Promoting single-file DNA translocations through nanopores using electro-osmotic flow (original) (raw)

Skip Nav Destination

Article navigation

Issue Cover

Research Article| July 16 2018

Niklas Ermann

;

Cavendish Laboratory, University of Cambridge

, 19 JJ Thomson Avenue, Cambridge CB3 0HE,

United Kingdom

Search for other works by this author on:

Nikita Hanikel;

Cavendish Laboratory, University of Cambridge

, 19 JJ Thomson Avenue, Cambridge CB3 0HE,

United Kingdom

Search for other works by this author on:

Vivian Wang;

Cavendish Laboratory, University of Cambridge

, 19 JJ Thomson Avenue, Cambridge CB3 0HE,

United Kingdom

Search for other works by this author on:

Kaikai Chen

;

Cavendish Laboratory, University of Cambridge

, 19 JJ Thomson Avenue, Cambridge CB3 0HE,

United Kingdom

Search for other works by this author on:

Nicole E. Weckman;

Cavendish Laboratory, University of Cambridge

, 19 JJ Thomson Avenue, Cambridge CB3 0HE,

United Kingdom

Search for other works by this author on:

Ulrich F. Keyser

Cavendish Laboratory, University of Cambridge

, 19 JJ Thomson Avenue, Cambridge CB3 0HE,

United Kingdom

Search for other works by this author on:

Crossmark: Check for Updates

J. Chem. Phys. 149, 163311 (2018)

Double-stranded DNA translocates through sufficiently large nanopores either in a linear single-file fashion or in a folded hairpin conformation when captured somewhere along its length. We show that the folding state of DNA can be controlled by changing the electrolyte concentration, pH, and polyethylene glycol content of the measurement buffer. At pH 8 in 1M LiCl or 0.35M KCl, single-file translocations make up more than 90% of the total. We attribute the effect to the onset of electro-osmotic flow from the pore at low ionic strength. Our hypothesis on the critical role of flows is supported by the preferred orientation of entry of a strand that has been folded into a multi-helix structure at one end. Control over DNA folding is critical for nanopore sensing approaches that use modifications along a DNA strand and the associated secondary current drops to encode information.

REFERENCES

C.

Dekker

, “

Solid-state nanopores

,”

Nat. Nanotechnol.

2

,

209

215

(

2007

).

M.

Muthukumar

,

C.

Plesa

, and

C.

Dekker

, “

Single-molecule sensing with nanopores

,”

Phys. Today

68

(

8

),

40

46

(

2015

).

W.

Shi

,

A. K.

Friedman

, and

L. A.

Baker

, “

Nanopore sensing

,”

Anal. Chem.

89

,

157

188

(

2017

).

N. A. W.

Bell

and

U. F.

Keyser

, “

Digitally encoded DNA nanostructures for multiplexed, single-molecule protein sensing with nanopores

,”

Nat. Nanotechnol.

11

,

645

651

(

2016

).

J. Y. Y.

Sze

,

A. P.

Ivanov

,

A. E. G.

Cass

, and

J. B.

Edel

, “

Single molecule multiplexed nanopore protein screening in human serum using aptamer modified DNA carriers

,”

Nat. Commun.

8

,

1552

(

2017

).

E.

Beamish

,

V.

Tabard-Cossa

, and

M.

Godin

, “

Identifying structure in short DNA scaffolds using solid-state nanopores

,”

ACS Sens.

2

,

1814

1820

(

2017

).

J.

Kong

,

J.

Zhu

, and

U. F.

Keyser

, “

Single molecule based SNP detection using designed DNA carriers and solid-state nanopores

,”

Chem. Commun.

53

,

436

439

(

2017

).

A.

Singer

,

M.

Wanunu

,

W.

Morrison

,

H.

Kuhn

,

M.

Frank-Kamenetskii

, and

A.

Meller

, “

Nanopore based sequence specific detection of duplex DNA for genomic profiling

,”

Nano Lett.

10

,

738

742

(

2010

).

J.

Li

,

M.

Gershow

,

D.

Stein

,

E.

Brandin

, and

J. A.

Golovchenko

, “

DNA molecules and configurations in a solid-state nanopore microscope

,”

Nat. Mater.

2

,

611

615

(

2003

).

A. J.

Storm

,

J. H.

Chen

,

H. W.

Zandbergen

, and

C.

Dekker

, “

Translocation of double-strand DNA through a silicon oxide nanopore

,”

Phys. Rev. E

71

,

051903

(

2005

).

M.

Mihovilovic

,

N.

Hagerty

, and

D.

Stein

, “

Statistics of DNA capture by a solid-state nanopore

,”

Phys. Rev. Lett.

110

,

028102

(

2013

).

L. J.

Steinbock

,

O.

Otto

,

C.

Chimerel

,

J.

Gornall

, and

U. F.

Keyser

, “

Detecting DNA folding with nanocapillaries

,”

Nano Lett.

10

,

2493

2497

(

2010

).

N. A. W.

Bell

and

U. F.

Keyser

, “

Specific protein detection using designed DNA carriers and nanopores

,”

J. Am. Chem. Soc.

137

,

2035

2041

(

2015

).

C.

Plesa

and

C.

Dekker

, “

Data analysis methods for solid-state nanopores

,”

Nanotechnology

26

,

084003

(

2015

).

F.

Feroz

,

M. P.

Hobson

, and

M.

Bridges

, “

MultiNest: An efficient and robust Bayesian inference tool for cosmology and particle physics

,”

Mon. Not. R. Astron. Soc.

398

,

1601

1614

(

2009

).

J.

Buchner

,

A.

Georgakakis

,

K.

Nandra

,

L.

Hsu

,

C.

Rangel

,

M.

Brightman

,

A.

Merloni

,

M.

Salvato

,

J.

Donley

, and

D.

Kocevski

, “

X-ray spectral modelling of the AGN obscuring region in the CDFS: Bayesian model selection and catalogue

,”

Astron. Astrophys.

564

,

A125

(

2014

).

C. G.

Baumann

,

S. B.

Smith

,

V. A.

Bloomfield

, and

C.

Bustamante

, “

Ionic effects on the elasticity of single DNA molecules

,”

Proc. Natl. Acad. Sci. U. S. A.

94

,

6185

6190

(

1997

).

R. B.

Schoch

,

J.

Han

, and

P.

Renaud

, “

Transport phenomena in nanofluidics

,”

Rev. Mod. Phys.

80

,

839

883

(

2008

).

C. T. A.

Wong

and

M.

Muthukumar

, “

Polymer capture by electro-osmotic flow of oppositely charged nanopores

,”

J. Chem. Phys.

126

,

164903

(

2007

).

S. H.

Behrens

and

D. G.

Grier

, “

The charge of glass and silica surfaces

,”

J. Chem. Phys.

115

,

6716

6721

(

2001

).

E. A. S.

Doherty

,

K. D.

Berglund

,

B. A.

Buchholz

,

I. V.

Kourkine

,

T. M.

Przybycien

,

R. D.

Tilton

, and

A. E.

Barron

, “

Critical factors for high-performance physically adsorbed (dynamic) polymeric wall coatings for capillary electrophoresis of DNA

,”

Electrophoresis

23

,

2766

2776

(

2002

).

O. A.

Hickey

,

J. L.

Harden

, and

G. W.

Slater

, “

Molecular dynamics simulations of optimal dynamic uncharged polymer coatings for quenching electro-osmotic flow

,”

Phys. Rev. Lett.

102

,

108304

(

2009

).

P.

Chen

,

T.

Mitsui

,

D. B.

Farmer

,

J. A.

Golovchenko

,

R. G.

Gordon

, and

D.

Branton

, “

Atomic layer deposition to fine-tune the surface properties and diameters of fabricated nanopores

,”

Nano Lett.

4

,

1333

1337

(

2004

).

Y.

He

,

M.

Tsutsui

,

C.

Fan

,

M.

Taniguchi

, and

T.

Kawai

, “

Controlling DNA translocation through gate modulation of nanopore wall surface charges

,”

ACS Nano

5

,

5509

5518

(

2011

).

S. W.

Kowalczyk

,

D. B.

Wells

,

A.

Aksimentiev

, and

C.

Dekker

, “

Slowing down DNA translocation through a nanopore in lithium chloride

,”

Nano Lett.

12

,

1038

1044

(

2012

).

N.

Laohakunakorn

,

B.

Gollnick

,

F.

Moreno-Herrero

,

D. G. A. L.

Aarts

,

R. P. A.

Dullens

,

S.

Ghosal

, and

U. F.

Keyser

, “

A Landau–Squire nanojet

,”

Nano Lett.

13

,

5141

5146

(

2013

).

M.

Wanunu

,

W.

Morrison

,

Y.

Rabin

,

A. Y.

Grosberg

, and

A.

Meller

, “

Electrostatic focusing of unlabelled DNA into nanoscale pores using a salt gradient

,”

Nat. Nanotechnol.

5

,

160

165

(

2010

).

M.

Mao

,

S.

Ghosal

, and

G.

Hu

, “

Hydrodynamic flow in the vicinity of a nanopore induced by an applied voltage

,”

Nanotechnology

24

,

245202

(

2013

).

© 2018 Author(s).

2018

Author(s)

Supplementary Material

You do not currently have access to this content.

Sign in

Sign In

You could not be signed in. Please check your credentials and make sure you have an active account and try again.

Username ?

Password

Pay-Per-View Access

$40.00