Arbuscular mycorrhizal networks: process and functions. A review (original) (raw)
References
Abd-Alla M.H., Omar S.A., Karanxha S. (2000) The impact of pesticides on arbuscular-mycorrhizal and nitrogen-fixing symbioses in legumes, Appl. Soil Ecol. 14, 191–200. Article Google Scholar
Abdalla M.E., Abdel-Fattah G.M. (2000) Influence of the endomycorrhizal fungus Glomus mosseae on the development of peanut pod rot disease in Egypt, Mycorrhiza 10, 29–35. Article Google Scholar
Aharon R., Shahak Y., Wininger S., Bendov R., Kapulnik Y., Galili G. (2003) Overexpression of a plasma membrane aquaporin in transgenic tobacco improves plant vigor under favorable growth conditions but not under drought or salt stress, Plant Cell 15, 439–447. ArticlePubMedCAS Google Scholar
Ahiabor B.D., Hirata H. (1994) Characteristic responses of three tropical legumes to the inoculation of two species of VAM fungi in Andosol soils with different fertilities, Mycorrhiza 5, 63–70. Article Google Scholar
Akiyama K., Matsuoka H., Hayashi H. (2002) Isolation and identification of a phosphate deficiency-induced C-glycosylflavonoid that stimulates arbuscular mycorrhiza formation in melon roots, Mol. Plant-Microbe In. 15, 334–340. ArticleCAS Google Scholar
Akiyama K., Matsuzaki K., Hayashi H. (2005) Plant sesquiterpenes induce hyphal branching in arbuscular mycorrhizal fungi, Nature 435, 824–827. ArticlePubMedCAS Google Scholar
Al-Karaki G.N. (2006) Nursery inoculation of tomato with arbuscular mycorrhizal fungi and subsequent performance under irrigation with saline water, Sci. Hortic. 109, 1–7. Article Google Scholar
Allen E.B., Allen M.F. (1986) Water relations of xeric grasses in the field: interactions of mycorrhizas and competition, New Phytol. 104, 559–571. Article Google Scholar
Allen M.F., Boosalis M.G. (1983) Effects of two VA-mycorrhizal fungi on drought tolerance of winter wheat, New Phytol. 93, 67–76. Article Google Scholar
Andrade, S.A.L., Silveria, A.P.D. (2008) Mycorrhiza influence on maize development under Cd stress and P supply, Braz. J. Plant Physiol. 20, 39–50. Article Google Scholar
Aroca R., Porcel R., Ruiz-Lozano J.M. (2007) How does arbuscular mycorrhizal symbiosis regulate root hydraulic properties and plasma membrane aquaporins in Phaseolus vulgaris under drought, cold or salinity stresses? New Phytol. 173, 808–816. ArticlePubMedCAS Google Scholar
Aryal U.K., Xu H.L. (2001) Mycorrhizal associations and their manipulation for long-term agricultural stability and productivity, J. Crop Prod. 3, 285–302. Article Google Scholar
Asghari H., Marschner P., Smith S., Smith F. (2005) Growth response of Atrilpex nummularia to inoculation with arbuscular mycorrhizal fungi at different salinity levels, Plant Soil 273, 245–256. ArticleCAS Google Scholar
Azcón R., Ruiz-Lozano J.M., Rodriguez R. (2001) Differential contribution of arbuscular mycorrhizal fungi to plant nitrate uptake of 15N under increasing N supply to the soil, Can. J. Bot. 79, 1175–1180. Article Google Scholar
Azcón-Aguilar C., Jaizme-Vega M.C., Calvet C. (2002) Plant defense responses induced by arbuscular mycorrhizal fungi, in: Gianinazzi S., Schuepp H., Barea J.M. (Eds.), Mycorrhizal Technology in Agriculture, Birkhauser press, Basel, pp. 187–198. Google Scholar
Bago B., Vierheiling H., Piche Y., Azcon-Aguilar C. (1996) Nitrate depletion and pH changes by the extraradical mycelium of the arbuscular mycorrhizal fungus Glomus mosseae grown in monoxenic culture, New Phytol. 133, 273–280. Article Google Scholar
Barea J.M., Azcon-Aguilar C. (1982) Production of plant growth regulating substances of VAM fungus Glomus mosseae, Appl. Environ. Microb. 43, 810–813. CAS Google Scholar
Barker S., Stummer B., Gao L., Dispain I., O’Connor P., Smith S. (1998) A mutant in Lycopersicon esculentum Mill. with highly reduced VA mycorrhizal colonization: isolation and preliminary characterization, Plant J. 15, 791–797. ArticleCAS Google Scholar
Bécard G., Pfeffer P.E. (1993) Status of nuclear division in arbuscular mycorrhizal fungi during in vitro development, Protoplasma 174, 62–68. Article Google Scholar
Bécard G., Kosuta S., Tamasloukht M., Séjalon-Delmas N., Roux C. (2004) Partner communication in the arbuscular mycorrhizal interaction, Can. J. Bot. 82, 1186–1197. Article Google Scholar
Bécard G., Taylor L.P., Douds D.D. Jr., Pfeffer P.E., Doner L.W. (1995) Flavonoids are not necessary plant signal compounds in arbuscular mycorrhizal symbioses, Mol. Plant-Microbe In. 8, 252–258. Article Google Scholar
Benedetto A., Magurno F., Bonfante P., Lanfranco, L. (2005) Expression profiles of a phosphate transporter gene (GmosPT) from the endomycorrhizal fungus Glomus mosseae, Mycorrhiza 15, 620–627. ArticlePubMedCAS Google Scholar
Benhamou N., Fortin J.A., Hamel C., St Arnaud M., Shatilla A. (1994) Resistance response of mycorrhizal Ri T-DNA-transformed carrot roots to infection by Fusarium oxysporum f.sp. chrysanthemi, Phytopathol. 84, 958–968. ArticleCAS Google Scholar
Bethlenfalvay G.J., Schüepp H. (1994). Arbuscular mycorrhizae and agrosystem stability, in: Gianinazzi S., Schüepp H. (Eds.), Impact of Arbuscular Mycorrhizas on Sustainable Agriculture and Natural Ecosystem, Birkhäuser Verlag Basal, Switzerland, pp. 117–131. Chapter Google Scholar
Bi Y.L., Li X.L., Christie P. (2003) Influence of early stages of arbuscular mycorrhiza on uptake of zinc and phosphorus by red clover from low-phosphorus soil amended with zinc and phosphorus, Chemosphere 50, 831–837. ArticlePubMedCAS Google Scholar
Blaudez D., Chalot M., Dizengremel P., Botton B. (1998) Structure and function of the ectomycorrhizal association between Paxillus involutus (Batsch) Fr. and Betula pendula (Roth.). II. Metabolic changes during mycorrhiza formation, New Phytol. 138, 543–552. ArticleCAS Google Scholar
Blee K.A., Anderson A.J. (1998) Regulation of arbuscule formation by carbon in the plant, Plant J. 16, 523–530. Article Google Scholar
Bonanomi A., Wiemken A., Boller T., Salzer P. (2001) Local induction of a mycorrhiza-specific class III chitinase gene in cortical root cells of Medicago truncatula containing developing or mature arbuscules, Plant Biology 3, 194–199. ArticleCAS Google Scholar
Bonfante P., Bianciotto V. (1995) Presymbiontic versus symbiontic phase in arbuscular endomycorrhizal fungi: morphology and cytology, in: Varma A., Hock B. (Eds.), Mycorrhiza, Springer Press, Berlin, pp. 229–247. Google Scholar
Bonfante P., Genre A. (2008) Plants and arbuscular mycorrhizal fungi: an evolutionary developmental perspective, Trends Plant Sci. 13, 492–498 ArticlePubMedCAS Google Scholar
Bonfante-Fasolo P., Perotto S. (1992) Plant and endomycorrhizal fungi: the cellular and molecular basis of their interaction, in: Verma D. (Ed.), Molecular signals in plant-microbe communications, CRS Press, Boca Raton, FL, USA, pp. 445–470. Google Scholar
Bouwmeester H.J., Matusova R., Zhongkui S., Beale, M.H. (2003) Secondary metabolite signalling in host—parasitic plant interactions, Curr. Opin. Plant Biol. 6, 358–364. ArticlePubMedCAS Google Scholar
Breuninger M., Requena N. (2004) Recognition events in AM symbiosis: analysis of fungal gene expression at the early appressorium stage, Fungal Genet. Biol. 41, 794–804. ArticlePubMedCAS Google Scholar
Bucher M. (2007) Functional biology of plant phosphate uptake at root and mycorhiza interfaces, New Phytol. 173, 11–26. ArticlePubMedCAS Google Scholar
Buee M., Rossignol M., Jauneau A., Ranjeva R., Becard G. (2000) The pre-symbiotic growth of arbuscular mycorrhizal fungi is induced by a branching factor partially purified from plant root exudates, Mol. Plant-Microbe In. 13, 693–698. ArticleCAS Google Scholar
Busse M.D., Ellis J.R. (1985) Vesicular-arbuscular mycorrhizal (Glomus fasiculatum) influence on soybean drought tolerance in high phosphorus soil, Can. J. Bot. 63, 2290–2294. Article Google Scholar
Calvet C., Pinochet J., Hernández Dorrego A., Estaún V., Camprubí A. (2001) Field microplot performance of the peach—almond hybrid GF-677 after inoculation with arbuscular mycorrhizal fungi in a replant soil infested with root-knot nematodes, Mycorrhiza 10, 295–300. Article Google Scholar
Cantrell I.C., Lindermann R.G. (2001) Preinoculation of lettuce and onion with VA mycorrhizal fungi reduces deleterious effects of soil salinity, Plant Soil 233, 269–281. ArticleCAS Google Scholar
Carling D.E., Roncadori R.W., Hussey R.S. (1996) Interactions of arbuscular mycorrhizae, Meloidogyne arenaria, and phosphorus fertilization on peanut, Mycorrhiza 6, 9–13. Article Google Scholar
Castillo P., Nico A.I., Azcón-Aguilar C., Del Río Rincón C., Calvet C., Jiménez-Díaz R.M. (2006) Protection of olive planting stocks against parasitism of root-knot nematodes by arbuscular mycorrhizal fungi, Plant Pathol. 55, 705–713. Article Google Scholar
Chabaud M., Venard C., Defaux-Petras A., Becard G., Barker D.G. (2002) Targeted inoculation of Medicago truncatula in vitro root cultures reveals MtENOD11 expression during early stages of infection by arbuscular mycorrhizal fungi, New Phytol. 156, 265–273. ArticleCAS Google Scholar
Chalot M., Blaudez D., Annick B. (2006) Ammonia: a candidate for nitrogen transfer at the mycorrhizal interface, Trends Plant Sci. 11, 263–266. ArticlePubMedCAS Google Scholar
Chen B.D., Li X.L., Tao H.Q., Christie P., Wong M.H. (2003) The role of arbuscular mycorrhiza in zinc uptake by red clover growing in a calcareous soil spiked with various quantities of zinc, Chemosphere 50, 839–846. ArticlePubMedCAS Google Scholar
Cho K., Toler H., Lee J., Ownley B., Stutz J.C., Moore J.L. (2006) Mycorrhizal symbiosis and response of sorghum plants to combined drought and salinity stresses, J. Plant Physiol. 163, 517–528. ArticlePubMedCAS Google Scholar
Christie P., Li X., Chen B. (2004) Arbuscular mycorrhiza can depress translocation of zinc to shoots of host plants in soils moderately polluted with zinc, Plant Soil 261, 209–217. ArticleCAS Google Scholar
Citterio S., Prato N., Fumagalli P., Aina R., Massa N., Santagostino A. (2005) The arbuscular mycorrhizal fungus Glomus mosseae induces growth and metal accumulation changes in Cannabis sativa L., Chemosphere 59, 21–29. ArticlePubMedCAS Google Scholar
Colpaert J.V. (2008) Heavy metal pollution and genetic adaptations in ectomycorrhizal fungi, in: Avery S., Stratford M., van West P. (Eds.), Stress in yeasts and filamentous fungi, Elsevier, Amsterdam, pp. 157–173. Chapter Google Scholar
Colla G., Rouphael Y., Cardarelli M., Tullio M., Rivera C.M., Rea E. (2008) Alleviation of salt stress by arbuscular mycorrhiza in zucchini plants grown at low and high phosphorus concentration, Biol. Fert. Soils 44, 501–509. ArticleCAS Google Scholar
Cooper K.M., Grandison G.S. (1986) Interaction of vesicular—arbuscular mycorrhizal fungi and root-knot nematode on cultivars of tomato and white clover susceptible to Meloidogyne hapla, Ann. Appl. Biol. 108, 555–566. Article Google Scholar
Danneberg G., Latus C., Zimmer W., Hundeshagen B., Schneider-Poetsch Hj., Bothe H. (1992) Influence of vesicular arbuscular mycorrhiza on phytohormone balances in maize (Zea mays L.), J. Plant Physiol. 141, 33–39. Google Scholar
Davies F.T., Potter J.R., Linderman R.G. (1992) Mycorrhiza and repeated drought exposure affect drought resistance and extraradical hyphae development of pepper plants independent of plant size and nutrient content, J. Plant Physiol. 139, 289–294. Google Scholar
Davies F.T., Puryear J.D., Newton R.J., Egilla J.N., Grossi J.A.S. (2001) Mycorrhizal fungi enhance accumulation and tolerance of chromium in sunflower (Helianthus annuus), J. Plant Physiol. 158, 777–786. ArticleCAS Google Scholar
Declerck S., Risede J.M., Rufyikiri G., Delvaux B. (2002) Effects of arbuscular mycorrhizal fungi on severity of root rot of bananas caused by Cylindrocladium spathiphylli, Plant Pathol. 51, 109–115. Article Google Scholar
Dickson S., Smith F.A., Smith S.E. (2007) Structural differences in arbuscular mycorrhizal symbioses: more than 100 years after Gallaud, where next? Mycorrhiza 17, 375–393. ArticlePubMedCAS Google Scholar
Dodd J.C. (2000) The role of arbuscular mycorrhizal fungi in agro- and natural ecosystems, Outlook Agr. 29, 63–70. Article Google Scholar
Eckardt N.A. (2005) Insights into plant cellular mechanisms: of phosphate transporters and arbuscular mycorrhizal infection, Plant Cell 17, 3213–3216. ArticleCAS Google Scholar
Elsen A., Declerck S., De Waele D. (2001) Effects of Glomus intraradices on the reproduction of the burrowing nematode (Radopholus similis) in deixenic culture, Mycorrhiza 11, 49–51. Article Google Scholar
Engvild K. (1987) Nodulation and nitrogen fixation mutants of pea, Pisum sativum L., Theor. Appl. Genet. 74, 711–713. Article Google Scholar
Feng G., Zhang F.S., Li X.L., Tian C.Y., Tang C., Rengel Z. (2002) Improved tolerance of maize plants to salt stress by arbuscular mycorrhiza is related to higher accumulation of soluble sugars in roots, Mycorrhiza 12, 185–190. ArticlePubMedCAS Google Scholar
Finlay R.D. (2008) Ecological aspects of mycorrhizal symbiosis: with special emphasis on the functional diversity of interactions involving the extraradical mycelium, J. Exp. Bot. 59, 1115–1126. ArticlePubMedCAS Google Scholar
Finlay R.D., Rosling A. (2006) Integrated nutrient cycles in forest ecosystems, the role of ectomycorrhizal fungi, in: Gadd G.M. (Ed.), Fungi in biogeochemical cycles, Cambridge, UK, Cambridge University Press, pp. 28–50. Chapter Google Scholar
Finlay R.D., Lindahl B.D., Taylor A.F.S. (2008) Responses of mycorrhizal fungi to stress, in: Avery S., Stratford M., van West P. (Eds.), Stress in yeasts and filamentous fungi, Amsterdam, Elsevier, pp. 201–220. Chapter Google Scholar
Frank B. (1885) Über die auf Wurzelsymbiosen beruhende Ernährung gewisser Bäume durch unterirdische Pilze, Berichte der Deutschen Botanischen Gesellschaft 3, 128–145. Google Scholar
Franken P., Donges K., Grunwald U., Kost G., Rexer K.-H., Tamasloukt M., Waschke A., Zeuske D. (2007) Gene expression analysis of arbuscule development and functioning, Phytochemistry 68, 68–74. ArticlePubMedCAS Google Scholar
Galli U., Schuepp H., Brunold C. (1995) Thiols of Cu-treated maize plants inoculated with the arbuscular mycorrhizal fungus Glomus intraradices, Physiol. Plantarum 94, 247–253. ArticleCAS Google Scholar
Gange A.C., Brown V.K., Aplin D.M. (2003) Multitrophic links between arbuscular mycorrhizal fungi and insect parasitoids, Ecol. Lett. 6, 1051–1055. Article Google Scholar
Garcia-Garrido J.M., Ocampo J.A. (2002) Regulation of the plant defence response in arbuscular mycorrhizal symbiosis, J. Exp. Bot. 53, 1377–1386. ArticlePubMedCAS Google Scholar
Garcia V.I., Mendoza R.E. (2007) Arbuscular mycorrhizal fungi and plant symbiosis in a saline-sodic soil, Mycorrhiza 17, 167–174. ArticlePubMed Google Scholar
Garg N., Geetanjali, Kaur A. (2006) Arbuscular mycorrhizal: Nutritional aspects, Arch. Agron. Soil Sci. 52, 593–606. ArticleCAS Google Scholar
Gaur A., Adholeya A. (2004) Prospects of arbuscular mycorrhizal fungi in phytoremediation of heavy metal contaminated soils, Curr. Sci. 86, 528–534. CAS Google Scholar
Ghazi N., Al-Karaki G.N. (2006) Nursery inoculation of tomato with arbuscular mycorrhizal fungi and subsequent performance under irrigation with saline water, Sci. Hortic. 109, 1–7. Article Google Scholar
Genre A., Chabaud M., Faccio A., Barker D.G., Bonfante P. (2008) Prepenetration apparatus assembly precedes and predicts the colonization patterns of arbuscular mycorrhizal fungus within the root cortex of both Medicago truncatula and Daucus carota, Plant Cell 20, 1407–1420. ArticlePubMedCAS Google Scholar
Genre A., Chabaud M., Timmers T., Bonfante P., Barker D.G. (2005) Arbuscular mycorrhizal fungi elicit a novel intracellular apparatus in Medicago truncatula root epidermal cells before infection, Plant Cell 17, 3489–3499. ArticlePubMedCAS Google Scholar
Gianinazzi S., Schüepp H. (1994) Impact of arbuscular mycorrhizas on sustainable agriculture and natural ecosystems, Birkhäuser Verlag, Basel, p. 226. Book Google Scholar
Gianinazzi S., Schüepp H., Barea J.M., Haselwandter K. (2002) Mycorrhizal technology in agriculture — From genes to bioproducts, Birkhäuser, Basel. Google Scholar
Gianinazzi-Pearson V., Gianinazzi S. (1976) Enzymatic studies on the metabolism of vesicular-arbuscular mycorrhiza. I. Effect of mycorrhiza formation and phosphorus nutrition on soluble phosphatase activities in onion roots, Physiol. Veg. 14, 833–841. CAS Google Scholar
Gianinazzi-Pearson V., Arnould C., Outfattole M., Arango M., Gianinazzi S. (2000) Differential activation of H+-ATPase genes by an arbuscular mycorrhizal fungus in root cells of transgenic tobacco, Planta 211, 609–613. ArticlePubMedCAS Google Scholar
Giovannetti M., Avio L., Fortuna P., Pelligrino E., Sbrana C., Strani P. (2006) At the root of the wood wide web: self recognition and non-self incompatibility in mycorrhizal networks, Plant Signaling and Behavior 1, 1–5. ArticlePubMed Google Scholar
Giovannetti M., Avio L., Sbrana C., Citernesi A. (1993a) Factors affecting appressoria development in the vesicular-arbuscular mycorrhizal fungus Glomus mosseae (Nicol. & Gerd.) Gerd. and Trappe, New Phytol. 123, 114–122. Google Scholar
Giovannetti M., Sbrana C., Avio L., Citernesi A., Logi C. (1993b) Differential hyphal morphogenesis in arbuscular mycorrhizal fungi during pre-infection stages, New Phytol. 125, 587–593. Article Google Scholar
Giovannetti M., Sbrana C., Citernesi A.S., Avio L. (1996) Analysis of factors involved in fungal recognition responses to host derived signals by arbuscular mycorrhizal fungi, New Phytol. 133, 65–71. Article Google Scholar
Giri B., Mukerji K.J. (2004) Mycorrhizal inoculant alleviates salt stress in Sesbania aegyptiaca and Sesbania grandiflora under field conditions: Evidence for reduced and improved magnesium uptake, Mycorrhiza 14, 307–312. ArticlePubMed Google Scholar
Giri B., Kapoor R., Mukerji K.G. (2003) Influence of arbuscular mycorrhizal fungi and salinity on growth, biomass and mineral nutrition of Acacia auriculiformis, Biol. Fert. Soils 38, 176–180. Article Google Scholar
Giri B., Kapoor R., Mukerji K.G. (2007) Improved tolerance of Acacia nilotica to salt stress by arbuscular mycorrhiza, Glomus fasciculatum may be partly related to elevated K/Na ratios in root and shoot tissues, Microbial Ecol. 54, 753–760. ArticleCAS Google Scholar
Glassop D., Smith S.E., Smith F.W. (2005) Cereal phosphate transporters associated with the mycorrhizal pathway of phosphate uptake into roots, Planta 222, 688–698. ArticlePubMedCAS Google Scholar
Glazebrook J. (2005) Contrasting mechanisms of defense against biotrophic and necrotrophic pathogens, Annu. Rev. Phytopathol. 43, 205–227. ArticlePubMedCAS Google Scholar
Gonzalez-Chavez M.C., Carrillo-Gonzalez R., Wright S.F., Nichols K. (2004) The role of glomalin, a protein produced by arbuscular mycorrhizal fungi, in sequestering potentially toxic elements, Environ. Pollut. 130, 317–323. ArticlePubMedCAS Google Scholar
Govindarajulu M., Pfeffer P.E., Jin H., Abubaker J., Douds D.D., Allen J.W., Bucking H., Lammers P.J., Shachar-Hill Y. (2005) Nitrogen transfer in the arbuscular mycorrhizal symbiosis, Nature 435, 819–823. ArticlePubMedCAS Google Scholar
Graham J.H., Syversen J.P. (1984) Influence of vesicular arbuscular mycorrhiza on the hydraulic conductivity of roots of two citrus root-stocks, New Phytol. 97, 277–284. Article Google Scholar
Guerrieri E., Lingua G., Digillo M.C., Massa N., Berta G. (2004) Do interactions between plant roots and the rhizosphere affect parasitoid behaviour? Ecol. Entomol. 29, 753–756. Article Google Scholar
Guimil S., Chang H.S., Zhu T., Sesma A., Osbourn A., Roux C., Ionnidis V., Oakeley E., Docquier M., Descombes P., Briggs S., Paszkowski U. (2005) Comparative transcriptomics of rice reveals an ancient pattern of response to microbial colonization, Proc. Natl. Acad. Sci. USA 102, 8066–8070. ArticlePubMedCAS Google Scholar
Harrison M. (2005) Signaling in the arbuscular mycorrhizal symbiosis, Annu. Rev. Microbiol. 59, 19–42. ArticlePubMedCAS Google Scholar
Harrison M.J., van Buuren M.L. (1995) A phosphate transporter from the mycorrhizal fungus Glomus versiforme, Nature 378, 626–629. ArticlePubMedCAS Google Scholar
Harrison M.J., Dewbre G.R., Liu J.Y. (2002) A phosphate transporter from Medicago truncatula involved in the acquisiton of phosphate released by arbuscular mycorrhizal fungi, Plant Cell 14, 2413–2429. ArticlePubMedCAS Google Scholar
Haury G., Schikarski W. (1997) Radioactive inputs into the environment; comparison of natural and man-made inventories, in: Stumm W. (Ed.), Global chemical cycles and their alternations by man, Dahlem Konferenzen, Berlin, Germany, pp. 165–188. Google Scholar
Hawkins H.J., Johansen A., George E. (2000) Uptake and transport of organic and inorganic nitrogen by arbuscular mycorrhizal fungi, Plant Soil 226, 275–285. ArticleCAS Google Scholar
Hayes W.J., Chaudhry T.M., Buckney R.T., Khan, A.G. (2003) Phytoaccumulation of trace metals at the Sunny Corner mine, New South Wales, with suggestions for a possible remediation strategy, Aust. J. Toxicol. 9, 69–82. CAS Google Scholar
He X., Nara K. (2007) Element biofortification: can mycorrhizas potentially offer a more effective and sustainable pathway to curb human malnutrition? Trends Plant Sci. 12, 331–333. ArticlePubMedCAS Google Scholar
He X.H., Critchley C., Bledsoe C. (2003) Nitrogen transfer within and between plants through common mycorrhizal networks (CMNs), Crit. Rev. Plant Sci. 22, 531–567. Article Google Scholar
He Z.L., Yang X.E., Stoffella P.J. (2005) Trace elements in agroecosystems and impacts on the environment, J. Trace Elem. Med. Bio. 19, 125–140. ArticleCAS Google Scholar
Heijden M.V.D., Klironomos J., Ursic M., Moutoglis P., Streitwolf-Engel R., Boller T., Wiemken A., Sanders I. (1998). Mycorrhizal fungal diversity determines plant biodiversity, ecosystem variability and productivity, Nature 396, 69–72. ArticleCAS Google Scholar
Helgason T., Fitter A. (2009) Natural selection and the evolutionary ecology of the arbuscular mycorrhizal fungi (Phylum Glomeromycota), J Exp. Bot. 60, 2465–2480. ArticlePubMedCAS Google Scholar
Hijri M., Sanders I.R. (2004) The arbuscular mycorrhizal fungus Glomus intraradices is haploid and has a small genome size in the lower limit of eukaryotes, Fungal Genet. Biol. 41, 253–261. ArticlePubMedCAS Google Scholar
Hodge A., Campbell C.D., Fitter A.H. (2001) An arbuscular mycorrhizal fungus accelerates decomposition and acquires nitrogen directly from organic material, Nature 413, 297–299. ArticlePubMedCAS Google Scholar
Hohnjec N., Vieweg M.F., Puhler A., Becker A., Kuster H. (2005) Overlaps in the transcriptional profiles of Medicago truncatula roots inoculated with two different Glomus fungi provide insights into the genetic program activated during arbuscular mycorrhiza, Plant Physiol. 137, 1283–1301. ArticlePubMedCAS Google Scholar
Hooker J.E., Jaizme-Vega M., Atkinson D. (1994) Biocontrol of plant pathogens using arbuscular mycorrhizal fungi, in: Gianinazzi S., Schüepp H. (Eds.), Impact of Arbuscular Mycorrhizas on Sustainable Agriculture and Natural Ecosystems, Basel, Switzerland, Birkhäuser-Verlag, pp. 191–200. Chapter Google Scholar
Hosny M., Gianinazzi-Pearson V., Dulieu H. (1998) Nuclear DNA contents of eleven fungal species in Glomales, Genome 41, 422–428. ArticleCAS Google Scholar
Hosny M., Pais de Barros J.P., Gianinazzi-Pearson V., Dulieu H. (1997) Base composition of DNA from glomalean fungi: high amounts of methylated cytosine, Fungal Genet. Biol. 22, 103–111. ArticlePubMedCAS Google Scholar
Hughes J.K., Hodge A., Fitter A.H., Atkin O.W. (2008) mycorrhizal respiration: implications for global scaling relationships, Trends Plant Sci. 13, 583–588. ArticlePubMedCAS Google Scholar
Jackson L.E., Burger M., Cavagnaro T.R. (2008) Nitrogen transformations and ecosystem services, Annu. Rev. Plant Biol. 59, 341–363. ArticlePubMedCAS Google Scholar
Jaizme-Vega M.C., Azcón R. (1995) Response of some tropical and subtropical cultures to endomycorrhizal fungi, Mycorrhiza 5, 213–217. Article Google Scholar
Jaizme-Vega M.C., Sosa Hernández B., Hernández J.M. (1998) Interaction of arbuscular mycorrhizal fungi and the soil pathogen Fusarium oxysporum f.sp. cubense on the first stages of micropropagated Grande Naine banana, Acta Hortic. 490, 285–295. Google Scholar
Jaizme-Vega M.C., Tenoury P., Pinochet J., Jaumot M. (1997) Interactions between the root-knot nematode Meloidogyne incognita and Glomus mosseae in banana, Plant Soil 196, 27–35. ArticleCAS Google Scholar
Jakobsen I., Chen B.D., Munkvold L., Lundsgaard T., Zhu Y.-G. (2005) Contrasting phosphate acquisition of mycorrhizal fungi with that of root hairs using the root hairless barley mutant, Plant Cell Environ. 28, 928–938. ArticleCAS Google Scholar
Jamal A., Ayub N., Usman M., Khan A.G. (2002) Arbuscular mycorrhizal fungi enhance zinc and nickel uptake from contaminated soil by soybean and lentil, Int. J. Phytoremed. 4, 205–221. ArticleCAS Google Scholar
Javot H., Lauvergeat V., Santoni V., Martin-Laurent F., Güclü J., Vinh J., Heyes J., Franck K.I., Schäffner A.R., Bouchez D., Maurel C. (2003) Role of a single aquaporin isoform in root water uptake, Plant Cell 15, 509–522. ArticlePubMedCAS Google Scholar
Javot H., Penmesta R.V., Terzaghi N., Cook D.R., Harrison M.J. (2007) A Medicago truncatula phosphate transporter indispensable for the arbuscular mycorrhizal symbiosis, PNAS 104, 1720. ArticlePubMedCAS Google Scholar
Jeffries P., Gianinazzi S., Perotto S., Turnau K., Barea J.M. (2003) The contribution of arbuscular mycorrhizal fungi in sustainable maintenance of plant health and soil fertility, Biol. Fert. Soils 37, 1–16. Google Scholar
Jin H., Pfeffer P.E., Douds D.D., Piotrowski E., Lammers P.J., Shachar-Hill Y. (2005) The uptake, metabolism, transport and transfer of nitrogen in an arbuscular mycorrhizal symbiosis, New Phytol. 168, 687–696. ArticlePubMedCAS Google Scholar
Johansen A., Finlay R.D., Olsson P.A. (1996) Nitrogen metabolism of external hyphae of the arbuscular mycorrhizal fungus Glomus intraradices, New Phytol. 133, 705–712. ArticleCAS Google Scholar
Johansen A., Jakobsen I., Jensen E.S. (1992) Hyphal transport of 15N labelled nitrogen by a vesicular-arbuscular mycorrhizal fungus and its effect on depletion of inorganic soil N, New Phytol. 122, 281–288. ArticleCAS Google Scholar
Johansen A., Jakobsen I., Jensen E.S. (1993) Hyphal transport by vesicular-arbuscular mycorrhizal fungus on N applied to the soil as ammonium or nitrate, Biol. Fert. Soils 16, 66–70. ArticleCAS Google Scholar
Johansson J.F., Paul L.R., Finlay R.D. (2004) Microbial interactions in the mycorrhizosphere and their significance for sustainable agriculture, FEMS Microbiol. Ecol. 48, 1–12. ArticlePubMedCAS Google Scholar
Johnson D., Leake J.R., Ostle N., Ineson P., Read D.J. (2002) In situ CO pulse-labelling of upland grassland demonstrates that a rapid pathway of carbon flux from arbuscular mycorrhizal mycelia to the soil, New Phytol. 153, 327–334. ArticleCAS Google Scholar
Joner E.J., Briones R., Levyal C. (2000) Metal-binding capacity of arbuscular mycorrhizal mycelium, Plant Soil 226, 227–234. ArticleCAS Google Scholar
Journet E.P., El-Gachtouli N., Vernoud V., de Billy F., Pichon M., Dedieu A., Arnould C., Morandi D., Barker D.G., Gianinazzi-Pearson V. (2001) Medicago truncatula ENOD11: A novel RPRP-encoding early nodulin gene expressed during mycorrhization in arbuscule-containing cells, Mol. Plant Microbe Int. 14, 737–748. ArticleCAS Google Scholar
Juniper S., Abbott L.K. (2006) Soil salinity delays germination and limits growth of hyphae from propagules of arbuscular mycorrhizal fungi, Mycorrhiza 16, 371–379. ArticlePubMedCAS Google Scholar
Kaldorf M., Kuhn A.J., Schroder W.R., Hilderbrandt U., Bothe H. (1999) Selective element deposits in maize colonized by a heavy metal tolerance conferring arbuscular mycorrhizal fungus, J. Plant Physiol. 154, 718–728. CAS Google Scholar
Karandashov V., Bucher M. (2005) Symbiotic phosphate transport in arbuscular mycorrhizas, Trends Plant Sci. 10, 22–29. ArticlePubMedCAS Google Scholar
Khalvati M.A., Hu Y., Mozafar A., Schmidhalter U. (2005) Quantification of water uptake by arbuscular mycorrhizal hyphae and its significance for leaf growth, water relations, and gas exchange of barley subjected to drought stress, Plant Biology 7, 706–712. ArticlePubMedCAS Google Scholar
Khan A.G. (2001) Relationships between chromium biomagnification ratio, accumulation factor, and mycorrhizae in plants growing on tannery effluent-polluted soil, Environ. Int. 26, 417–423. ArticlePubMedCAS Google Scholar
Khan A.G. (2006) Mycorrhizoremediation — an enhanced form of phytoremediation, J. Zhejiang Univ. Sci. B 7, 503–514. ArticlePubMed Google Scholar
Kistner C., Winzer T., Pitzschke A., Mulder L., Sato S., Kaneko T., Tabata S., Sandal N., Stougaard J., Webb K.J., Szczyglowski K., Parniske M. (2005) Seven Lotus japonicus genes required for transcriptional reprogramming of the root during fungal and bacterial symbiosis, Plant Cell 17, 2217–2229. ArticlePubMedCAS Google Scholar
Kosuta S., Chabaud M., Lougnon G., Gough C., Denarie J., Barker D.G., Becard G. (2003) A diffusible factor from arbuscular mycorrhizal fungi induces symbiosis-specific MtENOD11 expression in roots of Medicago truncatula, Plant Physiol. 131, 952–962. ArticlePubMedCAS Google Scholar
Krajinski F., Hause B., Gianinazzi-Pearson V., Franken P. (2002) Mtha1, a plasma membrane H+-ATPase gene from Medicago truncatula, shows arbuscule-specific induced expression in mycorrhizal tissue, Plant Biology 4, 754–761. ArticleCAS Google Scholar
Lanfranco L., Bolchi A., Ros E.C., Ottonello S., Bonfante P. (2002) Differential expression of a metallothionein gene during the presymbiotic versus the symbiotic phase of an arbuscular mycorrhizal fungus, Plant Physiol. 130, 58–67. ArticlePubMedCAS Google Scholar
Leake J., Johnson D., Donnely D., Muckle G., Boddy L., Read D. (2004) Networks of power and influence: the role of mycorrhizal mycelium in controlling plant communities and agroecosystem functioning, Can. J. Bot. 82, 1016–1045. Article Google Scholar
Leigh J., Hodge A., Fitter A.H. (2009) Arbuscular mycorrhizal fungi can transfer substantial amounts of nitrogen to their host plant from organic material, New Phytol. 181, 199–207. ArticlePubMedCAS Google Scholar
Levyal C., Joner E.J. (2000) Bioavailability of metals in the mycorrhizosphere, in: Gorban G.R., Wenzel W.W., Lombi E. (Eds.), Trace elements in the rhizosphere, CRC, Boca Raton, USA, pp. 165–185. Google Scholar
Leyval C., Turnau K., Haselwandter K. (1997) Effect of heavy metal pollution on mycorrhizal colonization and function — physiological, ecological and applied aspects, Mycorrhiza 7, 139–153. ArticleCAS Google Scholar
Levyal C., Joner E.J., del Val C., Haselwandter K. (2002) Potential of arbuscular mycorrhizal fungi for bioremediation, in: Gianinazzi S., Schuepp H., Barea J.M., Haselwandter K. (Eds.), Mycorrhizal technology in agriculture: From genes to bioproducts, Birkhauser Verlag, Basel, pp. 175–186. Google Scholar
Liao J.P., Lin X.G., Cao Z.H., Shi Y.Q., Wong M.H. (2003) Interactions between arbuscular mycorrhizae and heavy metals under sand culture experiment, Chemosphere 50, 847–853. ArticlePubMedCAS Google Scholar
Linderman R.G. (1994) Role of VAM fungi in biocontrol, in: Health Pfleger F.L., Linderman R.G. (Eds.), Mycorrhizae and plants, American Phytopathological Society, St. Paul, pp. 1–27. Google Scholar
Lingua G., D’Agostino G., Massa N., Antosiano M., Berta G. (2002) Mycorrhiza-induced differential response to a yellows disease in tomato, Mycorrhiza 12, 191–198. ArticlePubMed Google Scholar
Liu J., Blaylock L.A., Endre G., Cho J., Town C.D., Van den Bosch K.A., Harrison M.J. (2003) Transcript profiling coupled with spatial expression analyses reveals genes involved in distinct developmental stages of an arbuscular mycorrhizal symbiosis, Plant Cell 15, 2106–2123. ArticlePubMedCAS Google Scholar
Logi C., Sbrana C., Giovannetti M. (1998) Cellular events involved in survival of individual arbuscular mycorrhizal symbionts growing in the absence of the host, Appl. Environ. Microb. 64, 3473–3479. CAS Google Scholar
Luu D.-T., Maurel C. (2005) Aquaporins in a challenging environment: molecular gears for adjusting plant water status, Plant Cell Environ. 28, 85–96. ArticleCAS Google Scholar
Maeda D., Ashida K., Iguchi K., Chechetka S.A., Hijikata A., Okusako Y., Deguchi Y., Izui K., Hata S. (2006) Knockdown of an arbuscular mycorrhiza-inducible phosphate transporter gene of Lotus japonicus suppresses mutualistic symbiosis, Plant Cell Physiol. 47, 807–817. ArticlePubMedCAS Google Scholar
Maldonado-Mendoza I.E., Dewbre G.R., Harrison M.J. (2001) A phosphate transporter gene from the extra-radical mycelium of an arbuscular mycorrhizal fungus Glomus intraradices is regulated in response to phosphate in the environment, Mol. Plant Microbe In. 14, 1140–1148. ArticleCAS Google Scholar
Manchanda G., Garg N. (2007) Endomycorrhizal and rhizobial symbiosis: How much do they share? J. Plant Interact. 2, 79–88. ArticleCAS Google Scholar
Marschner H. (1995) Mineral nutrition of higher plants. London, UK, Academic Press. Google Scholar
Marschner H., Dell B. (1994) Nutrient uptake in mycorrhizal symbiosis, Plant Soil 159, 89–102. CAS Google Scholar
Marulanda A., Azcón R., Ruiz-Lozano J.M. (2003) Contribution of six arbuscular mycorrhizal fungal isolates to water uptake by Lactuca sativa plants under drought stress, Physiol. Plant 119, 526–533. ArticleCAS Google Scholar
Matusova R., Rani K., Verstappen F.W., Franssen M.C., Beale M.H., Bouwmeester H.J. (2005) The strigolactone germination stimulants of the plant-parasitic Striga and Orobanche spp. are derived from the carotenoid pathway, Plant Physiol. 139, 920–934. ArticlePubMedCAS Google Scholar
McGonigle T.P., Miller M.H. (1996) Development of fungi below ground in association with plants growing in disturbed and undisturbed soils, Soil Biol. Biochem. 28, 263–269. ArticleCAS Google Scholar
Meharg A.A. (2003) The mechanistic basis of interactions between mycorrhizal associations and toxic metal cations, Mycol. Res. 107, 1253–1265. ArticlePubMedCAS Google Scholar
Mosse B. (1988) Some studies relating to “independent” growth of vesicular-arbuscular endophytes, Can. J. Bot. 66, 2533–2540. Article Google Scholar
Muchovej R.M. (2004) Importance of mycorrhizae for agricultural crops. SS-AGR-170, Agronomy Department, Florida Cooperative Extension Service, Institute of Food and Agricultural Sciences, University of Florida.
Nagy R., Karandashov V., Chague V., Kalinkevich K., Tamasloukht M., Xu G., Jakobsen I., Levy A.A., Amrhein N., Bucher M. (2005) The characterization of novel mycorrhiza-specific phosphate transporters from Lycopersicon esculentum and Solanum tuberosum uncovers functional redundancy in symbiotic phosphate transport in solanaceous species, Plant J. 42, 236–250. ArticlePubMedCAS Google Scholar
Nayyar A.A., Hamel C., Hanson K., Germida J. (2008) The arbuscular mycorrhizal symbiosis lins N mineralization to plant demand, Mycorrhiza 19, 239–246. ArticleCAS Google Scholar
Nelsen C.E. (1987) The water relations of vesicular-arbuscular mycorrhizal systems, in: Safir G.R. (Ed.), Ecophysiology of VA mycorrhizal plants, CRC Press, Boca Raton, Fla, pp. 71–79. Google Scholar
Nelsen C.E., Safir G.R. (1982) Increased drought tolerance of mycorrhizal onion plants caused by improved phosphorus nutrition, Planta 154, 407–413. ArticleCAS Google Scholar
Ohtomo R., Saito M. (2005) Polyphosphate dynamics in mycorrhizal roots during colonization of an arbuscular mycorrhizal fungus, New Phytol. 167, 571–578. ArticlePubMedCAS Google Scholar
Olah B., Briere C., Becard G., Denarie J., Gough C. (2005) Nod factors and a diffusible factor from arbuscular mycorrhizal fungi stimulate lateral root formation in Medicago truncatula via the DMI1/DMI2 signalling pathway, Plant J. 44, 195–207. ArticlePubMedCAS Google Scholar
Osonubi O., Mulongoy K., Awotoye O.O., Atayese M.O., Okali D.U. (1991) Effects of ectomycorrhizal and vesicular-arbuscular mycorrhizalfungi on drought tolerance of four leguminous woody seedlings, Plant Soil 136, 131–143. Article Google Scholar
Pacovsky R.S., De Silva P., Carvalho M.T.V., Tsai S.M. (1990) Increased nutrient assimilation and enzyme activities in field beans inoculated with Glomus etunicatum, Proceedings of the Eight North American Conference on Mycorrhiza, p. 203.
Pacovsky R.S., De Silva P., Carvalho M.T.V., Tsai S.M. (1991) Growth and nutrient allocation in Phaseolus vulgaris L. colonized with endomycorrhizae or Rhizobium, Plant Soil 132, 127–137. ArticleCAS Google Scholar
Parniske M. (2004) Molecular genetics of the arbuscular mycorrhizal symbiosis, Curr. Opin. Plant Biol. 7, 414–421. ArticlePubMedCAS Google Scholar
Parniske M. (2008) Arbuscular mycorrhiza: the mother of plant root endosymbioses, Nature Rev. Microbiol. 6, 763–775. ArticleCAS Google Scholar
Paszkowski U. (2006) A journey through signaling in arbuscular mycorrhizal symbioses. New Phytol. 172, 35–46. ArticlePubMedCAS Google Scholar
Paszkowski U., Kroken S., Roux C., Briggs S.P. (2002) Rice phosphate transporters include an evolutionarily divergent gene specifically activated in arbuscular mycorrhizal symbiosis, Proc. Natl. Acad. Sci. USA 99, 13324–13329. ArticlePubMedCAS Google Scholar
Pawlowska T.E., Charvat I. (2002) Influence of edaphic and environmental factors on arbuscular mycorrhizae, in: Sharma A.K., Johri B.N. (Eds.), Arbuscular mycorrhizae: interactions in plants, rhizosphere and soils, Science Publishers, Inc., Enfield, N.H., pp. 105–134. Google Scholar
Pierce F.J., Lal R. (1991) Soil management in the 21st century, in: Lal R., Pierce F.J. (Eds.), Soil Management for Sustainability, Soil and Water Conservation Society of America, Ankeny, pp. 175–179.
Porcel R., Aroca R., Azcón R., Ruiz-Lozano J.M. (2006) PIP aquaporin gene expression in arbuscular mycorrhizal Glycine max and Lactuca sativa plants in relation to drought stress tolerance, Plant Mol. Biol. 60, 389–404. ArticlePubMedCAS Google Scholar
Pozo M.J., Slezack-Deschaumes S., Dumas-Gaudot E., Gianinazzi S., Azcón-Aguilar C. (2002) Plant defense responses induced by arbuscular mycorrhizal fungi, in: Gianinazzi S., Schuepp H., Barea J.M. (Eds.), Mycorrhizal Technology in Agriculture, Birkhauser, Basel, pp. 103–112. Google Scholar
Pumplin N., Harrison M.J. (2009) Live-cell imaging reveals periarbuscular membrane domains and organelle location in Medicago truncatula roots during arbuscular mycorrhizal symbiosis, Plant Physiol. Preview.
Rabie G.H. (2005) Contribution of arbuscular mycorrhizal fungus to red kidney and wheat plants tolerance grown in heavy metal-polluted soil, Afr. J. Biotechnol. 4, 332–345. CAS Google Scholar
Rabie G.H., Almadini A.M. (2005) Role of bioinoculants in development of salt-tolerance of Vicia faba plants under salinity stress, Afr. J. Biotechnol. 4, 210–223. CAS Google Scholar
Reagnold J.P., Papendick R.I., Parr J.F. (1990) Sustainable agriculture, Science America 262, 112–120. Article Google Scholar
Redecker D., Kodner R., Graham L.E. (2000) Glomalean fungi from the Ordovician, Science 289, 1920–1921. ArticlePubMedCAS Google Scholar
Requena N., Breuninger M. (2004) The old arbuscular mycorrhizal symbiosis in the light of the molecular era, in: Esser K., Luttge U., Beyschlag W., Murata J. (Eds.), Progress in Botany, Springer, Berlin, Heidelberg, pp. 323–356. Google Scholar
Requena N., Jeffries P., Barea J.M. (1996) Assessment of natural mycorrhizal potential in a desertified semiarid ecosystem, Appl. Environ. Microb. 62, 842–847. CAS Google Scholar
Requena N., Mann P., Hampp R., Franken P. (2002) Early developmentally regulated genes in the arbuscular mycorrhizal fungus Glomus mosseae: identification of GmGin1 a novel gene with homology to the C-terminus of metazoan hedgehog proteins, Plant Soil 244, 129–139. ArticleCAS Google Scholar
Requena N., Mann P., Franken C. (2000) A homologue of the cell-cycle check-point TOR2 from yeast exist in the arbuscular mycorrhizal fungus Glomus mosseae, Protoplasma 211, 89–98. Article Google Scholar
Requena N., Serrano E., Ocón A., Breuninger M. (2007) Plant signals and fungal perception during arbuscular mycorrhizal establishment, Phytochemistry 68, 33–40. ArticlePubMedCAS Google Scholar
Rosendahl C.N., Rosendahl S. (1991) Influence of vesicular-arbuscular mycorrhizal fungi (Glomus spp.) on the response of cucumber (Cucumis sativus L.) to salt stress, Environ. Exp. Bot. 31, 313–318. Article Google Scholar
Roose T., Fowler A.C. (2004) A mathematical model for water and nutrient uptake by plant root systems, J. Theor. Biol. 228, 173–184. ArticlePubMedCAS Google Scholar
Rufyikiri G., Declerck S., Delvaux B., Dufey J.E. (2000) Arbuscular mycorrhizal fungi might alleviate aluminium toxicity in banana plants, New Phytol. 148, 343–352. ArticleCAS Google Scholar
Ruiz-Lozano J.M. (2003) Arbuscular mycorrhizal symbiosis and alleviation of osmotic stress. New perspectives for molecular studies, Mycorrhiza 13, 309–317. ArticlePubMed Google Scholar
Ruiz-Lozano J.M., Azcón R., Gomez M. (1995) Effects of arbuscularmycorrhizal Glomus species on drought tolerance: physiological and nutritional responses, Appl. Environ. Microb. 61, 456–460. CAS Google Scholar
Saleh M., Saleh Al-Garni (2006) Increased heavy metal tolerance of cowpea plants by dual inoculation of an arbuscular mycorrhizal fungi and nitrogen-fixer Rhizobium bacterium, Afr. J. Biotechnol. 5, 132–144. Google Scholar
Sannazzaro A.I., Ruiz O.A., Alberto E.O., Menendez A.B. (2006) Alleviation of salt stress in Lotus glaber by Glomus intraradices, Mycorrhiza 285, 279–287. CAS Google Scholar
Schultz C.J., Harrison M.J. (2008) Novel plant and fungal AGP-like proteins in the Medicago truncatula-Glomus intraradices arbuscular mycorrhizal symbiosis, Mycorrhiza 18, 403–412. ArticlePubMedCAS Google Scholar
Selvaraj T. (1998) Studies on mycorrhizal and rhizobial symbioses on tolerance of tannery effluent treated Prosopis juliflora, Ph.D. Thesis, Universityof Madras, Chennai, India. Google Scholar
Selvaraj T., Chelleppan P. (2006) Arbuscular mycorrhizae: a diverse personality, Central Eur. J. Agr. 7, 349–358. Google Scholar
Selvaraj T., Chellappan P., Jeong Y.J., Kim H. (2004) Occurrence of vesicular-arbuscular mycorrhizal (VAM) fungi and their effect on plant growth in endangered vegetations, J. Microbiol. Biotechn. 14, 885–890. Google Scholar
Sheng M., Tang M., Chen H., Yang B., Zhang F., Huang Y. (2008) Influence of arbuscular mycorrhizae on photosynthesis and water status of maize plants under salt stress, Mycorrhiza 18, 287–296. ArticlePubMedCAS Google Scholar
Smit P., Raedts J., Portyanko V., Debelle F., Gough C., Bisseling T., Geurts R. (2005) NSPI of the GRAS protein family is essential for rhizobial Nod factor-induced transcription, Science 308, 1789–1791. ArticlePubMedCAS Google Scholar
Smith S.E., Read D.J. (2008) Mycorrhizal Symbiosis, Academic Press, Inc., San Diego, CA. Google Scholar
Smith S.E., Smith F.A., Jakobsen I. (2003) Mycorrizal fungi can dominate phosphate supply to plants irrespective of growth responses, Plant Physiol. 133, 16–20. ArticlePubMedCAS Google Scholar
Smith S.E., Smith F.A., Jakobsen I. (2004) Functional diversity in arbuscular mycorrhizal (AM) symbioses: the contribution of the mycorrhizal P uptake pathway is not correlated with mycorrhizal responses in growth or total P uptake, New Phytol. 162, 511–524. Article Google Scholar
Smith S.E., Smith F.A., Nicholas D.J.D. (1985) Activity of glutamine synthetase and glutamate dehydrogenase in Trifolium subterraneum L. & Allium cepa L. effects of mycorrhizal infection and phosphate nutrition, New Phytol. 99, 211–227. ArticleCAS Google Scholar
Solaiman M.Z., Ezawa T., Kojima T., Saito M. (1999) Polyphosphates in intraradical and extraradical hyphae of an arbuscular mycorrhizal fungus, Gigaspora margarita, Appl. Environ. Microb. 65, 5604–5606. CAS Google Scholar
Spanu P., Bonfante-Fasolo P. (1998) Cell wall bound peroxidase activity in roots of mycorrhizal Allium porrum, New Phytol. 109, 119–124. Article Google Scholar
St Arnaud M., Hamel C., Caron M., Fortin J. (1994) Inhibition of Pythium ultimum in roots and growth substrate of mycorrhizal Tagetes patula colonised with Glomus intraradices, Can. J. Plant Pathol. 16, 187–94. Article Google Scholar
Stewart B.A., Lal R., El-Swaify S.A. (1991) Sustaining the resource base on an expanding world agriculture, in: Lal R., Pierce F.J. Soil Management for Sustainability, Soil and Water Conservation Society of America, Ankeny, pp. 125–144.
Sturz A.V., Carter M.R., Johnston H.W. (1997) A review of plant disease, pathogen interactions and microbial antagonism under conservation tillage in temperate humid agriculture, Soil Till. Res. 41, 169–189. Article Google Scholar
Tahiri-Alaoui A., Antoniw J.F. (1996) Cloning of genes associated with the colonisation of tomato roots by the arbuscular mycorrhizal fungus Glomus mosseae, Agronomie 16, 699–707. Article Google Scholar
Tisserant B., Gianninazzi-Pearson V., Gianninazzi S., Gollotte A. (1993) Plant histochemical staining of fungal alkaline phosphatase activity for analysis of efficient arbuscular mycorrhizal infections, Mycol. Res. 97, 245–250. ArticleCAS Google Scholar
Tonin C., Vandenkoornhuyse P., Joner E.J., Straczek J., Levyal C. (2001) Assessment of arbuscular mycorrhizal fungi diversity in the rhizosphere of Viola calaminaria and effect of these fungi on heavy metal uptake by clover, Mycorrhiza 10, 161–168. ArticleCAS Google Scholar
Toussaint J.P., St-Arnaud M., Charest C. (2004) Nitrogen transfer and a ssimilation between the arbuscular mycorrhizal fungus Glomus intraradices Schenck & Smith and Ri T-DNA roots of Daucus carota L. in an in vitro compartmented system, Can. J. Microbiol. 50. 251–260. ArticlePubMedCAS Google Scholar
Trotta A., Falaschi P., Cornara L., Minganti V., Fusconi A., Drava G. (2006) Arbuscular mycorrhizae increase the arsenic translocation factor in the As hyperaccumulating fern Pteris vittata L., Chemosphere 65, 74–81. ArticlePubMedCAS Google Scholar
Trotta A., Varese G.C., Gnavi E., Fusconi A., Sampo S., Berta G. (1996) Interactions between the soil-borne root pathogen Phytophthora nicotianae var. parasitica and the arbuscular mycorrhizal fungus Glomus mosseae in tomato plants, Plant Soil 185, 199–209. ArticleCAS Google Scholar
Turk M.A., Assaf T.A., Hammed K.M., Al-Tawaha A.M. (2008) Significance of mycorrhizae, World J. Agric. Sci. 2, 16–20. Google Scholar
van Dam N.M., Harvey J.A., Wakers F.L., Bezemer T.M., van der Putten W.H., Vet L.E.M. (2000) Interactions between aboveground and belowground induced responses against phytophages, Basic Appl. Ecol. 4, 63–77. Google Scholar
van der Putten W.H., Klironomos J.H., Wardle D.A. (2007) Microbial ecology of biological invasions, ISME J. 1, 28–37. ArticlePubMed Google Scholar
van Rhijn P., Fang Y., Galili S., Shaul O., Atzmon N., Wininger S., Eshed Y., Lum M., Li Y., To V.V., Fujishige N., Kapulnik Y., Hirsch A.M. (1997) Expression of early nodulin genes in alfalfa mycorrhizae indicates that signal transduction pathways used in forming arbuscular mycorrhizae and rhizobium-induced nodules may be conserved, Proc. Natl. Acad. Sci. USA 94, 5467–5472. ArticlePubMed Google Scholar
Vazquez M.M., Barea J.M., Azcón R. (2001) Impact of soil nitrogen concentration on Glomus spp.—Sinorhizobium interactions as affecting growth, nitrate reductase activity and protein content of Medicago sativa, Biol. Fert. Soils 34, 57–63. ArticleCAS Google Scholar
Vieweg M.F., Fruhling M., Quandt H.J., Heim U., Baumlein H., Puhler A., Kuster H., Andreas M.P. (2004) The promoter of the Vicia faba L. leghemoglobin gene VfLb29 is specifically activated in the infected cells of root nodules and in the arbuscule-containing cells of mycorrhizal roots from different legume and nonlegume plants, Mol. Plant Microbe In. 17, 62–69. ArticleCAS Google Scholar
Vivas A., Barea J.M., Azcon R. (2005) Interactive effect of Brevibacillus brevis and Glomus mosseae both isolated from Cd contaminated soil, on plant growth, physiological mycorrhizal fungal characteristics and soil enzymatic activities in Cd polluted soils, Environ. Pollut. 134, 257–266. ArticlePubMedCAS Google Scholar
Wallander H. (2006) Mineral dissolution by ectomycorrhizal fungi, in: Gadd G.M. (Ed.), Fungi in biogeochemical cycles, Cambridge University Press, Cambridge, UK, pp. 28–50. Google Scholar
Wang B., Qiu Y.L. (2006) Phylogenetic distribution and evolution of mycorrhizas in land plants, Mycorrhiza 16, 299–363. ArticlePubMedCAS Google Scholar
Wang F., Lin X., Yin R. (2005) Heavy metal uptake by arbuscular mycorrhizas of Elsholtzia splendens and the potential for phytoremediation of contaminated soil, Plant Soil 269, 225–232. ArticleCAS Google Scholar
Weissenhorn I., Levyal C., Belgy G., Berthelin J. (1995) Arbuscular mycorrhizal contribution to heavy metal uptake by maize (Zea mays L.) in pot culture with contaminated soil, Mycorrhiza 5, 245–251. CAS Google Scholar
Wetterauer D.G., Killorn R.J. (1996) Fallow- and flooded-soil syndromes: effects on crop production, J. Prod. Agric. 9, 39–41. Google Scholar
White P.J., Bradley M.R. (2000) Mechanisms of cesium uptake by plant, New Phytol. 147, 241–256. ArticleCAS Google Scholar
Whitefield L., Richards A.J., Rimmer D.L. (2004) Effects of mycorrhizal colonization on Thymus polytrichus from heavy-metal-contaminated sites in northern England, Mycorrhiza 14, 47–54. ArticleCAS Google Scholar
Wu F.Y., Ye Z.H., Wu S.C., Wong M.H. (2001) Metal accumulation and arbuscular mycorrhizal status in metallicolous and nonmetallicolous populations of Pteris vittata L. and Sedum alfredi Hance, Planta 226, 43–56. Google Scholar
Xavier I.J., Boyetchko S.M. (2002) Arbuscular Mycorrhizal Fungi as Biostimulants and Bioprotectants of Crops, in: Khachatourians G.G., Arora D.K. (Eds.), Appl. Mycol. Biotechnol., Vol. 2: Agriculture and Food Production, Elsevier, Amsterdam, pp. 311–330. Google Scholar
Yano-Melo A.M., Saggin O.J., Lima-Filho J.M., Melo N.F., Maia L.C. (1999) Effect of arbuscular mycorrhizal fungi on the acclimatization of micropropagated banana plants, Mycorrhiza 9, 119–123. ArticleCAS Google Scholar
Yano-Melo A.M., Saggin O.J., Maia L.C. (2003) Tolerance of mycorrhized banana (Musa sp. cv. Pacovan) plantlets to saline stress, Agr. Ecosyst. Environ. 95, 343–348. Article Google Scholar
Young N.D., Mudge J., Ellis T.H. (2003) Legume genomes: more than peas in a pod, Curr. Opin. Plant Biol. 6, 199–204. ArticlePubMedCAS Google Scholar
Yu X., Cheng J., Wong M.H. (2004) Earthworm-mycorrhiza interaction on Cd uptake and growth of ryegrass, Soil Biol. Biochem. 37, 1–7. Google Scholar
Zandavalli R.B., Dillenburg L.R., Paulo V.D. (2004) Growth responses of Araucaria angustifolia (Araucariaceae) to inoculation with the mycorrhizal fungus Glomus clarum, Appl. Soil Ecol. 25, 245–255. Article Google Scholar
Zhu H., Reily B.K., Burns N.J., Ane J. (2006) Tracing Nonlgume Orthologs of Legume genes required for nodulation and Arbuscular Mycorrhizal Symbioses, Genetics 172, 2491–2499. ArticlePubMedCAS Google Scholar
Zhu Y.G., Smolders E. (2000) Plant uptake of radiocesium: A review of mechanisms, regulation and application, J. Exp. Bot. 51, 1635–1645. ArticlePubMedCAS Google Scholar