Simulations of two-dimensional unbiased polymer translocation using the bond fluctuation model (original) (raw)

Skip Nav Destination

Research Article| January 04 2010

Debabrata Panja;

1Institute for Theoretical Physics,

Universiteit van Amsterdam

, Valckenierstraat 65, 1018 XE Amsterdam,

The Netherlands

Search for other works by this author on:

Gerard T. Barkema

2Institute for Theoretical Physics,

Universiteit Utrecht

, Leuvenlaan 4, 3584 CE Utrecht,

The Netherlands

and Instituut-Lorentz,

Universiteit Leiden

, Niels Bohrweg 2, 2333 CA Leiden,

The Netherlands

Search for other works by this author on:

Crossmark: Check for Updates

J. Chem. Phys. 132, 014902 (2010)

We use the bond fluctuation model (BFM) to study the pore-blockade times of a translocating polymer of length N in two dimensions, in the absence of external forces on the polymer (i.e., unbiased translocation) and hydrodynamic interactions (i.e., the polymer is a Rouse polymer), through a narrow pore. Earlier studies using the BFM concluded that the pore-blockade time scales with polymer length as τd∼Nβ⁠, with β=1+2ν⁠, whereas some recent studies using different polymer models produce results consistent with β=2+ν⁠, originally predicted by us. Here ν is the Flory exponent of the polymer; ν=0.75 in 2D. In this paper we show that for the BFM if the simulations are extended to longer polymers, the purported scaling τd∼N1+2ν ceases to hold. We characterize the finite-size effects, and study the mobility of individual monomers in the BFM. In particular, we find that in the BFM, in the vicinity of the pore the individual monomeric mobilities are heavily suppressed in the direction perpendicular to the membrane. After a modification of the BFM which counters this suppression (but possibly introduces other artifacts in the dynamics), the apparent exponent β increases significantly. Our conclusion is that BFM simulations do not rule out our theoretical prediction for unbiased translocation, namely, β=2+ν⁠.

REFERENCES

J.

Chuang

,

Y.

Kantor

, and

M.

Kardar

,

Phys. Rev. E

65

,

011802

(

2001

).

W.

Park

and

P. J.

Sung

,

Phys. Rev. E

57

,

730

(

1998

)

;

M.

Muthukumar

,

Phys. Rev. Lett.

86

,

3188

(

2001

).

P. J.

Sung

and

W.

Park

,

Phys. Rev. Lett.

77

,

783

(

1996

)

;

M.

Muthukumar

,

J. Chem. Phys.

111

,

10371

(

1999

).

D. K.

Lubensky

and

D. R.

Nelson

,

Biophys. J.

77

,

1824

(

1999

)

;

P. J.

Park

and

W.

Sung

,

J. Chem. Phys.

108

,

3013

(

1998

)

;

E.

Slonkina

and

A. B.

Kolomeisky

,

J. Chem. Phys.

118

,

7112

(

2003

).

K.

Luo

,

T.

Ala-Nissila

, and

S. -C.

Ying

,

J. Chem. Phys.

124

,

034714

(

2006

).

I.

Huopaniemi

,

K.

Luo

,

T.

Ala-Nissila

, and

S. -C.

Ying

,

J. Chem. Phys.

125

,

124901

(

2006

).

D.

Wei

,

W.

Yang

,

X.

Jin

, and

Q.

Liao

,

J. Chem. Phys.

126

,

204901

(

2007

).

D.

Panja

,

G. T.

Barkema

, and

R. C.

Ball

,

J. Phys.: Condens. Matter

19

,

432202

(

2007

).

D.

Panja

,

G. T.

Barkema

, and

R. C.

Ball

,

J. Phys.: Condens. Matter

20

,

075101

(

2008

).

D.

Panja

,

Phys. Rev. E

79

,

011803

(

2009

).

J. L. A.

Dubbeldam

,

A.

Milchev

,

V. G.

Rostiashvili

, and

T. A.

Vilgis

,

Phys. Rev. E

76

,

010801

(R) (

2007

).

M. G.

Gauthier

and

G. W.

Slater

,

J. Chem. Phys.

128

,

205103

(

2008

).

S.

Guillouzic

and

G. W.

Slater

,

Phys. Lett. A

359

,

261

(

2006

).

M. G.

Gauthier

and

G. W.

Slater

,

Eur. Phys. J. E

25

,

17

(

2008

).

C.

Chatelain

,

Y.

Kantor

, and

M.

Kardar

,

Phys. Rev. E

78

,

021129

(

2008

).

K.

Luo

,

S. T. T.

Ollila

,

I.

Huopaniemi

,

T.

Ala-Nissila

,

P.

Pomorski

,

M.

Karttunen

,

S.-C.

Ying

, and

A.

Bhattacharya

,

Phys. Rev. E

78

,

050901

(R) (

2008

).

I.

Carmesin

and

K.

Kremer

,

Macromolecules

21

,

2819

(

1988

).

P. -G.

De Gennes

,

Scaling Concepts in Polymer Physics

(

Cornell University Press

,

Ithaca

,

1979

).

H.

Vocks

, “

Simulations of Polymer Translocation

,” Ph.D. thesis,

Utrecht University

,

2008

.

Since chain tension is not a directly measurable observable in the BFM, we considered the perpendicular-to-the-membrane distance Zm of the center-of-mass of the first m monomers as a proxy for the chain tension (see for example Ref. 22, where we used m=4⁠). To verify that the local extension is indeed proportional to the chain tension at the pore, we performed separate simulations (not reported), in which we pulled on the free end of a tethered chain with a known (small) force f and recorded ⟨Zm⟩⁠. It turned out that for m=1 or 2, ⟨Zm⟩ shows slightly nonlinear behavior as a function of f for small forces, while for m=4 or higher, ⟨Zm⟩ is linear in f for small and medium-strength forces.

D.

Panja

and

G. T.

Barkema

,

Biophys. J.

94

,

1630

(

2008

).

H.

Vocks

,

D.

Panja

,

G. T.

Barkema

, and

R. C.

Ball

,

J. Phys.: Condens. Matter

20

,

095224

(

2008

).

A.

Bhattacharya

,

W. H.

Morrison

,

K.

Luo

,

T.

Ala-Nissila

,

S.-C.

Ying

,

A.

Milchev

, and

K.

Binder

, arXiv:cond-mat/0808.1868.

M.

Fyta

,

S.

Melchionna

,

S.

Succi

, and

E.

Kaxiras

,

Phys. Rev. E

78

,

036704

(

2008

).

Y.

Kantor

and

M.

Kardar

,

Phys. Rev. E

69

,

021806

(

2004

).

A.

Cacciuto

and

E.

Luijten

,

Phys. Rev. Lett.

96

,

238104

(

2006

).

K.

Luo

,

I.

Huopaniemi

,

T.

Ala-Nissila

, and

S. -C.

Ying

,

J. Chem. Phys.

124

,

114704

(

2006

).

© 2010 American Institute of Physics.

2010

American Institute of Physics

You do not currently have access to this content.

Sign in

Sign In

You could not be signed in. Please check your credentials and make sure you have an active account and try again.

Username ?

Password

Pay-Per-View Access

$40.00