Genetic Modulation of Homocysteinemia (original) (raw)
Semin Thromb Hemost 2000; Volume 26(Number 03): 255-262
DOI: 10.1055/s-2000-8470
Copyright © 2000 by Thieme Medical Publishers, Inc., 333 Seventh Avenue, New York, NY 10001, USA. Tel.: +1(212) 584-4662
- Departments of Human Genetics, Pediatrics, and Biology, McGill University, Montreal Children's Hospital, Montreal, Canada
Further Information
Publication History
Publication Date:
31 December 2000 (online)
ABSTRACT
With the identification of hyperhomocysteinemia as a risk factor for cardiovascular disease, an understanding of the genetic determinants of plasma homocysteine is important for prevention and treatment. It has been known for some time that homocystinuria, a rare inborn error of metabolism, can be due to genetic mutations that severely disrupt homocysteine metabolism. A more recent development is the finding that milder, but more common, genetic mutations in the same enzymes might also contribute to an elevation in plasma homocysteine. The best example of this concept is a missense mutation (alanine to valine) at base pair (bp) 677 of methylenetetrahydrofolate reductase (MTHFR), the enzyme that provides the folate derivative for conversion of homocysteine to methionine. This mutation results in mild hyperhomocysteinemia, primarily when folate levels are low, providing a rationale (folate supplementation) for overcoming the genetic deficiency.
Additional genetic variants in MTHFR and in other enzymes of homocysteine metabolism are being identified as the cDNAs/genes become isolated. These variants include a glutamate to alanine mutation (bp 1298) in MTHFR, an aspartate to glycine mutation (bp 2756) in methionine synthase, and an isoleucine to methionine mutation (bp 66) in methionine synthase reductase. These variants have been identified relatively recently; therefore additional investigations are required to determine their clinical significance with respect to mild hyperhomocysteinemia and vascular disease.
KEYWORD
Homocysteine - folate - genetics - methylenetetrahydrofolate reductase - methionine synthase
REFERENCES
- 1 Rozen R. Methylenetetrahydrofolate reductase in vascular disease, neural tube defects and colon cancer. in: Mato JM, Caballero A, eds. Proceedings of the 4th Workshop on Methionine Metabolism Madrid, Spain: Consejo Superior de Investigaciones Cientificas Publishers, 1998: 51-61
- 2 Leclerc D, Wilson A, Dumas R. Cloning and mapping of a cDNA for methionine synthase reductase, a flavoprotein defective in patients with homocystinuria. Proc Natl Acad Sci U S A . 1998; 95 3059-3064
- 3 Garrow T A, Millian N S, Park E I. The influence of nutrition on rat liver betaine-homocysteine methyltransferase expression and preliminary characterization of recombinant human BHMT as a zinc metalloenzyme. in: Mato JM, Caballero A, eds. Proceedings of the 4th Workshop on Methionine Metabolism Madrid, Spain: Consejo Superior de Investigaciones Cientificas Publishers, 1998 : 63-76
- 4 Kraus J P, Miroslav J, Viktor K. Cystathionine β-synthase mutations in homocystinuria. Hum Mutat . 1999; 13 362-375
- 5 Leclerc D, Campeau E, Goyette P. Human methionine synthase:cDNA cloning, chromosomal localization, and identification of mutations in patients of the _cbl_G complementation group of folate/cobalamin disorders. Hum Mol Genet . 1996; 5 1867-1874
- 6 Li Y N, Gulati S, Baker P J. Cloning, mapping and RNA analysis of the human methionine synthase gene. Hum Mol Genet . 1996; 5 1851-1858
- 7 Chen L H, Liu M-L, Hwang H-Y. Human methionine synthase. cDNA cloning, gene localization and expression. J Biol Chem . 1997; 272 3628-3634
- 8 Gulati S, Baker P, Yunan L N. Defects in human methionine synthase in cblG patients. Hum Mol Genet . 1996; 5 1859-1865
- 9 Wilson A, Leclerc D, Saberi F. Functionally null mutations in patients with the cblG-variant form of methionine synthase deficiency. Am J Hum Genet . 1998; 63 409-414
- 10 Wilson A, Leclerc D, Rosenblatt D S, Gravel R A. Molecular basis for methionine synthase reductase deficiency in patients belonging to the cblE complementation group of disorders in folate/cobalamin metabolism. Hum Mol Genet . 1999; 8 2009-2016
- 11 Sibani S, Christensen B, O'Ferrell E. Characterization of six novel mutations in the methylenetetrahydrofolate reductase (MTHFR) gene in patients with homocystinuria. Human Mutation . 2000; 15 280-287
- 12 Goyette P, Frosst P, Rosenblatt D S, Rozen, R. Seven novel mutations in the methylenetetrahydrofolate reductase gene and genotype/phenotype correlations in severe MTHFR deficiency. Am J Hum Genet . 1995; 56 1052-1059
- 13 Goyette P, Christensen B, Rosenblatt D S, Rozen R. Severe and mild mutations in cis for the methylenetetrahydrofolate reductase (MTHFR) gene, and description of 5 novel mutations in MTHFR. Am J Hum Genet . 1996; 59 1268-1275
- 14 Kluijtmans L A, den Heijer J, Reitsma P H. Thermolabile methylenetetrahydrofolate reductase and factor V Leiden in the risk of deep-vein thrombosis. Thromb Haemost . 1998; 79 254-258
- 15 Garrow T A. Purification, kinetic properties, and cDNA cloning of mammalian betaine-homocysteine methyltransferase. J Biol Chem . 1996; 271 22831-22838
- 16 Rosenblatt D S. Inherited disorders of folate transport and metabolism. in: Scriver CR, Beaudet AL, Sly WS, Valle D, eds. The Metabolic and Molecular Bases of Inherited Disease, 7th ed New York: McGraw-Hill, 1995: 3111-3128
- 17 Frosst P, Blom H J, Milos R. A candidate genetic risk factor for vascular disease: A common mutation in methylenetetrahydrofolate reductase. Nat Genet . 1995; 10 111-113
- 18 Kang S-S, Wong P WK, Susmano A. Thermolabile methylenetetrahydrofolate reductase: An inherited risk factor for coronary disease. Am J Hum Genet . 1991; 48 536-545
- 19 Engbersen A MT, Franken D G, Boers G HJ. Thermolabile 5,10-methylenetetrahydrofolate reductase as a cause of mild hyperhomocysteinemia. Am J Hum Genet . 1995; 56 142-150
- 20 Jacques P F, Bostom A G, Williams R R. Relation between folate status, a common mutation in methylenetetrahydrofolate reductase, and plasma homocysteine concentrations. Circulation . 1996; 93 7-9
- 21 Ma J, Stampfer M J, Giovannucci E. Methylenetetrahydrofolate reductase polymorphism, reduced risk of colorectal cancer and dietary interactions. Cancer Res . 1997; 57 1098-1102
- 22 Chen J, Giovannucci E, Kelsey K. A methylenetetrahydrofolate reductase polymorphism and the risk of colorectal cancer. Cancer Res . 1996; 56 4862-4864
- 23 Morita H, Taguchi J-I, Kurihara H. Genetic polymorphism of 5,10-methylenetetrahydrofolate reductase (MTHFR) as a risk factor for coronary artery disease. Circulation . 1997; 95 2032-2036
- 24 Park K S, Podskarbi T, Yoo E A, Shin Y S. The C677T mutation in the methylenetetrahydrofolate reductase gene in Koreans. Korean J Genet . 1998; 20 23-28
- 25 Cattaneo M, Tsai M Y, Bucciarelli P. A common mutation in the methylenetetrahydrofolate reductase gene (C677T) increases the risk for deep-vein thrombosis in patients with mutant factor V (factor V :Q506). Arterioscler Thromb Vasc Biol . 1997; 17 1662-1666
- 26 Margaglione M, D'Andrea G, d'Addedda M. The methylenetetrahydrofolate reductase TT677 genotype is associated with venous thrombosis independently of the coexistence of the FV Leiden and the prothrombin A20210 mutation. Thromb Haemost . 1998; 79 907-911
- 27 Shaw G M, Rozen R, Finnell R H, Wasserman C R, Lammer E J. Maternal vitamin use, genetic variation of infant methylenetetrahydrofolate reductase and risk for spina bifida. Am J Epidemiol . 1998; 148 30-37
- 28 Vanegas O C, Giusti B, Fernandez C MR, Abbate R, Pepe G. Frequency of Factor V (FV) Leiden and C677T methylenetetrahydrofolate reductase (MTHFR) mutations in Colombians. Thromb Haemost . 1998; 79 883-884
- 29 Harmon D L, Woodside J V, Yarnell J WG. The common ``thermolabile'' variant of methylene tetrahydrofolate reductase is a major determinant of mild hyperhomocysteinaemia. QJM . 1996; 89 571-577
- 30 Guttormsen A B, Ueland P M, Nesthus I. Determinants and vitamin responsiveness of intermediate hyperhomocysteinemia (>40 μmol/liter). J Clin Invest . 1996; 98 2174-2183
- 31 Malinow M R, Nieto F J, Kruger W D. The effects of folic acid supplementation on plasma total homocysteine are modulated by multivitamin use and methylenetetrahydrofolate reductase genotypes. Arterioscler Thromb Vasc Biol . 1997; 17 1157-1162
- 32 Guenther B D, Sheppard C A, Tran P. The structure and properties of methylenetetrahydrofolate reductase from Escherichia coli: A model for the role of folate in ameliorating hyperhomocysteinemia in humans. Nat Struct Biol . 1999; 6 359-365
- 33 Balasa V V, Gruppo R A, Glueck, C J. The relationship of mutations in the MTHFR, prothrombin, and PAI-1 genes to plasma levels of homocysteine, prothrombin, and PAI-1 in children and adults. Thromb Haemost . 1999; 81 739-744
- 34 Weisberg I, Tran P, Christensen B, Sibani S, Rozen R. A second genetic polymorphism in methylenetetrahydofolate reductase (MTHFR) associated with decreased enzyme activity. Mol Genet Metab . 1998; 64 169-172
- 35 van der Put N MY, Gabreels F, Stevens E MB. A second common mutation in the methylenetetrahydrofolate reductase gene: An additional risk factor for neural-tube defects?. Am J Hum Genet . 1998; 62 1044-1051
- 36 Morita H, Kurihara H, Sugiyama T. Polymorphism of the methionine synthase gene-association with homocysteine metabolism and late-onset vascular diseases in the Japanese population. Arterioscler Thromb Vasc Biol . 1999; 19 298-302
- 37 Tsai M Y, Welge B G, Hanson N Q. Genetic causes of mild hyperhomocysteinemia in patients with premature occlusive coronary artery diseases. Atherosclerosis . 1999; 143 163-170
- 38 Wilson A, Platt R, Wu Q. A common variant in methionine synthase reductase combined with low cobalamin (vitamin B12) increases risk for spina bifida. Mol Genet Metab . 1999; 67 317-323
- 39 Kluijtmans L AJ, van den Heuvel L P, Boers G HJ. Molecular genetic analysis in mild hyperhomocysteinemia: A common mutation in the methylenetetrahydrofolate reductase gene is a genetic risk factor for cardiovascular disease. Am J Hum Genet . 1996; 58 35-41
- 40 Gallagher P, Meleady R, Shields D. Homocysteine and risk of coronary heart disease: Evidence for a common gene mutation. Circulation . 1996; 94 2154-2158
- 41 Arruda V R, von Zuben P M, Chiaparini L C, Annichino-Bizzacchi J M, Costa F F. The mutation Ala677 → Val in the methylene - tetrahydrofolate reductase gene : A risk factor for arterial disease and venous thrombosis. Thromb Haemost . 1997; 77 818-821
- 42 Morita H, Kurihara H, Tsubaki S. Methylenetetrahydrofolate reductase gene polymorphism and ischemic stroke in Japanese. Arterioscler Thromb Vasc Biol . 1998; 18 1465-1469
- 43 Ma J, Stampfer M J, Hennekens C H. Methylenetetrahydrofolate reductase polymorphism, plasma folate, homocysteine, and risk of myocardial infarction in U.S physicians. Circulation . 1996; 94 2410-2416
- 44 Wilcken D EL, Wang X L, Sim A S, McCredie R M. Distribution in healthy and coronary populations of the methylenetetrahydrofolate reductase (MTHFR) C677T mutation. Arterioscler Thromb Vasc Biol . 1996; 16 878-882
- 45 Markus H S, Ali N, Swaminathan R. A common polymorphism in the methylenetetrahydrofolate reductase gene, homocysteine, and ischemic cerebrovascular disease. Stroke . 1997; 28 1739-1743
- 46 Fletcher O, Kessling A M. MTHFR association with arteriosclerotic vascular disease?. Hum Genet . 1998; 103 11-21
- 47 Stevenson R E, Schwartz C E, Du Y Z, Adams M J. Differences in methylenetetrahydrofolate reductase genotype frequencies, between whites and blacks. Am J Hum Genet . 1997; 60 230-233
- 48 Inbal A, Freimark D, Modan B. Synergistic effects of prothrombotic polymorphisms and atherogenic factors on the risk of myocardial infarction in young males. Blood . 1999; 93 2186-2190
- 49 Arai K, Yamasaki Y, Kajimoto Y. Association of methylenetetrahydrofolate reductase gene polymorphism with carotid arterial wall thickening and myocardial infarction risk in NIDDM. Diabetes . 1997; 46 2102-2104
- 50 Nelen W LDM, Steegers E AP, Eskes T KAB, Blom H J. Genetic risk factor for unexplained recurrent early pregnancy loss. Lancet . 1997; 350 861
- 51 Kupferminc M J, Eldor A, Steinman N. Increased frequency of genetic thrombophilia in women with complications of pregnancy. N Engl J Med . 1999; 340 9-13
- 52 Loewenstein A, Winder A, Goldstein M, Lazar M, Eldor A. Bilateral retinal vein occlusion associated with 5,10-methylenetetrahydrofolate reductase mutation. Am J Ophthalmol . 1997; 124 840-841
- 53 Neugebauer S, Baba T, Kurokawa K, Watanabe T. Defective homocysteine metabolism as a risk factor for diabetic retinopathy. Lancet . 1997; 349 473-474
- 54 van der Put N MJ, Eskes T KAB, Blom H J. Is the common 677C → T mutation in the methylenetetrahydrofolate reductase gene a risk factor for neural tube defects?. <~>A meta-analysis. QJM . 1997; 90 111-115
- 55 Regland B, Germgard T, Gottfries C G, Grenfeldt B, Koch-Schmidt A C. Homozygous thermolabile methylenetetrahydrofolate reductase in schizophrenia-like psychosis. J Neural Transm . 1997; 104 931-941
- 56 Arinami T, Yamada N, Yamakawa-Kobayashi K, Hamaguchi H, Toru M. Methylenetetrahydrofolate reductase variant and schizophrenia/depression. Am J Med Genet . 1997; 74 526-528
- 57 Ma J, Stampfer M J, Christensen B. A polymorphism of the methionine synthase gene: Association with plasma folate, vitamin B12, homocysteine, and colorectal cancer risk. Cancer Epidemiol Biomarkers Prev . 1999; 8 825-829