plausibly linked by stratospheric ozone depletion, Proc. Natl. Acad. Sci. U. S. A., 2017, 114, 10035.
    Article CAS PubMed PubMed Central Google Scholar
  359. J. Rozema, B. van Geel, L. O. Bjorn, J. Lean and S. Madronich, Paleoclimate: Toward solving the UV puzzle, Science, 2002, 296, 1621–1622.
    Article CAS PubMed Google Scholar
  360. P. E. Jardine, W. T. Fraser, B. H. Lomax, M. A. Sephton, T. M. Shanahan, C. S. Miller and W. D. Gosling, Pollen and spores as biological recorders of past ultraviolet irradiance, Sci. Rep., 2016, 6, 39269.
    Article CAS PubMed PubMed Central Google Scholar
  361. B. C. Thomas, Photobiological effects at Earth’s surface following a 50 pc supernova, Astrobiology, 2018, 18, 481–490.
    Article CAS PubMed PubMed Central Google Scholar
  362. S. M. Demchik and T. A. Day, Effect of enhanced UV-B radiation on pollen quantity, quality, and seed yield in Brassica rapa (Brassicaceae), Am. J. Bot., 1996, 83, 573–579.
    Google Scholar
  363. K. J. Willis, A. Feurdean, H. J. B. Birks, A. E. Bjune, E. Breman, R. Broekman, J. A. Grytnes, M. New, J. S. Singarayer and J. Rozema, Quantification of UV-B flux through time using UV-B-absorbing compounds contained in fossil Pinus sporopollenin, _New Phyto_l., 2011, 192, 553–560.
  364. B. H. Lomax, W. T. Fraser, M. A. Sephton, T. V. Callaghan, S. Self, M. Harfoot, J. A. Pyle, C. H. Wellman and D. J. Beerling, Plant spore walls as a record of long-term changes in ultraviolet-B radiation, Nat. Geosci., 2008, 1, 592–596.
    Article CAS Google Scholar
  365. P. E. Jardine, F. A. J. Abernethy, B. H. Lomax, W. D. Gosling and W. T. Fraser, Shedding light on sporopollenin chemistry, with reference to UV reconstructions, Rev. Palaeobot. Palynol., 2017, 238, 1–6.
    Article Google Scholar
  366. A. W. R. Seddon, M. Jokerud, T. Barth, H. J. B. Birks, L. C. Krüger, V. Vandvik and K. J. Willis, Improved quantification of UV-B absorbing compounds in Pinus sylvestris L. pollen grains using an internal standard methodology, Rev. Palaeobot. Palynol., 2017, 247, 97–104.
    Google Scholar
  367. M. Bağcıoğlu, A. Kohler, S. Seifert, J. Kneipp, B. Zimmermann and S. McMahon, Monitoring of plant-environment interactions by high-throughput FTIR spectroscopy of pollen, Methods Ecol. Evolut., 2017, 8, 870–880.
    Article Google Scholar
  368. B. C. Thomas, B. D. Goracke and S. M. Dalton, Atmospheric constituents and surface-level UVB: Implications for a paleoaltimetry proxy and attempts to reconstruct UV exposure during volcanic episodes, Earth Planet Sci. Lett., 2016, 453, 141–151.
    Article CAS PubMed PubMed Central Google Scholar
  369. H. Visscher, C. V. Looy, M. E. Collinson, H. Brinkhuis, J. H. A. van Konijnenburg-van Cittert, W. M. Kürschner and M. A. Sephton, Environmental mutagenesis during the end-Permian ecological crisis, Proc. Natl. Acad. Sci. U. S. A., 2004, 101, 12952.
    Article CAS PubMed PubMed Central Google Scholar
  370. D. P. G. Bond and S. E. Grasby, On the causes of mass extinctions, Palaeogeogr., Palaeoclimatol., Palaeoecol., 2017, 478, 3–29.
    Article Google Scholar
  371. S. A. Montzka, G. S. Dutton, P. Yu, E. Ray, R. W. Portmann, J. S. Daniel, L. Kuijpers, B. D. Hall, D. Mondeel, C. Siso, J. D. Nance, M. Rigby, A. J. Manning, L. Hu, F. Moore, B. R. Miller and J. W. Elkins, An unexpected and persistent increase in global emissions of ozone-depleting CFC-11, Nature, 2018, 557, 413–417.
    Article CAS PubMed Google Scholar

Download references