Time-correlated single photon counting imager for simultaneous magnetic resonance and near-infrared mammography (original) (raw)

Skip Nav Destination

Research Article| December 01 1998

Vasilis Ntziachristos;

Departments of Bioengineering and Biochemistry/Biophysics, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6089

Search for other works by this author on:

XuHui Ma;

Department of Biochemistry/Biophysics, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6089

Search for other works by this author on:

Britton Chance

Department of Biochemistry/Biophysics, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6089

Search for other works by this author on:

Crossmark: Check for Updates

Vasilis Ntziachristos

Departments of Bioengineering and Biochemistry/Biophysics, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6089

XuHui Ma

Department of Biochemistry/Biophysics, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6089

Britton Chance

Department of Biochemistry/Biophysics, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6089

Rev. Sci. Instrum. 69, 4221–4233 (1998)

We describe a near infrared (NIR) imager for mammography, designed to work simultaneously with a magnetic resonance (MR) scanner. The imager employs two pulsing laser diodes, with average power of 25 μW, at 780 and 830 nm. The two wavelengths are time multiplexed into 24 source fibers. The detection part consists of eight parallel time-correlated photon-counting channels with overall counting capacity of 106 photons/s. We use long optical fibers to avoid interference with the magnetic field. Specially designed coupling plates, for breast soft compression, bear both the MR radio-frequency coils and the optical source and detector fibers. Capillaries containing water and copper sulfate mark the position of the plates on the MR images for accurate coregistration of NIR and MR images. Instrument compatibility has been successfully tested with volunteers in the MR scanner. The use of gallium arsenide photomultiplier tubes has allowed penetration depths of 10 cm in the human breast. Imaging algorithms, based on the analytical modeling of photon propagation in inhomogeneous media, have been applied successfully to image 0.8-mm-diam absorbing and scattering cylindrical perturbations in transmittance geometry of breast-like phantoms.

REFERENCES

S. R.

Arridge

,

Appl. Opt.

34

,

7395

(

1995

).

M. A.

O’Leary

,

D. A.

Boas

,

B.

Chance

, and

A. G.

Yodh

,

Opt. Lett.

20

,

426

(

1995

).

B. M.

Pogue

,

M. S.

Patterson

,

H.

Jiang

, and

K. D.

Paulsen

,

Phys. Med. Biol.

40

,

1709

(

1995

).

C. P.

Gonatas

,

M.

Ishii

,

J. S.

Leigh

, and

J.

Schotland

,

Phys. Rev. E

52

,

4361

(

1995

).

B. Chance, E. Anday, E. Conant, S. Nioka, S. Zhou, and H. Long, OSA TOPS 1998 (unpublished).

M. A.

Franceschini

,

K. T.

Moesta

,

S.

Fantini

,

G.

Gaida

,

E.

Gratton

,

H.

Jess

,

W. W.

Mantulin

,

M.

Seeber

,

P. M.

Schlag

, and

M.

Kaschke

,

Proc. Natl. Acad. Sci. USA

94

,

6468

(

1997

).

A.

Virllinger

and

B.

Chance

,

TINS

20

,

435

(

1997

).

M. S.

Patterson

,

B.

Chance

, and

B. C.

Wilson

,

Appl. Opt.

28

,

2331

(

1989

).

S. R.

Arridge

,

Z.

van der Zee

,

M.

Cope

, and

D. T.

Delpy

,

Proc. SPIE

1431

,

204

(

1991

).

W.

Cai

,

B. B.

Das

,

F.

Liu

,

M.

Zevallos

,

M.

Lax

, and

R. R.

Alfano

,

Proc. Natl. Acad. Sci. USA

93

,

13561

(

1996

).

H.

Jiang

,

K. D.

Paulsen

,

U. L.

Osterberg

, and

M. S.

Patterson

,

Phys. Med. Biol.

43

,

675

(

1998

).

A. Ishimaru, Wave Propagation and Scattering in Random Media (Academic, New York, 1978).

A. C. Kak and M. Slaney, Principles of Computerized Tomographic Imaging (IEEE, New York, 1988).

J. B.

Fishkin

and

E.

Gratton

,

J. Opt. Soc. Am. A

10

,

127

(

1993

).

M.

Ishii

,

J. S.

Leigh

, and

J. C.

Schotland

,

Proc. SPIE

2389

,

312

(

1995

).

S. R.

Arridge

,

Appl. Opt.

34

,

7395

(

1995

).

M. A. O’Leary, Thesis dissertation, University of Pennsylvania, 1996.

S. L.

Jacques

,

M. R.

Ostermeyer

,

L.

Wang

, and

A. H.

Hielscher

,

J. Opt. Soc. Am.

21

,

83

(

1994

).

S. R.

Arridge

and

M.

Schweiger

,

Appl. Opt.

34

,

8026

(

1995

).

R.

Model

,

M.

Orlt

, and

M.

Walzel

,

J. Opt. Soc. Am.

14

,

313

(

1997

).

R. L.

Barbour

,

H. L.

Graber

,

J. W.

Chang

,

S. L. S.

Barbour

,

P. C.

Koo

, and

R.

Aronson

,

IEEE Comput. Sci. Eng.

2

,

63

(

1995

).

V.

Ntziachristos

,

M. A.

O’Leary

,

B.

Chance

, and

A.

Yodh

,

OSA TOPS

2

,

164

(

1996

).

D. A.

Roberts

,

E. K.

Insko

,

L.

Bolinger

, and

J. S.

Leigh

,

J. Magn. Reson., Ser. A

102

,

34

(

1993

).

E. K.

Insko

,

T. J.

Connick

,

M. D.

Schnall

, and

S. G.

Orel

,

Magn. Reson. Med.

37

,

778

(

1997

).

B. E. A. Saleh and M. C. Teich, Fundamentals of Photonics (Wiley, New York, 1991).

P. W. Milloni and J. H. Eberly (Wiley, New York, 1988).

Y.

Yang

,

H.

Liu

,

X.

Li

, and

B.

Chance

,

Opt. Eng. (Bellingham)

36

,

1562

(

1997

).

B.

Chance

,

M.

Cope

,

E. N.

Gratton

,

X. X.

Ramanujam

, and

B.

Tromberg

Rev. Sci. Instrum.

69

,

3457

(

1998

).

Compliance Guide for Laser Products, HHS Publication FDA86-8260, U.S. Department of Health and Human Services, FDA, MD 1985.

S.

Feng

,

F.

Zeng

, and

B.

Chance

,

Appl. Opt.

34

,

3826

(

1995

).

P.

Samet

,

W. H.

Bernstein

,

W.

Jacobs

, and

J.

Fomon

,

J. Am. J. Card

13

,

176

(

1964

).

S.

Henschen

,

M. W.

Busse

,

S.

Zisowski

, and

B.

Panning

,

J. Med.

24

,

10

(

1993

).

This content is only available via PDF.

© 1998 American Institute of Physics.

1998

American Institute of Physics

You do not currently have access to this content.

Pay-Per-View Access

$40.00

Sign In

You could not be signed in. Please check your credentials and make sure you have an active account and try again.

Username ?

Password