Influence of dietary leucine content on the activities of branched-chain amino acid aminotransferase (EC 2.6.1.42) and branched-chain α-keto acid dehydrogenase (EC 1.2.4.4) complex in tissues of preruminant lambs | British Journal of Nutrition | Cambridge Core (original) (raw)

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

1. Branched-chain amino acid aminotransferase (EC 2.6.1.42; BCAAT) and branched-chain α-keto acid dehydrogenase (EC 1.2.4.4; BCKDH) activities were measured in preruminant lamb liver, longissimus dorsi muscle, kidney, jejunum and adipose tissue, 2 h after a meal with or without an excess of leucine.

2. Skeletal muscle contained about 70% of the total basal BCAAT activities of the tissues studied whereas liver contained about 60% of the total BCKDH activities of these tissues.

3. BCAAT activities were very low in preruminant lamb tissues. BCKDH was more phosphorylated in tissues of preruminant lambs than in rats, especially in liver. These low catalytic potentialities might contribute to a low rate of branched-chain amino acid catabolism in sheep.

4. Ingestion of an excess of leucine led to an increase in liver and jejunum BCAAT activities and activation of BCKDH in jejunum.

References

Adibi, S. A., Peterson, J. A. & Krzysik, B. A. (1975). American Journal of Physiology 228, 432–434.CrossRefGoogle Scholar

Aftring, R. P., Kevin, K. P. & Buse, M. G. (1986). American Journal of Physiology 250, E599–E604.Google Scholar

Block, K. P., Soemitro, S., Heywood, B. W. & Harper, A. E. (1985). Journal of Nutrition 115, 1550–1561.CrossRefGoogle Scholar

Busboom, J. A., Merkel, R. A. & Bergen, W. G. (1983). Journal of Animal Science 57, Suppl. 1, 189.Google Scholar

Early, R. J., Thompson, J. R., Christopherson, R. J. & Sedgwick, G. W. (1984). Canadian Journal of Animal Science 64, Suppl.276–277.CrossRefGoogle Scholar

Gillim, S. E., Paxton, R., Cook, G. A. & Harris, R. A. (1983). Biochemical and Biophysical Research Communications 111, 74–81.CrossRefGoogle Scholar

Goodwin, G. W., Gibboney, W., Paxton, R., Harris, R. A. & Lemons, J. A. (1987). Biochemical Journal 242, 305–308.CrossRefGoogle Scholar

Harper, A. E., Miller, R. H. & Block, K. P. (1984). Annual Review of Nutrition 4, 409–454.CrossRefGoogle Scholar

Harris, R. A., Paxton, R., Goodwin, G. W., Kuntz, M. J., Shimomura, Y. & Han, A. (1986). Biochemical Society Transactions 14, 1005–1008.CrossRefGoogle Scholar

Harris, R. A., Paxton, R., Powell, S. M., Goodwin, G. W., Kuntz, M. J. & Han, A. C. (1985). Advances in Enzyme Regulation 25, 219–237.CrossRefGoogle Scholar

Khatra, B. S., Chawla, R. K., Sewell, C. W. & Rudman, D. (1977). Journal of Clinical Investigation 59, 558–564.CrossRefGoogle Scholar

Lindsay, D. B. & Buttery, P. J. (1980). In Protein Deposition in Animals pp. 125–145 [Buttery, P. J. and Lindsay, D. B., editors]. London: Butterworth.CrossRefGoogle Scholar

Nissen, S. & Ostaszewski, P. (1985). British Journal of Nutrition 54, 705–712.Google Scholar

Papet, I., Breuillé, D. & Arnal, M. (1987). Reproduction, Nutrition, Développement 27, (1B), 293–294.CrossRefGoogle Scholar

Papet, I., Breuillé, D., Glomot, F. & Arnal, M. (1988). Journal of Nutrition (In the Press).Google Scholar

Patureau-Mirand, P., Prugnaud, J. & Pion, R. (1971). Xth Congrès de Zootechnie. Paris: F.E.Z.Google Scholar

Van Veen, L. C. P., Teng, C., Hay, W. W., Meschia, G. Jr. & Battaglia, F. C. (1987). Metabolism 36, 48–53.CrossRefGoogle Scholar

Wagenmakers, A. J. M., Schepens, J. T. G., Veldhuizen, J. A. M. & Veerkamp, J. H. (1984). Biochemical Journal 220, 273–281.CrossRefGoogle Scholar

Wijayasinghe, M. S., Milligan, L. P. & Thompson, J. R. (1983). Bioscience Reports 3, 1133–1140.CrossRefGoogle Scholar

Wohlhueter, R. M. & Harper, A. E. (1970). Journal of Biological Chemistry 245, 2391–2401.CrossRefGoogle Scholar