Phase changes of CO2 hydrate under high pressure and low temperature (original) (raw)

Skip Nav Destination

Research Article| September 29 2010

Hisako Hirai;

1Geodynamics Research Center,

Ehime University

, Matsuyama, Ehime 790-8577,

Japan

Search for other works by this author on:

Kazuki Komatsu;

2Geochemical Research Center,

Tokyo University

, Bunkyo-ku, Tokyo 113-0033,

Japan

Search for other works by this author on:

Mizuho Honda;

1Geodynamics Research Center,

Ehime University

, Matsuyama, Ehime 790-8577,

Japan

Search for other works by this author on:

Taro Kawamura;

3

National Institute of Advanced Industrial Science and Technology

, Tsukuba, Ibaraki 305-8569,

Japan

Search for other works by this author on:

Yoshitaka Yamamoto;

3

National Institute of Advanced Industrial Science and Technology

, Tsukuba, Ibaraki 305-8569,

Japan

Search for other works by this author on:

Takehiko Yagi

4Institute for Solid State Physics,

Tokyo University

, Kashiwa, Chiba 277-8581,

Japan

Search for other works by this author on:

Crossmark: Check for Updates

J. Chem. Phys. 133, 124511 (2010)

High pressure and low temperature experiments with CO2 hydrate were performed using diamond anvil cells and a helium-refrigeration cryostat in the pressure and temperature range of 0.2–3.0 GPa and 280–80 K, respectively. In situ x-ray diffractometry revealed that the phase boundary between CO2 hydrate and water+CO2 extended below the 280 K reported previously, toward a higher pressure and low temperature region. The results also showed the existence of a new high pressure phase above approximately 0.6 GPa and below 1.0 GPa at which the hydrate decomposed to dry ice and ice VI. In addition, in the lower temperature region of structure I, a small and abrupt lattice expansion was observed at approximately 210 K with decreasing temperature under fixed pressures. The expansion was accompanied by a release of water content from the sI structure as ice Ih, which indicates an increased cage occupancy. A similar lattice expansion was also described in another clathrate, SiO2 clathrate, under high pressure. Such expansion with increasing cage occupancy might be a common manner to stabilize the clathrate structures under high pressure and low temperature.

REFERENCES

E. D.

Sloan

and

K. A.

Koh

,

Clathrate Hydrates of Natural Gases

, 3rd ed. (

Taylor & Francis

,

London

,

2008

), pp.

45

257

, and

537

.

V. R.

Belosludov

,

M. Y. U.

Lavrentiev

, and

Y. U. A.

Dyadin

,

J. Inclusion Phenom. Mol. Recognit. Chem.

10

,

399

(

1991

).

G. A.

Jeffrey

,

Inclusion Compounds

, edited by

J. L.

Atwood

,

J. E. D.

Davis

, and

D. D.

McaNicol

(

Academic

,

London

,

1984

), Vol.

1

, pp.

135

190

.

K. A.

Udachin

,

C. I.

Ratcliffe

, and

J. A.

Ripmeester

,

Supramol. Chem.

2

,

405

(

2002

).

J. A.

Ripmeester

,

J. S.

Tse

,

C. I.

Ratcliffe

, and

B. M.

Powell

,

Nature (London)

325

,

135

(

1987

).

J. S.

Loveday

,

R. J.

Nelmes

,

M.

Guthrle

,

S. A.

Belmonte

,

D. R.

Allan

,

D. D.

Klug

,

J. S.

Tse

, and

Y. P.

Handa

,

Nature (London)

410

,

661

(

2001

).

A. V.

Kurnosov

,

A. Y.

Manakov

,

V. Y.

Komarov

,

V. I.

Voronin

,

A. E.

Teplykh

, and

Y. A.

Dyadin

,

Dokl. Phys. Chem.

381

,

303

(

2001

).

H.

Hirai

,

T.

Tanaka

,

T.

Kawamura

,

Y.

Yamamoto

, and

T.

Yagi

,

Phys. Rev. B

68

,

172102

(

2003

).

W. L.

Mao

,

H. -K.

Mao

,

A. F.

Goncharov

,

V. V.

Struzhkin

,

Q.

Guo

,

J.

Hu

,

J.

Shu

,

R. J.

Hemley

,

M.

Somayazulu

, and

Y.

Zhao

,

Science

297

,

2247

(

2002

).

D. W.

Davidson

,

Y. P.

Handa

,

C. I.

Ratcliff

,

J. S.

Tse

, and

B. M.

Powell

,

Nature (London)

311

,

142

(

1984

).

Y. A.

Dyadin

,

E. Y.

Aladko

, and

E. G.

Larionov

,

Mendeleev Commun.

7

,

34

(

1997

).

Y. A.

Dyadin

,

G. E.

Larionov

,

A. Y.

Manakov

,

F. V.

Zhurko

,

E. Y.

Aladko

,

T. V.

Mikina

, and

V. Y.

Komarov

,

Mendeleev Commun.

9

,

209

(

1999

).

J. S.

Loveday

,

R. J.

Nelmes

,

M.

Guthrie

,

D. D.

Klug

, and

J. S.

Tse

,

Phys. Rev. Lett.

87

,

215501

(

2001

).

H.

Hirai

,

Y.

Uchihara

,

H.

Fujihisa

,

M.

Sakashita

,

E.

Katoh

,

K.

Aoki

,

K.

Nagashima

,

Y.

Yamamoto

, and

T.

Yagi

,

J. Chem. Phys.

115

,

7066

(

2001

).

H.

Shimizu

,

T.

Kumazaki

,

T.

Kume

, and

S.

Sasaki

,

J. Phys. Chem.

106

,

30

(

2002

).

H.

Hirai

,

S.

Machida

,

T.

Kawamura

,

Y.

Yamamoto

, and

T.

Yagi

,

Am. Mineral.

91

,

826

(

2006

).

A. Y.

Manakov

,

V. I.

Voronin

,

A. V.

Kurnosov

,

A. E.

Teplykh

,

E. G.

Larionov

, and

Y. A.

Dyadin

,

Dokl. Phys. Chem.

378

,

148

(

2001

).

H.

Hirai

,

T.

Tanaka

,

T.

Kawamura

,

Y.

Yamamoto

, and

T.

Yagi

,

J. Phys. Chem. Solids

65

,

1555

(

2004

).

S.

Nakano

,

M.

Moritoki

, and

K.

Ohgaki

,

J. Chem. Eng. Data

43

,

807

(

1998

).

A. Y.

Manakov

,

Y. A.

Dyadin

,

A. G.

Ogienko

,

A. V.

Kurnosov

,

E. Y.

Aladko

,

E. G.

Larionov

,

F. V.

Zhurko

,

V. I.

Voronin

,

I. F.

Berger

,

S. V.

Goryainov

,

A. Y.

Lihacheva

, and

A. I.

Ancharov

,

J. Phys. Chem. B

113

,

7257

(

2009

).

S.

Alavi

,

R.

Susilo

, and

J. A.

Ripmeester

,

J. Chem. Phys.

130

,

174501

(

2009

).

S.

Alavi

,

K.

Udachin

, and

J. A.

Ripmeester

,

Chem.-Eur. J.

16

,

1017

(

2010

).

C. I.

Ratcliffe

and

J. A.

Ripmeester

,

J. Phys. Chem.

90

,

1259

(

1986

).

S.

Miller

and

W. D.

Smythe

,

Science

170

,

531

(

1970

).

D. W.

Davidson

,

S. K.

Garg

,

S. R.

Gough

,

Y. P.

Handa

,

C. I.

Ratcliffe

,

J. S.

Tse

, and

J. A.

Ripmeester

,

J. Inclusion Phenom.

2

,

231

(

1984

).

J.

Longhi

,

Geochim. Cosmochim. Acta

69

,

529

(

2005

).

J.

Longhi

,

J. Geophys. Res.

111

,

E06011

(

2006

).

F.

Fleyfel

and

J. P.

Devlin

,

J. Phys. Chem.

95

,

3811

(

1991

).

R.

Kumar

,

S.

Lang

,

P.

Englezos

, and

J.

Ripmeester

,

J. Phys. Chem. A

113

,

6308

(

2009

).

K. A.

Udachin

,

C. I.

Ratcliffe

, and

J. A.

Ripmeester

,

J. Phys. Chem. B

105

,

4200

(

2001

).

S.

Takeya

,

K. A.

Udachin

,

I. L.

Moudrakovski

,

R.

Susilo

, and

J. A.

Ripmeester

,

J. Am. Chem. Soc.

132

,

524

(

2010

).

A.

Klapproth

,

E.

Goreshnik

,

D.

Staykova

,

H.

Klein

, and

W. F.

Kuhs

,

Can. J. Phys.

81

,

503

(

2003

).

Y. P.

Handa

,

J. Chem. Thermodyn.

18

,

891

(

1986

).

R. K.

McMullan

and

G. A.

Jeffrey

,

J. Chem. Phys.

42

,

2725

(

1965

).

T. C. W.

Mak

and

R. K.

McMullan

,

J. Chem. Phys.

42

,

2732

(

1965

).

T.

Yagi

,

E.

Iida

,

H.

Hirai

,

N.

Miyajima

,

T.

Kikegawa

, and

M.

Bunno

,

Phys. Rev. B

75

,

174115

(

2007

).

© 2010 American Institute of Physics.

2010

American Institute of Physics

You do not currently have access to this content.

Sign in

Sign In

You could not be signed in. Please check your credentials and make sure you have an active account and try again.

Username ?

Password

Pay-Per-View Access

$40.00