Waist circumference as a determinant of hypertension and diabetes in Brazilian women: a population-based study | Public Health Nutrition | Cambridge Core (original) (raw)

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Objective:

To evaluate the role of central adiposity, as evaluated by the measurement of waist circumference (WC), as an independent risk factor for hypertension and type 2 diabetes mellitus in the setting of a developing country.

Design:

Population-based, cross-sectional study.

Setting:

A medium-sized town in southern Brazil.

Participants:

One thousand and ninety-five non-pregnant women, 20 to 69 years old, recruited by cluster random sampling between 1999 and 2000. Their mean WC was 85.3 cm (standard deviation 13.9 cm) and 23.3% (n = 255) were obese (body mass index >30 kg m−2). The prevalence of hypertension and diabetes was 25.6% (n = 280) and 6.2% (n = 68), respectively.

Results:

The risks of hypertension and diabetes were directly related to WC measurement. Women with WC > 80 cm had increased risk of hypertension (odds ratio (OR) = 6.2, P < 0.001). The association remained significant (OR = 1.04 per cm increase in WC, P = 0.02) after adjusting for confounders. The effect of WC on diabetes was modified by age. The effect was stronger in women younger than 40 years old (OR = 12.7, P = 0.016) than in those over 40 years old (OR = 2.8, P = 0.013). In the multivariate analysis, the odds ratio was 5.7 (P = 0.12) in those under 40 years old and 2.8 (P = 0.008) in older women.

Conclusions:

Waist circumference is an independent determinant for hypertension and diabetes in women in this population. The stronger association between WC and diabetes in younger women suggests that the validity of this indicator to assess abdominal adiposity is age-specific. Further studies should validate the usefulness of WC measurement in different age groups.

References

1World Health Organization (WHO). Obesity: Preventing and Managing the Global Epidemic. Geneva: WHO, 1998.Google Scholar

2Michels, KB, Greeland, S, Rosner, BA. Does body mass index adequately capture the relation of body composition and body size to health outcomes? American Journal of Epidemiology 1998; 147(2): 167–72.Google Scholar

3Mollarius, A, Seidell, JC, Sans, S, Tuomilheto, J, Kuulasmaa, K. Waist and hip circumferences, and waist-hip ratio in 19 populations of the WHO MONICA Project. International Journal of Obesity and Related Metabolic Disorders 1999; 23(2): 116–25.Google Scholar

4Seidell, JC, Pérusse, L, Després, JP, Bouchard, C. Waist and hip circumference have independent and opposite effects on cardiovascular disease risk factors: the Quebec Family Study. American Journal of Clinical Nutrition 2001; 74(3): 315–21.CrossRefGoogle ScholarPubMed

5Lean, MEJ, Han, TS, Morrison, CE. Waist circumference as a measure for indicating need for weight management. British Medical Journal 1995; 311: 158–61.Google Scholar

6Seidell, JC. Are abdominal diameters abominable indicators? In: Progress in Obesity Research. London: John Libbey & Co Ltd, 1995, 303–6.Google Scholar

7Jansen, I, Heymsfield, SB, Allison, DB, Kotler, DP, Ross, R. Body mass index and waist circumference independently contribute to the prediction of nonabdominal, abdominal subcutaneous, and visceral fat. American Journal of Clinical Nutrition 2002; 75: 683–8.Google Scholar

8Lemieux, S, Prud'homme, D, Bouchard, C, Tremblay, A, Despres, JP. A single threshold value of waist girth identifies normal-weight and overweight subjects with excess visceral adipose tissue. American Journal of Clinical Nutrition 1996; 64(5): 685–93.CrossRefGoogle ScholarPubMed

9Conway, JM, Chanetsa, FF, Wang, P. Intraabdominal adipose tissue and anthropometric surrogates in African American women with upper- and lower-body obesity. American Journal of Clinical Nutrition 1997; 66(6): 1345–51.CrossRefGoogle ScholarPubMed

10Taylor, RW, Keil, D, Gold, EJ, Williams, SM, Goulding, A. Body mass index, waist girth, and waist-to-hip ratio as indexes of total and regional adiposity in women: evaluating using receiver operating characteristic curves. American Journal of Clinical Nutrition 1998; 67(1): 44–9.CrossRefGoogle ScholarPubMed

11Sönmez, K, Akçakoyun, M, Akçay, A, Demir, D, Duran, NE, Gençbay, M, et al. Which method should be used to determine the obesity, in patients with coronary artery disease? (body index mass, waist circumference or waist-to-hip ratio). International Journal of Obesity and Related Metabolic Disorders 2003; 27(3): 341–6.CrossRefGoogle ScholarPubMed

12Han, TS, Van Leer, EM, Seidell, JC, Lean, MEJ. Waist circumference action levels in the identification of cardiovascular risk factors: prevalence study in a random sample. British Medical Journal 1995; 311: 1401–5.CrossRefGoogle ScholarPubMed

13Rexrode, KM, Carey, VJ, Hennekens, CH, Walters, EE, Colditz, GA, Stampfer, MJ, et al. Abdominal adiposity and coronary heart disease in women. Journal of the American Medical Association 1998; 280: 1843–8.CrossRefGoogle ScholarPubMed

14Lean, MEJ, Han, TS, Seidell, JC. Impairment of health and quality of life in people with large waist circumference. Lancet 1998; 351: 853–6.CrossRefGoogle ScholarPubMed

15Ezenwaka, CE, Offiah, NV. Abdominal obesity in type 2 diabetic patients visiting primary healthcare clinics in Trinidad, West Indies. Scandinavian Journal of Primary Health Care 2002; 20(3): 177–82.CrossRefGoogle ScholarPubMed

16Rheeder, P, Stolk, RP, Veenhouwer, JF, Grobbee, DE. The metabolic syndrome in black hypertensive women – waist circumference more strongly related than body mass index. South African Medical Journal 2002; 92(8): 637–41.Google ScholarPubMed

17Jansen, I, Katzmarzyk, PT, Ross, R. Body mass index, waist circumference, and health risk. Archives of Internal Medicine 2002; 162: 2074–9.CrossRefGoogle Scholar

18Sundquist, J, Winkleby, M. Country of birth, acculturation status and abdominal obesity in a national sample of Mexican-American women and men. International Journal of Epidemiology 2000; 29: 470–7.Google Scholar

19Hughes, K, Aw, TC, Kuperan, P, Choo, M. Central obesity, insulin resistance, syndrome X, lipoprotein(a), and cardiovascular risk in Indians, Malays, and Chinese in Singapore. Journal of Epidemiology and Community Health 1997; 51(4): 394–9.CrossRefGoogle ScholarPubMed

20Victora, CG, Huttly, S, Fuchs, SC, Olinto, MT. The role of conceptual frameworks in epidemiological analysis: a hierarchical approach. International Journal of Epidemiology 1997; 26(1): 224–7.Google Scholar

21Brazilian Institute of Geography and Statistics (IBGE). Demographic Census 1991. Rio de Janeiro: IBGE, 1991.Google Scholar

22World Health Organization (WHO). Physical Status: The Use and Interpretation of Anthropometry. Report of a WHO Expert Committee. Geneva: WHO, 1995.Google Scholar

23Hosmer, DW, Lemeshow, S. Applied Logistic Regression Analysis. New York: Wiley Interscience, 1989.Google Scholar

24Lakka, HM, Lakka, TA, Tuomilheto, J, Salonen, JT. Abdominal obesity is associated with increased risk of acute coronary events in men. European Heart Journal 2002; 23(9): 706–13.Google Scholar

25Folsom, AR, Kushi, LH, Anderson, KE, Mink, PJ, Olson, JE, Hong, CP, et al. Associations of general and abdominal obesity with multiple health outcomes in older women. Archives of Internal Medicine 2000; 160(14): 2117–28.CrossRefGoogle ScholarPubMed

26Siani, A, Cappuccio, FP, Barba, G, Trevisan, M, Farinaro, E, Lancone, R, et al. The relation of waist circumference to blood pressure: the Olivetti Heart Study. American Journal of Hypertension 2002; 15(9): 780–6.Google Scholar

27Zhu, S, Wang, Z, Heshka, S, Heo, S, Faith, MS, Heymsfield, SB. Waist circumference and obesity-associated risk factors among whites in the third National Health and Nutrition Examination Survey: clinical action thresholds. American Journal of Clinical Nutrition 2002; 76(4): 699–748.CrossRefGoogle ScholarPubMed

29International Diabetes Federation (IDF). Diabetes Atlas 2000. Brussels: IDF, 2000.Google Scholar

30Piccini, RX, Victora, CG. Systemic arterial hypertension in an urban area of southern Brazil: prevalence and risk factors. Revista de Saude Publica 1994; 28: 262–7.Google Scholar

31Malerbi, D, Franco, LJ. The Brazilian Cooperative Group on the Study of Diabetes Prevalence multicenter study of the prevalence of diabetes mellitus and impaired glucose tolerance in the urban Brazilian population aged 30–69. yr. Diabetes Care 1992; 15: 1509–16.Google Scholar

32Kac, G, Velásquez-Meléndez, G, Coelho, MA. Factors associated with abdominal obesity among childbearing-age women. Revista de Saude Publica 2001; 35(1): 46–51.CrossRefGoogle ScholarPubMed

33McNeely, MJ, Boyko, EJ, Shofer, JB, Newell-Morris, L. Standard definitions of overweight and central adiposity for determining diabetes risk in Japanese Americans. American Journal of Clinical Nutrition 2001; 74(1): 101–7.CrossRefGoogle ScholarPubMed

34Pablos-Velasco, PL, Martinez-Martin, FJ, Rodrigues-Perez, F. Prevalence of obesity in a Canadian community. Association with type 2 diabetes mellitus: the Guia Study. European Journal of Clinical Nutrition 2002; 56(6): 557–60.CrossRefGoogle Scholar

35Must, A, Spadano, J, Coakley, EH, Field, AE, Colditz, G, Dietz, W. The disease burden associated with overweight and obesity. Journal of the American Medical Association 1999; 282: 1523–9.CrossRefGoogle ScholarPubMed

36Rankinen, T, Kim, SY, Perusse, L, Despres, JP, Bouchard, C. The prediction of abdominal visceral fat level from body composition and anthropometry: ROC analysis. International Journal of Obesity and Related Metabolic Disorders 1999; 23(8): 801–9.CrossRefGoogle ScholarPubMed

37Molarius, A, Seidell, JC, Visscher, TL, Hofman, A. Misclassification of high-risk older subjects using waist action levels established for young and middle-aged adults: results from the Rotterdam study. Journal of the American Geriatrics Society 2000; 48(12): 1638–45.Google Scholar

38Martin, BC, Warram, JH, Krolewski, AS, Bergman, RN, Soeldner, JS, Kahn, CR. Role of glucose and insulin resistance in development of type 2 diabetes mellitus: results of a 25-year follow-up study. Lancet 1992; 340: 925–9.Google Scholar

39Leite, CC, Wajchenberg, BL, Radominski, R, Matsuda, D, Cerri, GG, Halpern, A. Intra-abdominal thickness by ultrasonography to predict risk factors for cardiovascular disease and its correlation with anthropometric measurements. Metabolism 2002; 51(8): 1034–40.Google Scholar