Regio entorhinalis in Schizophrenia: More Evidence for Migrational Disturbances and Suggestions for a New Biological Hypothesis (original) (raw)
Pharmacopsychiatry 2003; 36: 158-161
DOI: 10.1055/s-2003-45124
Original Paper
© Georg Thieme Verlag Stuttgart · New York
S. Kovalenko1 , A. Bergmann2 , T. Schneider-Axmann2 , I. Ovary3 , K. Majtenyi4 , L. Havas4 , W. G. Honer5 , B. Bogerts6 , P. Falkai2
- 1Department of Psychiatry, University of Bonn, Bonn, Germany
- 2Department of Psychiatry, University of the Saarland, Medical Center, Homburg/Saar, Germany
- 3Department of Psychiatry, Semelweiss University, Budapest, Hungary
- 4Institute for Nervous and Mental Diseases, Budapest, Hungary
- 5Department of Psychiatry, University of British Columbia, Vancouver, British Columbia, Canada
- 6Department of Psychiatry, Universtiy of Magdeburg, Magdeburg, Germany
Further Information
Publication History
Publication Date:
15 December 2003 (online)
Recently we were able to replicate the original finding of migrational disturbances in the entorhinol cortex (ERC) of schizophrenic patients by measuring the distance of pre-alpha cell clusters to the pial surface. In order to replicate this finding, we performed a detailed analysis of the pre-alpha cell clusters in the ERC in post mortem brains of 22 schizophrenic patients and 15 control subjects. Cluster position relative to gray/white matter boundary were measured and normalized by the widths of the gray matter. In the ERC the pre-alpha cell clusters were situated significantly closer to the gray/white matter junction compared to normal controls (around 30 %, F = 9.52, p = 0.004). No specific effects of sex, age or region of investigation were found.
In summary, this is another quantitative replication of pre-alpha cell cluster migrational disturbances in schizophrenia, which are possibly linked to neurobiological abnormalities, e.g. myeloarchitectonic changes. This supports the notion that developmental abnormalities are a core feature of schizophrenia and that the search for candidate genes has to include this aspect, too. However, it is very probable that vulnerability-associated changes - as outlined here - have to be distinguished from disease-related changes.
Key words
schizophrenia - post mortem - ERC - pre-alpha cell clusters - neuronal migration - neurodevelopment
References
- 1 Akil M, Lewis D A. Cytoarchitecture of the entorhinal cortex in schizophrenia. Am J Psychiatry. 1997; 154 1010-1012
- 2 Altshuler L L, Casanova M F, Goldberg T E, Kleinman J E. The hippocampus and parahippocampus in schizophrenia, suicide, and control brain. Arch Gen Psychiatry. 1990; 47 1029-1034
- 3 Arnold S E, Hyman B T, Van Hoesen G W, Damasio A R. Some cytoarchitectural abnormalities of the entorhinal cortex in schizophrenia. Arch Gen Psychiatry. 1991; 48 625-632
- 4 Arnold S E, Ruscheinsky D D, Han L Y. Further evidence of abnormal cytoarchitecture of the entorhinal cortex in schizophrenia using spatial point pattern analyses. Biol Psychiatry 1997;. 15; 42 639-647
- 5 Barbe M F. Tempting fate and commitment in the developing forebrain. Neuron. 1996; 16 1-4 [Review]
- 6 Beckmann H. Developmental malformations in cerebral structures of schizophrenic patients. Eur Arch Psychiatry Clin Neurosci. 1999; 249 Suppl 4 44-447
- 7 Beckmann H, Senitz D. Developmental malformations in cerebral structures in ”endogenous psychoses”. J Neural Transm. 2002; 109 421-431 [Review]
- 8 Bernstein H G, Krell D, Baumann B, Danos P, Falkai P, Diekmann S, Henning H, Bogerts B. Morphometric studies of the entorhinal cortex in neuropsychiatric patients and controls: clusters of heterotopically displaced lamina II neurons are not indicative of schizophrenia. Schizophr Res. 1998; 33 125-132
- 9 Bogerts B, Meertz E, Schonfeldt-Bausch R. Basal ganglia and limbic system pathology in schizophrenia. A morphometric study of brain volume and shrinkage. Arch Gen Psychiatry. 1985; 42 784-791
- 10 Braak H, Zur Pigmentoarchitektonik der Großhirnrinde des M enschen. I. Regio entorhinalis. Zellforsch. 1972; 127 407-438
- 11 Brown R, Colter N, Corsellis J A, Crow T J, Frith C D, Jagoe R, Johnstone E C, Marsh L. Postmortem evidence of structural brain changes in schizophrenia. Differences in brain weight, temporal horn area, and parahippocampal gyrus compared with affective disorder. Arch Gen Psychiatry. 1986 Jan; 43 (1) 36-42
- 12 Couillard-Despres S, Winkler J, Uyanik G, Aigner L. Molecular mechanisms of neuronal migration disorders, quo vadis?. Curr Mol Med. 2001; 1 677-688 [Review]
- 13 D’Arcangelo G, Nakajima K, Miyata T, Ogawa M, Mikoshiba K, Curran T. Reelin is a secreted glycoprotein recognized by the CR-50 monoclonal antibody. J Neurosci. 1997 Jan 1; 17 (1) 23-31
- 14 Falkai P, Bogerts B, Rozumek M. Limbic pathology in schizophrenia: the entorhinal region - a morphometric study. Biol Psychiatry. 1988; 24 515-521
- 15 Falkai P, Honer W G, David S, Bogerts B, Majtenyi C, Bayer T A. No evidence for astrogliosis in brains of schizophrenic patients. A post-mortem study. Neuropathol Appl Neurobiol. 1999; 25 48-53
- 16 Falkai P, Schneider-Axmann T, Honer W G. Entorhinal cortex pre-alpha cell clusters in schizophrenia: quantitative evidence of a developmental abnormality. Biol Psychiatry. 2000; 47 937-943
- 17 Feng Y, Walsh C A. Protein-protein interactions, cytoskeletal regulation and neuronal migration. Nat Rev Neurosi. 2001; 2 408-416
- 18 Gleeson J G. Neuronal migration disorders. Ment Retard Dev Disabil Res. 2001; 7 167-171 [Review]
- 19 Guidotti A, Auta J, Davis J M, Di-Giorgi-Gerevini V, Dwivedi Y, Grayson D R, Impagnatiello F, Pandey G, Pesold C, Sharma R, Uzunov D, Costa E, DiGiorgi Gerevini V. Decrease in reelin and glutamic acid decarboxylase67 (GAD67) expression in schizophrenia and bipolar disorder: a postmortem brain study. Arch Gen Psychiatry. 2000 Nov; 57 (11) 1061-1069
- 20 Guidotti A, Pesold C, Costa E. New neurochemical markers for psychosis: a working hypothesis of their operation. Neurochem Res. 2000 Oct; 25 (9 - 10) 1207-1218 [Review]
- 21 Harding B N. Malformations of the nervous system. In: Adams JH, Duchen LW, (eds) Greenfild’s Neuropathology. 5th ed. New York; Oxford University Press 1992: pp. 521-638
- 22 Harrison P J. On the neuropathology of schizophrenia and its dementia: neurodevelopmental, neurodegenerative or both?. Neurodegeneration. 1995; 4 1-12 [Review]
- 23 Hyde T M, Weinberger D R. Seizures and schizophrenia. Schizophr Bull. 1997; 23 611-622 [Review]
- 24 Jakob H, Beckmann H. Prenatal developmental disturbances in the limbic allocortex in schizophrenics. J Neural Transm. 1986; 65 303-326
- 25 Jakob H, Beckmann H. Gross and histological-criteria for developmental disorders in brains of schizophenics. J R Soc Med.. 1989; 82 466-469
- 26 Krimer L S, Herman M M, Saunders R C, Boyd J C, Hyde T M, Carter J M, Kleinman J E, Weinberger D R. A qualitative and quantitative analysis of the entorhinal cortex in schizophrenia. Cereb Cortex. 1997; 7 732-739
- 27 Leventer R J, Cardoso C, Ledbetter D H, Dobyns W B. LIS1: from cortical malformation to essential protein of cellular dynamics. Trend Neurosci. 2001; 24 439-492
- 28 Lewis D A, Levitt P. Schizophrenia as a disorder of neurodevelopment. Annu Rev Neurosci. 2002; 25 409-432 [Review]
- 29 Marsh L, Suddath R L, Higgins N, Weinberger D R. Medial temporal lobe structures in schizophrenia: relationship of size to duration of illness. Schizophr Res. 1994; 11 225-238
- 30 McEvilly R J, de Diaz M O, Schonemann M D, Hooshmand F, Rosenfeld M G. Transcriptional regulation of cortical neuron migration by POU domain factors. Science. 2002; 295 1528-1532
- 31 Mimmack M, Ryan M, Baba H, Navarro-Ruiz J, Iritani S, Faull R, McKen P, Jines P, Arai H, Starkey M, Emson P, Bahn S. Gene expression analysis: reproducible up-regulation of several members of the apolipoprotein L family located in a high-susceptibility locus for schizophrenia on chromosome 22. Proc Natl Acad Sci USA. 2002; 99 4680-4685
- 32 Ohmiya M, Fukumitsu H, Nitta A, Nomoto H, Furukawa Y, Furukawa S. Administration of FGF-2 to embryonic mouse brain induces hydrocephalic brain morphology and aberrant differentiation of neurons in the postnatal cerebral cortex. J Neurosci Res. 2001; 65 228-235
- 33 Phelps P E, Rich R, Dupuy-Davies S, Rios Y, Wong T. Evidence for a cell-specific action of Reelin in the spinal cord. Dev Biol. 2002; 244 180-198
- 34 Pilz D, Stoodley N, Golden J A. Neuronal migration, cerebral cortical development, and cerebral cortical anomalies. J Neuropath Exp Neur. 2002; 61 1-11 [Review]
- 35 Talamini L M, Koch T, Ter Horst G J, Korf J. Methylazoxymethanol acetate-induced abnormalities in the entorhinal cortex of the rat parallels with morfological findings in schizophrenia. Brain Res. 1999; 789 293-306
- 36 Vogeley K, Hobson T, Schneider-Axmann T, Honer W, Bogerts B, Falkai P. Compartemental volumetry of the superior temporal gyrus reveals sex differences schizophrenia - a post-mortem study. Schizophr Res. 1998 May 25; 31 (2 - 3) 83-87
- 37 Weinberger D R. Implications of normal brain development for the pathogenesis of schizophrenia. Arch Gen Psychiatry.. 1987; 44 660-669
- 38 Weinberger D R. From neuropathology to neurodevelopment. Lancet 1995;. 26; 346 552-557 [Review]
- 39 Williams R S. Cerebral malformations arising in the first half of gestation. In: Evrard PH, Minkowski A, (eds) Developmental Neurobiology. New York; Raven Press 1989: pp. 11-20
- 40 Wright I C, Rabe-Hesketh S, Woodruff P W, David A S, Murray R M, Bullmore E T. Meta-analysis of regional brain volumes in schizophrenia. Am J Psychiatry. 2000; 157 16-25
Prof. Dr. med. Peter Falkai
Department of Psychiatry
University of the Saarland
Medical Center
D-66421 Homburg/Saar, Germany
Phone: (+49) 6841-162-4202
Fax: (+49) 6841-162-4270