Hemostasis and Alterations of the Central Nervous System (original) (raw)
Abstract
Modulation of coagulation has been successfully applied to ischemic disorders of the central nervous system (CNS). Some components of the coagulation system have been identified in the CNS, yet with limited exception their functions have not been clearly defined. Little is known about how events within the cerebral tissues affect hemostasis. Nonetheless, the interaction between cerebral cells and vascular hemostasis and the possibility that endogenous coagulation factors can participate in functions within the neurovascular unit provide intriguing possibilities for deeper insight into CNS functions and the potential for treatment of CNS injuries. Here, we consider the expression of coagulation factors in the CNS, the coagulopathy associated with focal cerebral ischemia (and its relationship to hemorrhagic transformation), the use of recombinant tissue plasminogen activator (rt-PA) in ischemic stroke and its study in animal models, the impact of rt-PA on neuron and CNS structure and function, and matrix protease generation and matrix degradation and hemostasis. Interwoven among these topics is evidence for interactions of coagulation factors with and within the CNS. How activation of hemostasis occurs in the cerebral tissues and how the brain responds are difficult questions that offer many research possibilities.
Keywords
coagulation factors - hemostasis - central nervous system - knockouts - neurovascular unit
References
- 1 Rosenberg RD, Aird WC. Vascular-bed—specific hemostasis and hypercoagulable states. N Engl J Med 1999; 340 (20) 1555-1564
- 2 del Zoppo GJ. The neurovascular unit in the setting of stroke. J Intern Med 2010; 267 (2) 156-171
- 3 del Zoppo GJ. The neurovascular unit, matrix proteases, and innate inflammation. Ann N Y Acad Sci 2010; 1207: 46-49
- 4 del Zoppo GJ, Hawkins BT. Throwing out the thromboemboli. N Engl J Med 2010; 363 (13) 1282-1284
- 5 Lam CK, Yoo T, Hiner B, Liu Z, Grutzendler J. Embolus extravasation is an alternative mechanism for cerebral microvascular recanalization. Nature 2010; 465 (7297) 478-482
- 6 Rao LV, Rapaport SI. Activation of factor VII bound to tissue factor: a key early step in the tissue factor pathway of blood coagulation. Proc Natl Acad Sci U S A 1988; 85 (18) 6687-6691
- 7 Okada Y, Copeland BK, Tung M-M, del Zoppo GJ. Fibrin forms in the perivascular tissue during focal cerebral ischemia and reperfusion. (Abstract) Stroke 1994; 25: 266
- 8 Goodnight SH, Kenoyer G, Rapaport SI, Patch MJ, Lee JA, Kurze T. Defibrination after brain-tissue destruction: A serious complication of head injury. N Engl J Med 1974; 290 (19) 1043-1047
- 9 Iadecola C. Neurovascular regulation in the normal brain and in Alzheimer's disease. Nat Rev Neurosci 2004; 5 (5) 347-360
- 10 del Zoppo GJ. Inflammation and the neurovascular unit in the setting of focal cerebral ischemia. Neuroscience 2009; 158 (3) 972-982
- 11 Fujimoto S, Katsuki H, Ohnishi M, Takagi M, Kume T, Akaike A. Thrombin induces striatal neurotoxicity depending on mitogen-activated protein kinase pathways in vivo. Neuroscience 2007; 144 (2) 694-701
- 12 Lee Y, Park KW, Jin BK. Thrombin induces neurodegeneration and microglial activation in the cortex in vivo and in vitro: proteolytic and non-proteolytic actions. Biochem Biophys Res Commun 2006; 346 (3) 727-738
- 13 Sanchez A, Tripathy D, Luo J, Yin X, Martinez J, Grammas P. Neurovascular unit and the effects of dosage in VEGF toxicity: role for oxidative stress and thrombin. J Alzheimers Dis 2013; 34 (1) 281-291
- 14 Stutzmann JM, Mary V, Wahl F, Grosjean-Piot O, Uzan A, Pratt J. Neuroprotective profile of enoxaparin, a low molecular weight heparin, in in vivo models of cerebral ischemia or traumatic brain injury in rats: a review. CNS Drug Rev 2002; 8 (1) 1-30
- 15 Spatz M, Micic D, Mrsulja BB, Klatzo I. Cerebral microvessels as mediators of cerebral transport. Adv Neurol 1978; 20: 189-196
- 16 Spatz M, Bembry J, Dodson RF, Hervonen H, Murray MR. Endothelial cell cultures derived from isolated cerebral microvessels. Brain Res 1980; 191 (2) 577-582
- 17 del Zoppo GJ, Yu JQ, Copeland BR, Thomas WS, Schneiderman J, Morrissey JH. Tissue factor localization in non-human primate cerebral tissue. Thromb Haemost 1992; 68 (6) 642-647
- 18 Tran ND, Wong VL, Schreiber SS, Bready JV, Fisher M. Regulation of brain capillary endothelial thrombomodulin mRNA expression. Stroke 1996; 27 (12) 2304-2310 , discussion 2310–2311
- 19 Bajaj MS, Kuppuswamy MN, Manepalli AN, Bajaj SP. Transcriptional expression of tissue factor pathway inhibitor, thrombomodulin and von Willebrand factor in normal human tissues. Thromb Haemost 1999; 82 (3) 1047-1052
- 20 Wang L, Tran ND, Kittaka M, Fisher MJ, Schreiber SS, Zlokovic BV. Thrombomodulin expression in bovine brain capillaries. Anticoagulant function of the blood-brain barrier, regional differences, and regulatory mechanisms. Arterioscler Thromb Vasc Biol 1997; 17 (11) 3139-3146
- 21 Okada Y, Copeland BR, Mori E, Tung MM, Thomas WS, del Zoppo GJ. P-selectin and intercellular adhesion molecule-1 expression after focal brain ischemia and reperfusion. Stroke 1994; 25 (1) 202-211
- 22 Haring H-P, Berg EL, Tsurushita N, Tagaya M, del Zoppo GJ. E-selectin appears in nonischemic tissue during experimental focal cerebral ischemia. Stroke 1996; 27 (8) 1386-1391 , discussion 1391–1392
- 23 del Zoppo GJ, Schmid-Schönbein GW, Mori E, Copeland BR, Chang CM. Polymorphonuclear leukocytes occlude capillaries following middle cerebral artery occlusion and reperfusion in baboons. Stroke 1991; 22 (10) 1276-1283
- 24 Hawkins BT, Davis TP. The blood-brain barrier/neurovascular unit in health and disease. Pharmacol Rev 2005; 57 (2) 173-185
- 25 Sandoval KE, Witt KA. Blood-brain barrier tight junction permeability and ischemic stroke. Neurobiol Dis 2008; 32 (2) 200-219
- 26 Wagner SL, Van Nostrand WE, Lau AL , et al. Co-distribution of protease nexin-1 and protease nexin-2 in brains of non-human primates. Brain Res 1993; 626 (1-2) 90-98
- 27 Niclou SP, Suidan HS, Pavlik A, Vejsada R, Monard D. Changes in the expression of protease-activated receptor 1 and protease nexin-1 mRNA during rat nervous system development and after nerve lesion. Eur J Neurosci 1998; 10 (5) 1590-1607
- 28 Choi BH, Suzuki M, Kim T, Wagner SL, Cunningham DD. Protease nexin-1. Localization in the human brain suggests a protective role against extravasated serine proteases. Am J Pathol 1990; 137 (4) 741-747
- 29 Baker JB, Low DA, Simmer RL, Cunningham DD. Protease-nexin: a cellular component that links thrombin and plasminogen activator and mediates their binding to cells. Cell 1980; 21 (1) 37-45
- 30 Scott RW, Bergman BL, Bajpai A , et al. Protease nexin. Properties and a modified purification procedure. J Biol Chem 1985; 260 (11) 7029-7034
- 31 Hultman K, Blomstrand F, Nilsson M , et al. Expression of plasminogen activator inhibitor-1 and protease nexin-1 in human astrocytes: Response to injury-related factors. J Neurosci Res 2010; 88 (11) 2441-2449
- 32 Vaughan PJ, Su J, Cotman CW, Cunningham DD. Protease nexin-1, a potent thrombin inhibitor, is reduced around cerebral blood vessels in Alzheimer's disease. Brain Res 1994; 668 (1-2) 160-170
- 33 Broze Jr GJ, Warren LA, Novotny WF, Higuchi DA, Girard JJ, Miletich JP. The lipoprotein-associated coagulation inhibitor that inhibits the factor VII-tissue factor complex also inhibits factor Xa: insight into its possible mechanism of action. Blood 1988; 71 (2) 335-343
- 34 Hollister RD, Kisiel W, Hyman BT. Immunohistochemical localization of tissue factor pathway inhibitor-1 (TFPI-1), a Kunitz proteinase inhibitor, in Alzheimer's disease. Brain Res 1996; 728 (1) 13-19
- 35 Frieser M, Nöckel H, Pausch F , et al. Cloning of the mouse laminin alpha 4 cDNA. Expression in a subset of endothelium. Eur J Biochem 1997; 246 (3) 727-735
- 36 Hamann GF, Okada Y, Fitridge R, del Zoppo GJ. Microvascular basal lamina antigens disappear during cerebral ischemia and reperfusion. Stroke 1995; 26 (11) 2120-2126
- 37 Pardridge WM. Drug transport across the blood-brain barrier. J Cereb Blood Flow Metab 2012; 32 (11) 1959-1972
- 38 Miller DS. Regulation of P-glycoprotein and other ABC drug transporters at the blood-brain barrier. Trends Pharmacol Sci 2010; 31 (6) 246-254
- 39 Boado RJ, Li JY, Nagaya M, Zhang C, Pardridge WM. Selective expression of the large neutral amino acid transporter at the blood-brain barrier. Proc Natl Acad Sci U S A 1999; 96 (21) 12079-12084
- 40 Gerhart DZ, Enerson BE, Zhdankina OY, Leino RL, Drewes LR. Expression of monocarboxylate transporter MCT1 by brain endothelium and glia in adult and suckling rats. Am J Physiol 1997; 273 (1 Pt 1) E207-E213
- 41 Pardridge WM, Boado RJ, Farrell CR. Brain-type glucose transporter (Glut-I) is selectively localized to the blood-brain barrier. Studies with quantitative western blotting and in situ hybridization. J Biol Chem 1990; 265: 18035-18040
- 42 Stoll J, Wadhwani KC, Smith QR. Identification of the cationic amino acid transporter (System y+) of the rat blood-brain barrier. J Neurochem 1993; 60 (5) 1956-1959
- 43 Pardridge WM, Eisenberg J, Yang J. Human blood-brain barrier insulin receptor. J Neurochem 1985; 44 (6) 1771-1778
- 44 Pardridge WM, Eisenberg J, Yang J. Human blood-brain barrier transferrin receptor. Metabolism 1987; 36 (9) 892-895
- 45 Eddleston M, de la Torre JC, Oldstone MB, Loskutoff DJ, Edgington TS, Mackman N. Astrocytes are the primary source of tissue factor in the murine central nervous system. A role for astrocytes in cerebral hemostasis. J Clin Invest 1993; 92 (1) 349-358
- 46 Mackman N. Role of tissue factor in hemostasis, thrombosis, and vascular development. Arterioscler Thromb Vasc Biol 2004; 24 (6) 1015-1022
- 47 Okada Y, Copeland BR, Fitridge R, Koziol JA, del Zoppo GJ. Fibrin contributes to microvascular obstructions and parenchymal changes during early focal cerebral ischemia and reperfusion. Stroke 1994; 25 (9) 1847-1853 , discussion 1853–1854
- 48 Hamann GF, Okada Y, del Zoppo GJ. Hemorrhagic transformation and microvascular integrity during focal cerebral ischemia/reperfusion. J Cereb Blood Flow Metab 1996; 16 (6) 1373-1378
- 49 Hamann GF, Liebetrau M, Martens H , et al. Microvascular basal lamina injury after experimental focal cerebral ischemia and reperfusion in the rat. J Cereb Blood Flow Metab 2002; 22 (5) 526-533
- 50 Kwon I, Kim EH, del Zoppo GJ, Heo JH. Ultrastructural and temporal changes of the microvascular basement membrane and astrocyte interface following focal cerebral ischemia. J Neurosci Res 2009; 87 (3) 668-676
- 51 Osada T, Gu Y-H, Kanazawa M , et al. Interendothelial claudin-5 expression depends on cerebral endothelial cell-matrix adhesion by β(1)-integrins. J Cereb Blood Flow Metab 2011; 31 (10) 1972-1985
- 52 Sappino AP, Madani R, Huarte J , et al. Extracellular proteolysis in the adult murine brain. J Clin Invest 1993; 92 (2) 679-685
- 53 Dihanich M, Kaser M, Reinhard E, Cunningham D, Monard D. Prothrombin mRNA is expressed by cells of the nervous system. Neuron 1991; 6 (4) 575-581
- 54 Del Zoppo GJ, Copeland BR, Harker LA , et al. Experimental acute thrombotic stroke in baboons. Stroke 1986; 17 (6) 1254-1265
- 55 Busch E, Krüger K, Hossmann KA. Improved model of thromboembolic stroke and rt-PA induced reperfusion in the rat. Brain Res 1997; 778 (1) 16-24
- 56 Busch E, Krüger K, Allegrini PR , et al. Reperfusion after thrombolytic therapy of embolic stroke in the rat: magnetic resonance and biochemical imaging. J Cereb Blood Flow Metab 1998; 18 (4) 407-418
- 57 Fukuda S, Fini CA, Mabuchi T, Koziol JA, Eggleston Jr LL, del Zoppo GJ. Focal cerebral ischemia induces active proteases that degrade microvascular matrix. Stroke 2004; 35 (4) 998-1004
- 58 Blaton V, Peeters H. The nonhuman primates as models for studying human atherosclerosis: studies on the chimpanzee, the baboon and the rhesus macacus. Adv Exp Med Biol 1976; 67 (00) 33-64
- 59 Enard W, Khaitovich P, Klose J , et al. Intra- and interspecific variation in primate gene expression patterns. Science 2002; 296 (5566) 340-343
- 60 Edvinsson L, MacKenzie ET, McCulloch J . General and comparative anatomy of the cerebral circulation. In: Edvinsson L, MacKenzie ET, McCulloch J, eds. Cerebral Blood Flow and Metabolism. 1 ed. New York, NY: Raven Press; 1993: 3-39
- 61 Rosenberg GA, Estrada EY, Dencoff JE. Matrix metalloproteinases and TIMPs are associated with blood-brain barrier opening after reperfusion in rat brain. Stroke 1998; 29 (10) 2189-2195
- 62 Asahi M, Asahi K, Jung JC, del Zoppo GJ, Fini ME, Lo EH. Role for matrix metalloproteinase 9 after focal cerebral ischemia: effects of gene knockout and enzyme inhibition with BB-94. J Cereb Blood Flow Metab 2000; 20 (12) 1681-1689
- 63 Heo JH, Lucero J, Abumiya T, Koziol JA, Copeland BR, del Zoppo GJ. Matrix metalloproteinases increase very early during experimental focal cerebral ischemia. J Cereb Blood Flow Metab 1999; 19 (6) 624-633
- 64 Chang DI, Hosomi N, Lucero J , et al. Activation systems for latent matrix metalloproteinase-2 are upregulated immediately after focal cerebral ischemia. J Cereb Blood Flow Metab 2003; 23 (12) 1408-1419
- 65 Duverger D, MacKenzie ET. The quantification of cerebral infarction following focal ischemia in the rat: influence of strain, arterial pressure, blood glucose concentration, and age. J Cereb Blood Flow Metab 1988; 8 (4) 449-461
- 66 Korninger C, Collen D. Studies on the specific fibrinolytic effect of human extrinsic (tissue-type) plasminogen activator in human blood and in various animal species in vitro. Thromb Haemost 1981; 46 (2) 561-565
- 67 Mohr JP, Caplan LR, Melski JW , et al. The Harvard Cooperative Stroke Registry: a prospective registry of patients hospitalized with stroke. Neurology 1978; 28 (8) 754-762
- 68 Fisher CM. The arterial lesions underlying lacunes. Acta Neuropathol 1968; 12 (1) 1-15
- 69 Fisher CM, Adams RD. Observations on brain embolism with special reference to hemorrhage infarction. In: Furlan AJ, , ed. The Heart and Stroke. Exploring Mutual Cerebrovascular and Cardiovascular Issues. 1st ed. New York, NY: Springer-Verlag; 1987: 17-36
- 70 Okada Y, Yamaguchi T, Minematsu K , et al. Hemorrhagic transformation in cerebral embolism. Stroke 1989; 20 (5) 598-603
- 71 Yamaguchi T, Minematsu K, Choki J, Ikeda M. Clinical and neuroradiological analysis of thrombotic and embolic cerebral infarction. Jpn Circ J 1984; 48 (1) 50-58
- 72 Denny-Brown D. Recurrent cerebrovascular episodes. Arch Neurol 1960; 2: 194-210
- 73 Russell RWR. Atheromatous retinal embolism. Lancet 1963; 2 (7322) 1354-1356
- 74 Hollenhorst RW. Vascular status of patients who have cholesterol emboli in the retina. Am J Ophthalmol 1966; 61 (5 Pt 2): 1159-1165
- 75 Barnett HJ. The pathophysiology of transient cerebral ischemic attacks. Med Clin North Am 1979; 63 (4) 649-679
- 76 Feinberg WM, Pearce LA, Hart RG , et al. Markers of thrombin and platelet activity in patients with atrial fibrillation: correlation with stroke among 1531 participants in the stroke prevention in atrial fibrillation III study. Stroke 1999; 30 (12) 2547-2553
- 77 Takano K, Yamaguchi T, Kato H, Omae T. Activation of coagulation in acute cardioembolic stroke. Stroke 1991; 22 (1) 12-16
- 78 Takano K, Yamaguchi T, Uchida K. Markers of a hypercoagulable state following acute ischemic stroke. Stroke 1992; 23 (2) 194-198
- 79 Yamazaki M, Uchiyama S, Maruyama S. Alterations of haemostatic markers in various subtypes and phases of stroke. Blood Coagul Fibrinolysis 1993; 4 (5) 707-712
- 80 Mettinger KL. A study of hemostasis in ischemic cerebrovascular disease. I. Abnormalities in factor VIII and antithrombin. Thromb Res 1982; 26 (3) 183-192
- 81 Mettinger KL, Nyman D, Kjellin K-G, Sedén Å, Söderström CE. Factor VIII related antigen, anti-thrombin III, spontaneous platelet aggregation and plasminogen activator in ischemic cerebrovascular disease. J Neurol Sci 1979; 41 (1) 31-38
- 82 Dougherty JH, Levy DE, Weksler BB. Platelet activation in acute cerebral ischemia. Serial measurements of platelet function in cerebrovascular disease. Lancet 1977; 1: 821-824
- 83 de Boer AC, Turpie AG, Butt RW, Duke RJ, Bloch RF, Genton E. Plasma betathromboglobulin and serum fragment E in acute partial stroke. Br J Haematol 1982; 50 (2) 327-334
- 84 Cella G, Zahavi J, de Haas HA, Kakkar VV. beta-Thromboglobulin, platelet production time and pletelet function in vascular disease. Br J Haematol 1979; 43 (1) 127-136
- 85 Feinberg WM, Bruck DC, Ring ME, Corrigan Jr JJ. Hemostatic markers in acute stroke. Stroke 1989; 20 (5) 592-597
- 86 van Kooten F, Ciabattoni G, Patrono C, Schmitz PI, van Gijn J, Koudstaal PJ. Evidence for episodic platelet activation in acute ischemic stroke. Stroke 1994; 25 (2) 278-281
- 87 Fisher M, Zipser R. Increased excretion of immunoreactive thromboxane B2 in cerebral ischemia. Stroke 1985; 16 (1) 10-14
- 88 van Kooten F, Ciabattoni G, Koudstaal PJ, Dippel DW, Patrono C. Increased platelet activation in the chronic phase after cerebral ischemia and intracerebral hemorrhage. Stroke 1999; 30 (3) 546-549
- 89 Shah AB, Beamer N, Coull BM. Enhanced in vivo platelet activation in subtypes of ischemic stroke. Stroke 1985; 16 (4) 643-647
- 90 Iwamoto T, Kubo H, Takasaki M. Platelet activation in the cerebral circulation in different subtypes of ischemic stroke and Binswanger's disease. Stroke 1995; 26 (1) 52-56
- 91 Undas A, Slowik A, Gissel M, Mann KG, Butenas S. Active tissue factor and activated factor XI in patients with acute ischemic cerebrovascular events. Eur J Clin Invest 2012; 42 (2) 123-129
- 92 Knottnerus IL, Winckers K, Ten Cate H , et al. Levels of heparin-releasable TFPI are increased in first-ever lacunar stroke patients. Neurology 2012; 78 (7) 493-498
- 93 Abumiya T, Yamaguchi T, Terasaki T, Kokawa T, Kario K, Kato H. Decreased plasma tissue factor pathway inhibitor activity in ischemic stroke patients. Thromb Haemost 1995; 74 (4) 1050-1054
- 94 He M, Wen Z, He X , et al. Observation on tissue factor pathway and some other coagulation parameters during the onset of acute cerebrocardiac thrombotic diseases. Thromb Res 2002; 107 (5) 223-228
- 95 Adams MJ, Thom J, Hankey GJ , et al. The tissue factor pathway in ischemic stroke. Blood Coagul Fibrinolysis 2006; 17 (7) 527-532
- 96 Rossouw JE, Johnson KC, Pettinger M , et al. Tissue factor pathway inhibitor, activated protein C resistance, and risk of ischemic stroke due to postmenopausal hormone therapy. Stroke 2012; 43 (4) 952-957
- 97 Sayer MS, Cole VJ, Adams MJ, Baker RI, Staton JM. Polymorphisms in the tissue factor pathway inhibitor gene are not associated with ischaemic stroke. Blood Coagul Fibrinolysis 2007; 18 (7) 703-708
- 98 Pedersen A, Hanson E, Olsson S , et al. TFPI gene variation and ischemic stroke. Thromb Res 2012; 130 (3) 565-567
- 99 Cuomo O, Pignataro G, Gala R , et al. Antithrombin reduces ischemic volume, ameliorates neurologic deficits, and prolongs animal survival in both transient and permanent focal ischemia. Stroke 2007; 38 (12) 3272-3279
- 100 Thomas WS, Mori E, Copeland BR, Yu JQ, Morrissey JH, del Zoppo GJ. Tissue factor contributes to microvascular defects after focal cerebral ischemia. Stroke 1993; 24 (6) 847-853 , discussion 847
- 101 Niiro M, Nagayama T, Yunoue S, Obara S, Hirano H. Changes in tissue factor and the effects of tissue factor pathway inhibitor on transient focal cerebral ischemia in rats. Thromb Res 2008; 122 (2) 247-255
- 102 Fernández-Monreal M, López-Atalaya JP, Benchenane K , et al. Is tissue-type plasminogen activator a neuromodulator?. Mol Cell Neurosci 2004; 25 (4) 594-601
- 103 Sun WY, Witte DP, Degen JL , et al. Prothrombin deficiency results in embryonic and neonatal lethality in mice. Proc Natl Acad Sci U S A 1998; 95 (13) 7597-7602
- 104 Cui J, O'Shea KS, Purkayastha A, Saunders TL, Ginsburg D. Fatal haemorrhage and incomplete block to embryogenesis in mice lacking coagulation factor V. Nature 1996; 384 (6604) 66-68
- 105 Dewerchin M, Liang Z, Moons L , et al. Blood coagulation factor X deficiency causes partial embryonic lethality and fatal neonatal bleeding in mice. Thromb Haemost 2000; 83 (2) 185-190
- 106 Rosen ED, Chan JC, Idusogie E , et al. Mice lacking factor VII develop normally but suffer fatal perinatal bleeding. Nature 1997; 390 (6657) 290-294
- 107 Bi L, Lawler AM, Antonarakis SE, High KA, Gearhart JD, Kazazian Jr HH. Targeted disruption of the mouse factor VIII gene produces a model of haemophilia A. Nat Genet 1995; 10 (1) 119-121
- 108 Lin HF, Maeda N, Smithies O, Straight DL, Stafford DW. A coagulation factor IX-deficient mouse model for human hemophilia B. Blood 1997; 90 (10) 3962-3966
- 109 Pauer HU, Renné T, Hemmerlein B , et al. Targeted deletion of murine coagulation factor XII gene-a model for contact phase activation in vivo. Thromb Haemost 2004; 92 (3) 503-508
- 110 Lauer P, Metzner HJ, Zettlmeissl G , et al. Targeted inactivation of the mouse locus encoding coagulation factor XIII-A: hemostatic abnormalities in mutant mice and characterization of the coagulation deficit. Thromb Haemost 2002; 88 (6) 967-974
- 111 Salomon O, Steinberg DM, Koren-Morag N, Tanne D, Seligsohn U. Reduced incidence of ischemic stroke in patients with severe factor XI deficiency. Blood 2008; 111 (8) 4113-4117
- 112 Kleinschnitz C, Stoll G, Bendszus M , et al. Targeting coagulation factor XII provides protection from pathological thrombosis in cerebral ischemia without interfering with hemostasis. J Exp Med 2006; 203 (3) 513-518
- 113 Diener HC, Cunha L, Forbes C, Sivenius J, Smets P, Lowenthal A. European Stroke Prevention Study. 2. Dipyridamole and acetylsalicylic acid in the secondary prevention of stroke. J Neurol Sci 1996; 143 (1-2) 1-13
- 114 CAPRIE Steering Committee. A randomised, blinded, trial of clopidogrel versus aspirin in patients at risk of ischaemic events (CAPRIE). Lancet 1996; 348 (9038) 1329-1339
- 115 Diener H-C, Bogousslavsky J, Brass LM , et al; MATCH investigators. Aspirin and clopidogrel compared with clopidogrel alone after recent ischaemic stroke or transient ischaemic attack in high-risk patients (MATCH): randomised, double-blind, placebo-controlled trial. Lancet 2004; 364 (9431) 331-337
- 116 Stroke Prevention in Atrial Fibrillation Study Group Investigators. Preliminary report of the Stroke Prevention in Atrial Fibrillation Study. N Engl J Med 1990; 322 (12) 863-868
- 117 Petersen P, Boysen G, Godtfredsen J, Andersen ED, Andersen B. Placebo-controlled, randomised trial of warfarin and aspirin for prevention of thromboembolic complications in chronic atrial fibrillation. The Copenhagen AFASAK study. Lancet 1989; 1 (8631) 175-179
- 118 The Boston Area Anticoagulation Trial for Atrial Fibrillation Investigators. The effect of low-dose warfarin on the risk of stroke in patients with nonrheumatic atrial fibrillation. N Engl J Med 1990; 323 (22) 1505-1511
- 119 Stroke Prevention in Atrial Fibrillation Investigators. Warfarin versus aspirin for prevention of thromboembolism in atrial fibrillation: Stroke Prevention in Atrial Fibrillation II Study. Lancet 1994; 343 (8899) 687-691
- 120 Stroke Prevention in Atrial Fibrillation Investigators. Adjusted-dose warfarin versus low-intensity, fixed-dose warfarin plus aspirin for high-risk patients with atrial fibrillation: Stroke Prevention in Atrial Fibrillation III randomised clinical trial. Lancet 1996; 348 (9028) 633-638
- 121 EAFT (European Atrial Fibrillation Trial) Study Group. Secondary prevention in non-rheumatic atrial fibrillation after transient ischaemic attack or minor stroke. Lancet 1993; 342 (8882) 1255-1262
- 122 Connolly SJ, Ezekowitz MD, Yusuf S , et al; RE-LY Steering Committee and Investigators. Dabigatran versus warfarin in patients with atrial fibrillation. N Engl J Med 2009; 361 (12) 1139-1151
- 123 Patel MR, Mahaffey KW, Garg J , et al; ROCKET AF Investigators. Rivaroxaban versus warfarin in nonvalvular atrial fibrillation. N Engl J Med 2011; 365 (10) 883-891
- 124 Connolly SJ, Eikelboom J, Joyner C , et al; AVERROES Steering Committee and Investigators. Apixaban in patients with atrial fibrillation. N Engl J Med 2011; 364 (9) 806-817
- 125 Granger CB, Alexander JH, McMurray JJ , et al; ARISTOTLE Committees and Investigators. Apixaban versus warfarin in patients with atrial fibrillation. N Engl J Med 2011; 365 (11) 981-992
- 126 Eikelboom JW, Wallentin L, Connolly SJ , et al. Risk of bleeding with 2 doses of dabigatran compared with warfarin in older and younger patients with atrial fibrillation: an analysis of the randomized evaluation of long-term anticoagulant therapy (RE-LY) trial. Circulation 2011; 123 (21) 2363-2372
- 127 The National Institutes of Neurological Disorders and Stroke rt-PA Stroke Study Group. Tissue plasminogen activator for acute ischemic stroke. N Engl J Med 1995; 333: 1581-1587
- 128 Kwiatkowski TG, Libman RB, Frankel M , et al; National Institute of Neurological Disorders and Stroke Recombinant Tissue Plasminogen Activator Stroke Study Group. Effects of tissue plasminogen activator for acute ischemic stroke at one year. N Engl J Med 1999; 340 (23) 1781-1787
- 129 Hacke W, Kaste M, Bluhmki E , et al; ECASS Investigators. Thrombolysis with alteplase 3 to 4.5 hours after acute ischemic stroke. N Engl J Med 2008; 359 (13) 1317-1329
- 130 Kay R, Wong KS, Yu YL , et al. Low-molecular-weight heparin for the treatment of acute ischemic stroke. N Engl J Med 1995; 333 (24) 1588-1593
- 131 Berge E, Abdelnoor M, Nakstad PH, Sandset PM. Low molecular-weight heparin versus aspirin in patients with acute ischaemic stroke and atrial fibrillation: a double-blind randomised study. HAEST Study Group. Heparin in Acute Embolic Stroke Trial. Lancet 2000; 355 (9211) 1205-1210
- 132 Diener HC, Ringelstein EB, von Kummer R , et al; Therapy of Patients With Acute Stroke (TOPAS) Investigators. Treatment of acute ischemic stroke with the low-molecular-weight heparin certoparin: results of the TOPAS trial. Stroke 2001; 32 (1) 22-29
- 133 Bath PM, Lindenstrom E, Boysen G , et al. Tinzaparin in acute ischaemic stroke (TAIST): a randomised aspirin-controlled trial. Lancet 2001; 358 (9283) 702-710
- 134 Abumiya T, Fitridge R, Mazur C , et al. Integrin alpha(IIb)beta(3) inhibitor preserves microvascular patency in experimental acute focal cerebral ischemia. Stroke 2000; 31 (6) 1402-1409 , discussion 1409–1410
- 135 Choudhri TF, Hoh BL, Zerwes HG , et al. Reduced microvascular thrombosis and improved outcome in acute murine stroke by inhibiting GP IIb/IIIa receptor-mediated platelet aggregation. J Clin Invest 1998; 102 (7) 1301-1310
- 136 The Abciximab in Ischemic Stroke Investigators. Abciximab in acute ischemic stroke: a randomized, double-blind, placebo-controlled, dose-escalation study. Stroke 2000; 31 (3) 601-609
- 137 Adams Jr HP, Effron MB, Torner J , et al; AbESTT-II Investigators. Emergency administration of abciximab for treatment of patients with acute ischemic stroke: results of an international phase III trial: Abciximab in Emergency Treatment of Stroke Trial (AbESTT-II). Stroke 2008; 39 (1) 87-99
- 138 Levin EG, del Zoppo GJ. Localization of tissue plasminogen activator in the endothelium of a limited number of vessels. Am J Pathol 1994; 144 (5) 855-861
- 139 Zlokovic BV, Wang L, Sun N , et al. Expression of tissue plasminogen activator in cerebral capillaries: possible fibrinolytic function of the blood-brain barrier. Neurosurgery 1995; 37 (5) 955-961
- 140 Hosomi N, Lucero J, Heo JH, Koziol JA, Copeland BR, del Zoppo GJ. Rapid differential endogenous plasminogen activator expression after acute middle cerebral artery occlusion. Stroke 2001; 32 (6) 1341-1348
- 141 Del Zoppo GJ, Zeumer H, Harker LA. Thrombolytic therapy in stroke: possibilities and hazards. Stroke 1986; 17 (4) 595-607
- 142 del Zoppo GJ, Ferbert A, Otis S , et al. Local intra-arterial fibrinolytic therapy in acute carotid territory stroke. A pilot study. Stroke 1988; 19 (3) 307-313
- 143 Mori E, Tabuchi M, Yoshida T, Yamadori A. Intracarotid urokinase with thromboembolic occlusion of the middle cerebral artery. Stroke 1988; 19 (7) 802-812
- 144 del Zoppo GJ, Higashida RT, Furlan AJ, Pessin MS, Rowley HA, Gent M. PROACT: a phase II randomized trial of recombinant pro-urokinase by direct arterial delivery in acute middle cerebral artery stroke. PROACT Investigators. Prolyse in Acute Cerebral Thromboembolism. Stroke 1998; 29 (1) 4-11
- 145 Hacke W, Kaste M, Fieschi C , et al; The European Cooperative Acute Stroke Study (ECASS). Intravenous thrombolysis with recombinant tissue plasminogen activator for acute hemispheric stroke. JAMA 1995; 274 (13) 1017-1025
- 146 Hacke W, Kaste M, Fieschi C , et al; Second European-Australasian Acute Stroke Study Investigators. Randomised double-blind placebo-controlled trial of thrombolytic therapy with intravenous alteplase in acute ischaemic stroke (ECASS II). Lancet 1998; 352 (9136) 1245-1251
- 147 Burggraf D, Martens HK, Dichgans M, Hamann GF. rt-PA causes a dose-dependent increase in the extravasation of cellular and non-cellular blood elements after focal cerebral ischemia. Brain Res 2007; 1164: 55-62
- 148 Warach S, Latour LL. Evidence of reperfusion injury, exacerbated by thrombolytic therapy, in human focal brain ischemia using a novel imaging marker of early blood-brain barrier disruption. Stroke 2004; 35 (11) (Suppl. 01) 2659-2661
- 149 Overgaard K, Sereghy T, Boysen G, Pedersen H, Diemer NH. Reduction of infarct volume and mortality by thrombolysis in a rat embolic stroke model. Stroke 1992; 23 (8) 1167-1173 , discussion 1174
- 150 Overgaard K, Sereghy T, Pedersen H, Boysen G. Dose-response of rt-PA and its combination with aspirin in a rat embolic stroke model. Neuroreport 1992; 3 (10) 925-928
- 151 Overgaard K, Sereghy T, Boysen G, Pedersen H, Diemer NH. Reduction of infarct volume by thrombolysis with rt-PA in an embolic rat stroke model. Scand J Clin Lab Invest 1993; 53 (4) 383-393
- 152 Slivka A, Pulsinelli WA. Hemorrhagic complications of thrombolytic therapy in experimental stroke. (Abstract) Neurology 1987; 37: 82
- 153 Carmeliet P, Schoonjans L, Kieckens L , et al. Physiological consequences of loss of plasminogen activator gene function in mice. Nature 1994; 368 (6470) 419-424
- 154 Carmeliet P, Kieckens L, Schoonjans L , et al. Plasminogen activator inhibitor-1 gene-deficient mice. I. Generation by homologous recombination and characterization. J Clin Invest 1993; 92 (6) 2746-2755
- 155 Carmeliet P, Stassen JM, Schoonjans L , et al. Plasminogen activator inhibitor-1 gene-deficient mice. II. Effects on hemostasis, thrombosis, and thrombolysis. J Clin Invest 1993; 92 (6) 2756-2760
- 156 Ploplis VA, Carmeliet P, Vazirizadeh S , et al. Effects of disruption of the plasminogen gene on thrombosis, growth, and health in mice. J Clin Invest 1995; 92: 2585-2593
- 157 Lijnen HR, Okada K, Matsuo O, Collen D, Dewerchin M. Alpha2-antiplasmin gene deficiency in mice is associated with enhanced fibrinolytic potential without overt bleeding. Blood 1999; 93 (7) 2274-2281
- 158 Nagai N, De Mol M, Lijnen HR, Carmeliet P, Collen D. Role of plasminogen system components in focal cerebral ischemic infarction: a gene targeting and gene transfer study in mice. Circulation 1999; 99 (18) 2440-2444
- 159 Wang YF, Tsirka SE, Strickland S, Stieg PE, Soriano SG, Lipton SA. Tissue plasminogen activator (tPA) increases neuronal damage after focal cerebral ischemia in wild-type and tPA-deficient mice. Nat Med 1998; 4 (2) 228-231
- 160 Tabrizi P, Wang L, Seeds N , et al. Tissue plasminogen activator (tPA) deficiency exacerbates cerebrovascular fibrin deposition and brain injury in a murine stroke model: studies in tPA-deficient mice and wild-type mice on a matched genetic background. Arterioscler Thromb Vasc Biol 1999; 19 (11) 2801-2806
- 161 Nagai N, Suzuki Y, Van Hoef B, Lijnen HR, Collen D. Effects of plasminogen activator inhibitor-1 on ischemic brain injury in permanent and thrombotic middle cerebral artery occlusion models in mice. J Thromb Haemost 2005; 3 (7) 1379-1384
- 162 Del Zoppo GJ. Focal cerebral ischemia and hemostasis: a PAI-1 conundrum. J Thromb Haemost 2005; 3 (7) 1376-1378
- 163 Baron-Van Evercooren A, Leprince P, Rogister B , et al. Plasminogen activators in developing peripheral nervous system, cellular origin and mitogenic effect. Brain Res 1987; 433 (1) 101-108
- 164 Dent MA, Sumi Y, Morris RJ, Seeley PJ. Urokinase-type plasminogen activator expression by neurons and oligodendrocytes during process outgrowth in developing rat brain. Eur J Neurosci 1993; 5 (6) 633-647
- 165 Redlitz A, Plow EF. Receptors for plasminogen and t-PA: an update. Baillieres Clin Haematol 1995; 8 (2) 313-327
- 166 Masos T, Miskin R. Localization of urokinase-type plasminogen activator mRNA in the adult mouse brain. Brain Res Mol Brain Res 1996; 35 (1-2) 139-148
- 167 Carroll PM, Tsirka SE, Richards WG, Frohman MA, Strickland S. The mouse tissue plasminogen activator gene 5′ flanking region directs appropriate expression in development and a seizure-enhanced response in the CNS. Development 1994; 120 (11) 3173-3183
- 168 Pawlak R, Melchor JP, Matys T, Skrzypiec AE, Strickland S. Ethanol-withdrawal seizures are controlled by tissue plasminogen activator via modulation of NR2B-containing NMDA receptors. Proc Natl Acad Sci U S A 2005; 102 (2) 443-448
- 169 Iyer AM, Zurolo E, Boer K , et al. Tissue plasminogen activator and urokinase plasminogen activator in human epileptogenic pathologies. Neuroscience 2010; 167 (3) 929-945
- 170 Tsirka SE, Rogove AD, Bugge TH, Degen JL, Strickland S. An extracellular proteolytic cascade promotes neuronal degeneration in the mouse hippocampus. J Neurosci 1997; 17 (2) 543-552
- 171 Del Bigio MR, Hosain S, Altumbabic M. Localization of urokinase-type plasminogen activator, its receptor, and inhibitors in mouse forebrain during postnatal development. Int J Dev Neurosci 1999; 17 (4) 387-399
- 172 Lahtinen L, Huusko N, Myöhänen H , et al. Expression of urokinase-type plasminogen activator receptor is increased during epileptogenesis in the rat hippocampus. Neuroscience 2009; 163 (1) 316-328
- 173 Rogove AD, Siao C, Keyt B, Strickland S, Tsirka SE. Activation of microglia reveals a non-proteolytic cytokine function for tissue plasminogen activator in the central nervous system. J Cell Sci 1999; 112 (Pt 22): 4007-4016
- 174 Tsuji K, Aoki T, Tejima E , et al. Tissue plasminogen activator promotes matrix metalloproteinase-9 upregulation after focal cerebral ischemia. Stroke 2005; 36 (9) 1954-1959
- 175 Nicole O, Docagne F, Ali C , et al. The proteolytic activity of tissue-plasminogen activator enhances NMDA receptor-mediated signaling. Nat Med 2001; 7 (1) 59-64
- 176 Samson AL, Nevin ST, Medcalf RL. Low molecular weight contaminants in commercial preparations of plasmin and t-PA activate neurons. J Thromb Haemost 2008; 6 (12) 2218-2220
- 177 Yi JS, Kim YH, Koh JY. Infarct reduction in rats following intraventricular administration of either tissue plasminogen activator (tPA) or its non-protease mutant S478A-tPA. Exp Neurol 2004; 189 (2) 354-360
- 178 del Zoppo GJ, Copeland BR, Anderchek K, Hacke W, Koziol JA. Hemorrhagic transformation following tissue plasminogen activator in experimental cerebral infarction. Stroke 1990; 21 (4) 596-601
- 179 Wang X, Lee SR, Arai K , et al. Lipoprotein receptor-mediated induction of matrix metalloproteinase by tissue plasminogen activator. Nat Med 2003; 9 (10) 1313-1317
- 180 Suzuki Y, Nagai N, Yamakawa K, Kawakami J, Lijnen HR, Umemura K. Tissue-type plasminogen activator (t-PA) induces stromelysin-1 (MMP-3) in endothelial cells through activation of lipoprotein receptor-related protein. Blood 2009; 114 (15) 3352-3358
- 181 Lee SR, Guo SZ, Scannevin RH , et al. Induction of matrix metalloproteinase, cytokines and chemokines in rat cortical astrocytes exposed to plasminogen activators. Neurosci Lett 2007; 417 (1) 1-5
- 182 Montaner J, Alvarez-Sabín J, Molina CA , et al. Matrix metalloproteinase expression is related to hemorrhagic transformation after cardioembolic stroke. Stroke 2001; 32 (12) 2762-2767
- 183 del Zoppo GJ, Mabuchi T. Cerebral microvessel responses to focal ischemia. J Cereb Blood Flow Metab 2003; 23 (8) 879-894
- 184 Wagner S, Tagaya M, Koziol JA, Quaranta V, del Zoppo GJ. Rapid disruption of an astrocyte interaction with the extracellular matrix mediated by integrin alpha 6 beta 4 during focal cerebral ischemia/reperfusion. Stroke 1997; 28 (4) 858-865
- 185 Tagaya M, Haring H-P, Stuiver I , et al. Rapid loss of microvascular integrin expression during focal brain ischemia reflects neuron injury. J Cereb Blood Flow Metab 2001; 21 (7) 835-846
- 186 Milner R, Hung S, Wang X, Berg GI, Spatz M, del Zoppo GJ. Responses of endothelial cell and astrocyte matrix-integrin receptors to ischemia mimic those observed in the neurovascular unit. Stroke 2008; 39 (1) 191-197
- 187 Milner R, Hung S, Wang X, Spatz M, del Zoppo GJ. The rapid decrease in astrocyte-associated dystroglycan expression by focal cerebral ischemia is protease-dependent. J Cereb Blood Flow Metab 2008; 28 (4) 812-823
- 188 Galis ZS, Kranzhöfer R, Fenton II JWII, Libby P. Thrombin promotes activation of matrix metalloproteinase-2 produced by cultured vascular smooth muscle cells. Arterioscler Thromb Vasc Biol 1997; 17 (3) 483-489
- 189 Murphy G, Reynolds JJ, Bretz U, Baggiolini M. Collagenase is a component of the specific granules of human neutrophil leukocytes. Biochem J 1977; 162: 195-197
- 190 Watanabe H, Hattori S, Katsuda S, Nakanishi I, Nagai Y. Human neutrophil elastase: degradation of basement membrane components and immunolocalization in the tissue. J Biochem 1990; 108 (5) 753-759
- 191 Heck LW, Blackburn WD, Irwin MH, Abrahamson DR. Degradation of basement membrane laminin by human neutrophil elastase and cathepsin G. Am J Pathol 1990; 136 (6) 1267-1274
- 192 Fallier-Becker P, Sperveslage J, Wolburg H, Noell S. The impact of agrin on the formation of orthogonal arrays of particles in cultured astrocytes from wild-type and agrin-null mice. Brain Res 2011; 1367: 2-12
- 193 Wappler EA, Adorján I, Gál A, Galgóczy P, Bindics K, Nagy Z. Dynamics of dystroglycan complex proteins and laminin changes due to angiogenesis in rat cerebral hypoperfusion. Microvasc Res 2011; 81 (2) 153-159
- 194 Al-Ahmad AJ, Lee B, Saini M, Bix GJ. Perlecan domain V modulates astrogliosis in vitro and after focal cerebral ischemia through multiple receptors and increased nerve growth factor release. Glia 2011; 59 (12) 1822-1840
- 195 Mun-Bryce S, Rosenberg GA. Matrix metalloproteinases in cerebrovascular disease. J Cereb Blood Flow Metab 1998; 18 (11) 1163-1172
- 196 Rosenberg GA, Dencoff JE, McGuire PG, Liotta LA, Stetler-Stevenson WG. Injury-induced 92-kilodalton gelatinase and urokinase expression in rat brain. Lab Invest 1994; 71 (3) 417-422
- 197 Rosenberg GA, Cunningham LA, Wallace J , et al. Immunohistochemistry of matrix metalloproteinases in reperfusion injury to rat brain: activation of MMP-9 linked to stromelysin-1 and microglia in cell cultures. Brain Res 2001; 893 (1-2) 104-112
- 198 Yang Y, Estrada EY, Thompson JF, Liu W, Rosenberg GA. Matrix metalloproteinase-mediated disruption of tight junction proteins in cerebral vessels is reversed by synthetic matrix metalloproteinase inhibitor in focal ischemia in rat. J Cereb Blood Flow Metab 2007; 27 (4) 697-709
- 199 Sood R, Yang Y, Taheri S , et al. Increased apparent diffusion coefficients on MRI linked with matrix metalloproteinases and edema in white matter after bilateral carotid artery occlusion in rats. J Cereb Blood Flow Metab 2009; 29 (2) 308-316
- 200 Walker EJ, Rosenberg GA. TIMP-3 and MMP-3 contribute to delayed inflammation and hippocampal neuronal death following global ischemia. Exp Neurol 2009; 216 (1) 122-131
- 201 Walker EJ, Rosenberg GA. Divergent role for MMP-2 in myelin breakdown and oligodendrocyte death following transient global ischemia. J Neurosci Res 2010; 88 (4) 764-773
- 202 Rosenberg GA, Navratil M. Metalloproteinase inhibition blocks edema in intracerebral hemorrhage in the rat. Neurology 1997; 48 (4) 921-926
- 203 Asahi M, Wang X, Mori T , et al. Effects of matrix metalloproteinase-9 gene knock-out on the proteolysis of blood-brain barrier and white matter components after cerebral ischemia. J Neurosci 2001; 21 (19) 7724-7732
- 204 Tejima E, Zhao BQ, Tsuji K , et al. Astrocytic induction of matrix metalloproteinase-9 and edema in brain hemorrhage. J Cereb Blood Flow Metab 2007; 27 (3) 460-468
- 205 Montaner J, Alvarez-Sabín J, Molina C , et al. Matrix metalloproteinase expression after human cardioembolic stroke: temporal profile and relation to neurological impairment. Stroke 2001; 32 (8) 1759-1766
- 206 Montaner J, Molina CA, Monasterio J , et al. Matrix metalloproteinase-9 pretreatment level predicts intracranial hemorrhagic complications after thrombolysis in human stroke. Circulation 2003; 107 (4) 598-603
- 207 Rosell A, Alvarez-Sabín J, Arenillas JF , et al. A matrix metalloproteinase protein array reveals a strong relation between MMP-9 and MMP-13 with diffusion-weighted image lesion increase in human stroke. Stroke 2005; 36 (7) 1415-1420
- 208 Rosell A, Ortega-Aznar A, Alvarez-Sabín J , et al. Increased brain expression of matrix metalloproteinase-9 after ischemic and hemorrhagic human stroke. Stroke 2006; 37 (6) 1399-1406
- 209 Liotta LA, Goldfarb RH, Brundage R, Siegal GP, Terranova V, Garbisa S. Effect of plasminogen activator (urokinase), plasmin, and thrombin on glycoprotein and collagenous components of basement membrane. Cancer Res 1981; 41 (11 Pt 1) 4629-4636
- 210 Liotta LA, Goldfarb RH, Terranova VP. Cleavage of laminin by thrombin and plasmin: alpha thrombin selectively cleaves the beta chain of laminin. Thromb Res 1981; 21 (6) 663-673
- 211 Nagase H. Activation mechanisms of matrix metalloproteinases. Biol Chem 1997; 378 (3-4) 151-160
- 212 Krane SM. Clinical importance of metalloproteinases and their inhibitors. In: Greenwald RA, Golub LM, , eds. Inhibition of Matrix Metalloproteinases: Therapeutic Potential. Ann N Y Acad Sci 1994;732:1–10
- 213 Rosenberg GA, Navratil M, Barone F, Feuerstein G. Proteolytic cascade enzymes increase in focal cerebral ischemia in rat. J Cereb Blood Flow Metab 1996; 16 (3) 360-366
- 214 Pfefferkorn T, Staufer B, Liebetrau M , et al. Plasminogen activation in focal cerebral ischemia and reperfusion. J Cereb Blood Flow Metab 2000; 20 (2) 337-342
- 215 Ahn MY, Zhang ZG, Tsang W, Chopp M. Endogenous plasminogen activator expression after embolic focal cerebral ischemia in mice. Brain Res 1999; 837 (1-2) 169-176
- 216 Vivien D, Buisson A. Serine protease inhibitors: novel therapeutic targets for stroke?. J Cereb Blood Flow Metab 2000; 20 (5) 755-764
- 217 Goldfarb RH, Liotta LA. Thrombin cleavage of extracellular matrix proteins. Ann N Y Acad Sci 1986; 485: 288-292
- 218 Fang Q, Liu X, Al-Mugotir M , et al. Thrombin and TNF-alpha/IL-1beta synergistically induce fibroblast-mediated collagen gel degradation. Am J Respir Cell Mol Biol 2006; 35 (6) 714-721
- 219 Woessner Jr JF. Matrix metalloproteinases and their inhibitors in connective tissue remodeling. FASEB J 1991; 5 (8) 2145-2154
- 220 Vartio T, Baumann M. Human gelatinase/type IV collagenase is a regular plasma component. FEBS Lett 1989; 155: 285-289
- 221 Ueda Y, Imai K, Tsuchiya H , et al. Matrix metalloproteinase 9 (gelatinase B) is expressed in multinucleated giant cells of human giant cell tumor of bone and is associated with vascular invasion. Am J Pathol 1996; 148 (2) 611-622
- 222 Morodomi T, Ogata Y, Sasaguri Y, Morimatsu M, Nagase H. Purification and characterization of matrix metalloproteinase 9 from U937 monocytic leukaemia and HT1080 fibrosarcoma cells. Biochem J 1992; 285 (Pt 2): 603-611
- 223 Gibbons GH, Dzau VJ. The emerging concept of vascular remodeling. N Engl J Med 1994; 330 (20) 1431-1438
- 224 Gomez DE, Alonso DF, Yoshiji H, Thorgeirsson UP. Tissue inhibitors of metalloproteinases: structure, regulation and biological functions. Eur J Cell Biol 1997; 74 (2) 111-122
- 225 Lafleur MA, Hollenberg MD, Atkinson SJ, Knäuper V, Murphy G, Edwards DR. Activation of pro-(matrix metalloproteinase-2) (pro-MMP-2) by thrombin is membrane-type-MMP-dependent in human umbilical vein endothelial cells and generates a distinct 63 kDa active species. Biochem J 2001; 357 (Pt 1): 107-115
- 226 Monea S, Lehti K, Keski-Oja J, Mignatti P. Plasmin activates pro-matrix metalloproteinase-2 with a membrane-type 1 matrix metalloproteinase-dependent mechanism. J Cell Physiol 2002; 192 (2) 160-170
- 227 Hahn-Dantona E, Ramos-DeSimone N, Sipley J, Nagase H, French DL, Quigley JP. Activation of proMMP-9 by a plasmin/MMP-3 cascade in a tumor cell model. Regulation by tissue inhibitors of metalloproteinases. Ann N Y Acad Sci 1999; 878: 372-387
- 228 Mazzieri R, Masiero L, Zanetta L , et al. Control of type IV collagenase activity by components of the urokinase-plasmin system: a regulatory mechanism with cell-bound reactants. EMBO J 1997; 16 (9) 2319-2332
- 229 van Bruggen N, Thibodeaux H, Palmer JT , et al. VEGF antagonism reduces edema formation and tissue damage after ischemia/reperfusion injury in the mouse brain. J Clin Invest 1999; 104 (11) 1613-1620
- 230 Katsu M, Niizuma K, Yoshioka H, Okami N, Sakata H, Chan PH. Hemoglobin-induced oxidative stress contributes to matrix metalloproteinase activation and blood-brain barrier dysfunction in vivo. J Cereb Blood Flow Metab 2010; 30 (12) 1939-1950
- 231 Kamada H, Yu F, Nito C, Chan PH. Influence of hyperglycemia on oxidative stress and matrix metalloproteinase-9 activation after focal cerebral ischemia/reperfusion in rats: relation to blood-brain barrier dysfunction. Stroke 2007; 38 (3) 1044-1049
- 232 Maier CM, Hsieh L, Crandall T, Narasimhan P, Chan PH. Evaluating therapeutic targets for reperfusion-related brain hemorrhage. Ann Neurol 2006; 59 (6) 929-938
- 233 Gidday JM, Gasche YG, Copin JC , et al. Leukocyte-derived matrix metalloproteinase-9 mediates blood-brain barrier breakdown and is proinflammatory after transient focal cerebral ischemia. Am J Physiol Heart Circ Physiol 2005; 289 (2) H558-H568
- 234 Morita-Fujimura Y, Fujimura M, Gasche Y, Copin JC, Chan PH. Overexpression of copper and zinc superoxide dismutase in transgenic mice prevents the induction and activation of matrix metalloproteinases after cold injury-induced brain trauma. J Cereb Blood Flow Metab 2000; 20 (1) 130-138
- 235 Fujimura M, Gasche Y, Morita-Fujimura Y, Massengale J, Kawase M, Chan PH. Early appearance of activated matrix metalloproteinase-9 and blood-brain barrier disruption in mice after focal cerebral ischemia and reperfusion. Brain Res 1999; 842 (1) 92-100
- 236 Gasche Y, Fujimura M, Morita-Fujimura Y , et al. Early appearance of activated matrix metalloproteinase-9 after focal cerebral ischemia in mice: a possible role in blood-brain barrier dysfunction. J Cereb Blood Flow Metab 1999; 19 (9) 1020-1028
- 237 Pfefferkorn T, Rosenberg GA. Closure of the blood-brain barrier by matrix metalloproteinase inhibition reduces rtPA-mediated mortality in cerebral ischemia with delayed reperfusion. Stroke 2003; 34 (8) 2025-2030
- 238 Yu F, Kamada H, Niizuma K, Endo H, Chan PH. Induction of mmp-9 expression and endothelial injury by oxidative stress after spinal cord injury. J Neurotrauma 2008; 25 (3) 184-195
- 239 Dencoff JE, Rosenberg GA, Harry GJ. Trimethyltin induces gelatinase B and urokinase in rat brain. Neurosci Lett 1997; 228 (3) 147-150
- 240 Gasche Y, Copin JC, Sugawara T, Fujimura M, Chan PH. Matrix metalloproteinase inhibition prevents oxidative stress-associated blood-brain barrier disruption after transient focal cerebral ischemia. J Cereb Blood Flow Metab 2001; 21 (12) 1393-1400
- 241 Yang Y, Jalal FY, Thompson JF , et al. Tissue inhibitor of metalloproteinases-3 mediates the death of immature oligodendrocytes via TNF-α/TACE in focal cerebral ischemia in mice. J Neuroinflammation 2011; 8: 108
- 242 Rosenberg GA, Estrada EY, Dencoff JE, Stetler-Stevenson WG. Tumor necrosis factor-alpha-induced gelatinase B causes delayed opening of the blood-brain barrier: an expanded therapeutic window. Brain Res 1995; 703 (1-2) 151-155
- 243 Stowe AM, Adair-Kirk TL, Gonzales ER , et al. Neutrophil elastase and neurovascular injury following focal stroke and reperfusion. Neurobiol Dis 2009; 35 (1) 82-90
- 244 Copin JC, Merlani P, Sugawara T, Chan PH, Gasche Y. Delayed matrix metalloproteinase inhibition reduces intracerebral hemorrhage after embolic stroke in rats. Exp Neurol 2008; 213 (1) 196-201
- 245 Lee SR, Tsuji K, Lee SR, Lo EH. Role of matrix metalloproteinases in delayed neuronal damage after transient global cerebral ischemia. J Neurosci 2004; 24 (3) 671-678
- 246 Barber PA, Darby DG, Desmond PM , et al. Prediction of stroke outcome with echoplanar perfusion- and diffusion-weighted MRI. Neurology 1998; 51 (2) 418-426
- 247 Asahi M, Sumii T, Fini ME, Itohara S, Lo EH. Matrix metalloproteinase 2 gene knockout has no effect on acute brain injury after focal ischemia. Neuroreport 2001; 12 (13) 3003-3007
- 248 Suofu Y, Clark JF, Broderick JP, Kurosawa Y, Wagner KR, Lu A. Matrix metalloproteinase-2 or -9 deletions protect against hemorrhagic transformation during early stage of cerebral ischemia and reperfusion. Neuroscience 2012; 212: 180-189
- 249 Koistinaho M, Malm TM, Kettunen MI , et al. Minocycline protects against permanent cerebral ischemia in wild type but not in matrix metalloprotease-9-deficient mice. J Cereb Blood Flow Metab 2005; 25 (4) 460-467
- 250 Copin JC, Gasche Y. Matrix metalloproteinase-9 deficiency has no effect on glial scar formation after transient focal cerebral ischemia in mouse. Brain Res 2007; 1150: 167-173
- 251 Maier CM, Hsieh L, Yu F, Bracci P, Chan PH. Matrix metalloproteinase-9 and myeloperoxidase expression: quantitative analysis by antigen immunohistochemistry in a model of transient focal cerebral ischemia. Stroke 2004; 35 (5) 1169-1174
- 252 Planas AM, Solé S, Justicia C. Expression and activation of matrix metalloproteinase-2 and -9 in rat brain after transient focal cerebral ischemia. Neurobiol Dis 2001; 8 (5) 834-846
- 253 Wang S, Lee SR, Guo SZ , et al. Reduction of tissue plasminogen activator-induced matrix metalloproteinase-9 by simvastatin in astrocytes. Stroke 2006; 37 (7) 1910-1912
- 254 Sumii T, Lo EH. Involvement of matrix metalloproteinase in thrombolysis-associated hemorrhagic transformation after embolic focal ischemia in rats. Stroke 2002; 33 (3) 831-836
- 255 Frankowski H, Gu YH, Heo JH, Milner R, Del Zoppo GJ. Use of gel zymography to examine matrix metalloproteinase (gelatinase) expression in brain tissue or in primary glial cultures. Methods Mol Biol 2012; 814: 221-233
- 256 del Zoppo GJ, Frankowski H, Gu YH , et al. Microglial cell activation is a source of metalloproteinase generation during hemorrhagic transformation. J Cereb Blood Flow Metab 2012; 32 (5) 919-932
- 257 Kelly MA, Shuaib A, Todd KG. Matrix metalloproteinase activation and blood-brain barrier breakdown following thrombolysis. Exp Neurol 2006; 200 (1) 38-49
- 258 Giebel SJ, Menicucci G, McGuire PG, Das A. Matrix metalloproteinases in early diabetic retinopathy and their role in alteration of the blood-retinal barrier. Lab Invest 2005; 85 (5) 597-607
- 259 Hawkins BT, Lundeen TF, Norwood KM, Brooks HL, Egleton RD. Increased blood-brain barrier permeability and altered tight junctions in experimental diabetes in the rat: contribution of hyperglycaemia and matrix metalloproteinases. Diabetologia 2007; 50 (1) 202-211
- 260 Yepes M, Sandkvist M, Moore EG, Bugge TH, Strickland DK, Lawrence DA. Tissue-type plasminogen activator induces opening of the blood-brain barrier via the LDL receptor-related protein. J Clin Invest 2003; 112 (10) 1533-1540
- 261 Copin JC, Bengualid DJ, Da Silva RF, Kargiotis O, Schaller K, Gasche Y. Recombinant tissue plasminogen activator induces blood-brain barrier breakdown by a matrix metalloproteinase-9-independent pathway after transient focal cerebral ischemia in mouse. Eur J Neurosci 2011; 34 (7) 1085-1092