Optical workstation with concurrent, independent multiphoton imaging and experimental laser microbeam capabilities (original) (raw)

Skip Nav Destination

Article navigation

Issue Cover

Research Article| January 01 2003

David L. Wokosin;

Laboratory for Optical and Computational Instrumentation, University of Wisconsin–Madison, Madison, Wisconsin 53706

Search for other works by this author on:

Jayne M. Squirrell;

Laboratory for Optical and Computational Instrumentation, University of Wisconsin–Madison, Madison, Wisconsin 53706

Search for other works by this author on:

Kevin W. Eliceiri;

Laboratory for Optical and Computational Instrumentation, University of Wisconsin–Madison, Madison, Wisconsin 53706

Search for other works by this author on:

John G. White

Laboratory for Optical and Computational Instrumentation, University of Wisconsin–Madison, Madison, Wisconsin 53706

Search for other works by this author on:

Crossmark: Check for Updates

Rev. Sci. Instrum. 74, 193–201 (2003)

Experimental laser microbeam techniques have become established tools for studying living specimens. A steerable, focused laser beam may be used for a variety of experimental manipulations such as laser microsurgery, optical trapping, localized photolysis of caged bioactive probes, and patterned photobleaching. Typically, purpose-designed experimental systems have been constructed for each of these applications. In order to assess the consequences of such experimental optical interventions, long-term, microscopic observation of the specimen is often required. Multiphoton excitation, because of its ability to obtain high-contrast images from deep within a specimen with minimal phototoxic effects, is a preferred technique for in vivo imaging. An optical workstation is described that combines the functionality of an experimental optical microbeam apparatus with a sensitive multiphoton imaging system designed for use with living specimens. Design considerations are discussed and examples of ongoing biological applications are presented. The integrated optical workstation concept offers advantages in terms of flexibility and versatility relative to systems implemented with separate imaging and experimental components.

REFERENCES

G. J.

Gorbsky

,

P. J.

Sammak

, and

G. G.

Borisy

,

J. Cell Biol.

104

,

9

(

1987

).

J. E.

Sulston

and

J. G.

White

,

Dev. Biol.

78

,

577

(

1980

).

W.

Denk

,

J. H.

Strickler

, and

W. W.

Webb

,

Science

248

,

73

(

1990

).

H.

Hirase

,

V.

Nikolenko

,

J. H.

Goldberg

, and

R.

Yuste

,

J. Neurobiol.

51

,

237

(

2002

).

J. Pawley, in Handbook of Confocal Microscopy, edited by J. Pawley (Plenum, New York, 1995).

D. A.

Agard

and

J. W.

Sedat

,

Nature (London)

302

,

676

(

1983

).

K.

Svoboda

,

W.

Denk

,

D.

Kleinfeld

, and

D. W.

Tank

,

Nature (London)

385

,

161

(

1997

).

V. E.

Centonze

and

J. G.

White

,

Biophys. J.

75

,

2015

(

1998

).

J. M.

Squirrell

,

D. L.

Wokosin

,

J. G.

White

, and

B. D.

Bavister

,

Nat. Biotechnol.

17

,

763

(

1999

).

P. E.

Curley

,

A. I.

Ferguson

,

W. B.

Amos

, and

J. G.

White

,

Opt. Quantum Electron.

24

,

851

(

1992

).

C.

Xu

,

W.

Zipfel

,

J. B.

Shear

,

R. M.

Williams

, and

W. W.

Webb

,

Proc. Natl. Acad. Sci. U.S.A.

93

,

10763

(

1996

).

P. E.

Hockberger

,

T. A.

Skimina

,

V. E.

Centonze-Frohlich

,

C.

Lavin

,

S.

Chu

,

J. K.

Reddy

, and

J. G.

White

,

Proc. Natl. Acad. Sci. U.S.A.

96

,

6255

(

1999

).

K.

Konig

,

J. Microsc.

200

,

83

(

2000

).

J. B.

Guild

,

C.

Xu

, and

W. W.

Webb

,

Appl. Opt.

36

,

397

(

1997

).

G. P. A.

Malcolm

,

P. F.

Curley

, and

A. I.

Ferguson

,

Opt. Lett.

15

,

1303

(

1990

).

D. L.

Wokosin

et al.,

Proc. SPIE

2678

,

38

(

1996

).

J.

Squire

and

M.

Muller

,

Rev. Sci. Instrum.

72

,

2855

(

2001

).

L.

Avery

and

H. R.

Horvitz

,

Neuron

3

,

473

(

1989

).

B. D.

Bavister

, In Vitro

In Vitro Cell Dev. Biol.

24

,

759

-

63

(Aug.

1988

).

W.

Denk

,

K. R.

Delaney

,

A.

Gelperin

,

D.

Kleinfeld

,

B. W.

Stowbridge

,

D. W.

Tank

, and

R.

Yuste

,

J. Neurosci. Methods

54

,

151

(

1994

).

R. M.

Williams

,

D. W.

Piston

, and

W. W.

Webb

,

FASEB J.

8

,

804

(

1994

).

D. L.

Wokosin

,

V. E.

Centonze

,

S.

Crittenden

, and

J. G.

White

,

Bioimaging

4

,

208

(

1996

).

A.

Ashkin

,

K.

Schutze

,

J. M.

Dziedzic

,

U.

Euteneuer

, and

M.

Schliwa

,

Nature (London)

348

,

346

(

1990

).

E. H. K. Stelzer, in Handbook of Confocal Microascopy, edited by J. Pawley (Plenum, New York, 1995), pp. 139–153.

J. M.

Squirrell

,

D. L.

Wokosin

,

J. G.

White

, and

B. D.

Bavister

,

Microsc. Microanal.

5

,

1060

(

1999

).

A.

Dixon

and

G.

Hogg

,

Proc. SPIE

4262

,

62

(

2001

).

J. G. White and D. L. Wokosin, U.S. Patent No. 6,169,289 (1999).

W. A.

Mohler

,

J. S.

Simske

,

E. M.

Williams-Masson

,

J. D.

Hardin

, and

J. G.

White

,

Curr. Biol.

8

,

1087

(

1998

).

Z. F.

Mainen

,

Z. F.

Mainen

,

M.

Maletic-Savatic

,

S. H.

Shi

,

Y.

Hayashi

,

R.

Malinow

, and

K.

Svoboda

,

Methods

18

,

231

(

1999

).

A. R.

Skop

,

D.

Bergmann

,

W. A.

Mohler

, and

J. G.

White

,

Curr. Biol.

11

,

735

(

2001

).

J. M.

Squirrell

,

M.

Lane

, and

B. D.

Bavister

,

Biol. Reprod.

64

,

1845

(

2001

).

S.

Strome

et al.,

Mol. Biol. Cell

12

,

1751

(

2001

).

Y. Q.

Pi

,

E. S.

Pfieffer

,

S. L.

Robia

,

J. G.

White

, and

J. W.

Walker

,

Biophys. J.

78

,

432A

(

2000

).

This content is only available via PDF.

© 2003 American Institute of Physics.

2003

American Institute of Physics

You do not currently have access to this content.

Sign in

Sign In

You could not be signed in. Please check your credentials and make sure you have an active account and try again.

Username ?

Password

Pay-Per-View Access

$40.00