Thermodynamic stability and negative thermal expansion of hexagonal and cubic ices (original) (raw)

Skip Nav Destination

Research Article| March 22 1998

Hideki Tanaka

Department of Polymer Chemistry, Graduate School of Engineering, Kyoto University, Sakyo, Kyoto 606-01, Japan

Search for other works by this author on:

Crossmark: Check for Updates

J. Chem. Phys. 108, 4887–4893 (1998)

The free energies of two low pressure ice forms are calculated over a wide range of temperatures in order to explain relative stability and their negative thermal expansivities in the low temperature regime. One-hundred proton-disordered configurations for hexagonal and cubic ices are generated. The Helmholtz free energy is approximated to a sum of the minimum potential energy, the harmonic free energy and the configurational entropy arising from the disordered nature of protons. The Gibbs free energy at a given temperature is minimized with respect to the volume of the system. This enables us to evaluate the thermal expansivity at a fixed temperature and pressure from only intermolecular interaction potentials. The negative thermal expansivity of ices in low temperature is successfully reproduced. This arises mainly from the bending motion of hydrogen bonded molecules.

REFERENCES

D. Eisenberg and W. Kauzmann, The Structure and Properties of Water (Oxford University Press, London, 1969).

Y. P.

Handa

,

D. D.

Klug

, and

E.

Walley

,

J. Chem. Phys.

84

,

7009

(

1986

).

K. S.

Pitzer

and

J.

Polissar

,

J. Phys. Chem.

60

,

1140

(

1956

).

G. P.

Johari

,

J. Chem. Phys.

80

,

4413

(

1984

).

D. A.

Huckaby

,

R.

Pitis

,

R. H.

Kincaid

, and

C.

Hamilton

,

J. Chem. Phys.

98

,

8105

(

1993

).

M. D.

Morse

and

S. A.

Rice

,

J. Chem. Phys.

76

,

650

(

1982

).

J. S.

Tse

,

M. L.

Klein

, and

I. R.

McDonald

,

J. Chem. Phys.

81

,

6406

(

1984

).

G.

Dantle

,

Z. Phys.

166

,

115

(

1962

).

J. G.

Collins

and

G. K.

White

,

Low Temp. Phys.

4

,

450

(

1964

).

H.

Tanaka

,

Nature (London)

380

,

328

(

1996

).

H.

Tanaka

,

J. Chem. Phys.

105

,

5099

(

1996

).

A.

Hallbrucker

and

E.

Mayer

,

J. Phys. Chem.

91

,

503

(

1987

).

H.

Kiefte

,

M. J.

Clouter

, and

E.

Walley

,

J. Chem. Phys.

81

,

1419

(

1984

).

P. H.

Poole

,

F.

Sciortino

,

U.

Essmann

, and

H. E.

Stanley

,

Nature (London)

360

,

324

(

1992

).

P. H.

Poole

,

F.

Sciortino

,

U.

Essmann

, and

H. E.

Stanley

,

Phys. Rev. E

48

,

3799

(

1993

).

W. L.

Jorgensen

,

L.

Chandrasekhar

,

J. D.

Madura

,

R. W.

Impey

, and

M. L.

Klein

,

J. Chem. Phys.

79

,

926

(

1983

).

H.

Tanaka

and

I.

Okabe

,

Chem. Phys. Lett.

259

,

593

(

1996

).

I.

Ohmine

,

H.

Tanaka

, and

P. G.

Wolynes

,

J. Chem. Phys.

89

,

5852

(

1988

);

H.

Tanaka

,

J. Chem. Phys.

101

,

10833

(

1994

).

R. S. Roberts, C. Andrikidis, R. J. Tanish, and G. K. White, Proceedings of the 10th International Cryogenic Engineering Conference edited by H. Callan, P. Bergland, and M. Krusius (Butterworths, Helsinki, 1984).

T. H. K. Barron and M. L. Klein, in Dynamic Properties of Solids, edited by G. K. Horton and A. A. Marudurin (North-Holland, Amsterdam, 1974), Vol. 1, p. 391.

J.

Fabian

and

P. B.

Allen

,

Phys. Rev. Lett.

79

,

1885

(

1997

).

R. J.

Speedy

,

J. Chem. Phys.

107

,

3222

(

1997

).

This content is only available via PDF.

© 1998 American Institute of Physics.

1998

American Institute of Physics

You do not currently have access to this content.

Sign in

Sign In

You could not be signed in. Please check your credentials and make sure you have an active account and try again.

Username ?

Password

Pay-Per-View Access

$40.00