Comparison of simple potential functions for simulating liquid water (original) (raw)

Skip Nav Destination

Article navigation

Issue Cover

Research Article| July 15 1983

William L. Jorgensen;

Department of Chemistry, Purdue University, West Lafayette, Indiana 47907

Search for other works by this author on:

Jayaraman Chandrasekhar;

Department of Chemistry, Purdue University, West Lafayette, Indiana 47907

Search for other works by this author on:

Jeffry D. Madura;

Department of Chemistry, Purdue University, West Lafayette, Indiana 47907

Search for other works by this author on:

Roger W. Impey;

Chemistry Division, National Research Council of Canada, Ottawa, Canada K1A OR6

Search for other works by this author on:

Michael L. Klein

Chemistry Division, National Research Council of Canada, Ottawa, Canada K1A OR6

Search for other works by this author on:

Crossmark: Check for Updates

J. Chem. Phys. 79, 926–935 (1983)

Classical Monte Carlo simulations have been carried out for liquid water in the NPT ensemble at 25 °C and 1 atm using six of the simpler intermolecular potential functions for the water dimer: Bernal–Fowler (BF), SPC, ST2, TIPS2, TIP3P, and TIP4P. Comparisons are made with experimental thermodynamic and structural data including the recent neutron diffraction results of Thiessen and Narten. The computed densities and potential energies are in reasonable accord with experiment except for the original BF model, which yields an 18% overestimate of the density and poor structural results. The TIPS2 and TIP4P potentials yield oxygen–oxygen partial structure functions in good agreement with the neutron diffraction results. The accord with the experimental OH and HH partial structure functions is poorer; however, the computed results for these functions are similar for all the potential functions. Consequently, the discrepancy may be due to the correction terms needed in processing the neutron data or to an effect uniformly neglected in the computations. Comparisons are also made for self‐diffusion coefficients obtained from molecular dynamics simulations. Overall, the SPC, ST2, TIPS2, and TIP4P models give reasonable structural and thermodynamic descriptions of liquid water and they should be useful in simulations of aqueous solutions. The simplicity of the SPC, TIPS2, and TIP4P functions is also attractive from a computational standpoint.

REFERENCES

J. R.

Reimers

,

R. O.

Watts

, and

M. L.

Klein

,

Chem. Phys.

64

,

95

(

1982

).

D. L. Beveridge, M. Mezei, P. K. Mehrotra, F. T. Marchese, G. Ravi‐Shanker, T. Vasu, and S. Swaminathan, in Advances in Chemistry (American Chemical Society, Washington, D.C., 1983).

W. L.

Jorgensen

,

J. Am. Chem. Soc.

103

,

335

(

1981

).

W. L.

Jorgensen

,

J. Chem. Phys.

77

,

4156

(

1982

).

F. H.

Stillinger

and

A.

Rahman

,

J. Chem. Phys.

60

,

1545

(

1974

).

J. D.

Bernal

and

R. H.

Fowler

,

J. Chem. Phys.

1

,

515

(

1933

).

H. J. C. Berendsen, J. P. M. Postma, W. F. von Gunstaren, and J. Hermans, in Intermolecular Forces, edited by B. Pullman (Reidel, Dordrecht, Holland, 1981), p. 331.

W. E.

Thiessen

and

A. H.

Narten

,

J. Chem. Phys.

77

,

2656

(

1982

).

T. R.

Dyke

and

J. S.

Muenter

,

J. Chem. Phys.

60

,

2929

(

1974

);

J. A.

Odutola

and

T. R.

Dyke

,

J. Chem. Phys.

72

,

5062

(

1980

).,

J. Chem. Phys.

L. A.

Curtiss

,

D. J.

Frurlp

, and

M.

Blander

,

J. Chem. Phys.

71

,

2703

(

1979

).

I. R.

McDonald

,

Mol. Phys.

23

,

41

(

1972

).

(a)

G. S.

Kell

,

J. Chem. Eng. Data

20

,

97

(

1975

);

(b) N. E. Dorsey, Properties of Ordinary Water Substances (Rhein‐hold, New York, 1940);

(c)

R.

Mills

,

J. Phys. Chem.

77

,

685

(

1973

).

W. L.

Jorgensen

,

Chem. Phys. Lett.

92

,

405

(

1982

).

J. C.

Owicki

and

H. A.

Scheraga

,

J. Am. Chem. Soc.

99

,

7403

(

1977

).

M.

Mezei

and

D. L.

Beveridge

,

J. Chem. Phys.

76

,

593

(

1982

).

F. H.

Stillinger

and

A.

Rahman

,

J. Chem. Phys.

68

,

666

(

1978

).

M.

Mezei

,

S.

Swaminathan

, and

D. L.

Beveridge

,

J. Chem. Phys.

71

,

3366

(

1979

).

C.

Pangali

,

M.

Rao

, and

B. J.

Berne

,

Mol. Phys.

40

,

661

(

1980

).

G. C.

Lie

,

E.

Clementi

, and

M.

Yoshimine

,

J. Chem. Phys.

64

,

2314

(

1976

).

P. H. Berens, D. H. J. Mackay, G. M. White, and K. R. Wilson, J. Chem. Phys. (in press).

A. H.

Narten

and

H. A.

Levy

,

J. Chem. Phys.

55

,

2263

(

1971

).

A. H.

Narten

,

W. E.

Thiessen

, and

L.

Blum

,

Science

217

,

1033

(

1982

).

A. H.

Narten

,

J. Chem. Phys.

56

,

5681

(

1972

).

G.

Palinkas

,

E.

Kalman

, and

P.

Kovacs

,

Mol. Phys.

34

,

525

(

1977

);

A. K.

Soper

and

R. N.

Silver

,

Phys. Rev. Lett.

49

,

471

(

1982

).

W. L.

Jorgensen

,

Chem. Phys. Lett.

70

,

326

(

1980

).

This content is only available via PDF.

© 1983 American Institute of Physics.

1983

American Institute of Physics

You do not currently have access to this content.

Sign in

Sign In

You could not be signed in. Please check your credentials and make sure you have an active account and try again.

Username ?

Password

Pay-Per-View Access

$40.00