Potential Role of Active Surveillance in the Control of a Hospital-Wide Outbreak of Carbapenem-Resistant Klebsiella pneumoniae Infection | Infection Control & Hospital Epidemiology | Cambridge Core (original) (raw)

References

1.Yigit, H, Queenan, AM, Anderson, GJ, et al.Novel carbapenem-hydro-lyzing _β_-lactamase, KPC-1, from a carbapenem-resistant strain of Klebsiella pneumoniae. Antimicrob Agents Chemother 2001;45:1151–1161.Google Scholar

2.Bradford, PA, Bratu, S, Urban, C, et al.Emergence of carbapenem-resistant Klebsiella species possessing the class A carbapenem-hydrolyzing KPC-2 and inhibitor-resistant TEM-30 _β_-lactamases in New York City. Clin Infect Dis 2004;39:55–60.CrossRefGoogle Scholar

3.Samra, Z, Ofir, O, Lishtzinsky, Y, Madar-Shapiro, L, Bishara, J. Outbreak of carbapenem-resistant Klebsiella pneumoniae producing KPC-3 in a tertiary medical centre in Israel. Int J Antimicrob Agents 2007;30:525–529.CrossRefGoogle Scholar

4.Bratu, S, Landman, D, Haag, R, et al.Rapid spread of carbapenem-resistant Klebsiella pneumoniae in New York City: a new threat to our antibiotic armamentarium. Arch Intern Med 2005;165:1430–1435.Google Scholar

5.Maltezou, HC, Giakkoupi, P, Maragos, A, et al.Outbreak of infections due to KPC-2-producing Klebsiella pneumoniae in a hospital in Crete (Greece). J Infect 2009;58:213–219.CrossRefGoogle Scholar

6.Navon-Venezia, S, Leavitt, A, Schwaber, MJ, et al; Israeli KPC Kpn Study Group. First report on a hyperepidemic clone of KPC-3-producing Klebsiella pneumoniae in Israel genetically related to a strain causing outbreaks in the United States. Antimicrob Agents Chemother 2009;53:818–820.CrossRefGoogle ScholarPubMed

7.Patel, G, Huprikar, S, Factor, SH, Jenkins, SG, Calfee, DP. Outcomes of carbapenem-resistant Klebsiella pneumoniae infection and the impact of antimicrobial and adjunctive therapies. Infect Control Hosp Epidemiol 2008; 29:1099–1106.Google Scholar

8.Marchaim, D, Navon-Venezia, S, Schwaber, MJ, Carmeli, Y. Isolation of imipenem-resistant Enterobacter species: emergence of KPC-2 carbape-nemase, molecular characterization, epidemiology, and outcomes. Antimicrob Agents Chemother 2008;52:1413–1418.CrossRefGoogle Scholar

9.Kochar, S, Sheard, T, Sharma, R, et al.Success of an infection control program to reduce the spread of carbapenem-resistant Klebsiella pneumoniae. Infect Control Hosp Epidemiol 2009;30:447–452.Google Scholar

10.Leavitt, A, Navon-Venezia, S, Chmelnitsky, I, Schwaber, MJ, Carmeli, Y. Emergence of KPC-2 and KPC-3 in carbapenem-resistant Klebsiella pneumoniae strains in an Israeli hospital. Antimicrob Agents Chemother 2007;51:3026–3029.CrossRefGoogle Scholar

11.Horan, TC, Andrus, M, Dudeck, MA. CDC/NHSN surveillance definition of health care-associated infection and criteria for specific types of infections in the acute care setting. Am J Infect Control 2008;36:309–332.CrossRefGoogle ScholarPubMed

12.Clinical Laboratory Standards Institute (CLSI). Performance standards for antimicrobial susceptibility testing: 16th informational supplement. CLSI document M100-S16. Wayne, PA: CLSI, 2006.Google Scholar

13.Woodford, N, Tierno, PM Jr, Young, K, et al.Outbreak of Klebsiella pneumoniae producing a new carbapenem-hydrolyzing class A _β_-lactamase, KPC-3, in a New York medical center. Antimicrob Agents Chemother 2004;48: 4793–4799.Google Scholar

14.Hindiyeh, M, Smollen, G, Grossman, Z, et al.Rapid detection of blaKPC carbapenemase genes by real-time PCR. J Clin Microbiol 2008;46:2879–2883.CrossRefGoogle ScholarPubMed

15.Shardell, M, Harris, AD, El-Kamary, SS, Furano, JP, Miller, RR, Perencevich, EN. Statistical analysis and application of quasi experiments to antimicrobial resistance intervention studies. Clin Infect Dis 2007;45:901–907.Google Scholar

16.Harbarth, S, Samore, MH. Interventions to control MRSA: high time for time-series analysis? J Antimicrob Chemother 2008;62:431–433.Google Scholar

17.Peña, C, Pujol, M, Ricart, A, et al.Risk factors for faecal carriage of Klebsiella pneumoniae producing extended spectrum _β_-lactamase (ESBL-KP) in the intensive care unit. J Hosp Infect 1997;35:9–16.CrossRefGoogle ScholarPubMed

18.Lucet, JC, Chevret, S, Decre, D, et al.Outbreak of multiply resistant en-terobacteriaceae in an intensive care unit: epidemiology and risk factors for acquisition. Clin Infect Dis 1996;22:430–436.Google Scholar

19.Martins, IS, Pessoa-Silva, CL, Nouer, SA, et al.Endemie extended-spectrum _β_-lactamase-producing Klebsiella pneumoniae at an intensive care unit: risk factors for colonization and infection. Microb Drug Resist 2006; 12:50–58.Google Scholar

20.Branger, C, Bruneau, B, Lesimple, AL, et al.Epidemiological typing of extended-spectrum _β_-lactamase-producing Klebsiella pneumoniae isolates responsible for five outbreaks in a university hospital. J Hosp Infect 1997;36:23–36.CrossRefGoogle ScholarPubMed

21.DiPersio, JR, Deshpande, LM, Biedenbach, DJ, Toleman, MA, Walsh, TR, Jones, RN. Evolution and dissemination of extended-spectrum _β_-lactamase-producing Klebsiella pneumoniae: epidemiology and molecular report from the SENTRY Antimicrobial Surveillance Program (1997-2003). Diagn Microbiol Infect Dis 2005;51:1–7.Google Scholar

22.Kang, CI, Kim, SH, Kim, DM, et al.Risk factors for and clinical outcomes of bloodstream infections caused by extended-spectrum beta-lactamase- producing Klebsiella pneumoniae. Infect Control Hosp Epidemiol 2004;25: 860–867.CrossRefGoogle ScholarPubMed

23.Laurent, C, Rodriguez-Villalobos, H, Rost, F, et al.Intensive care unit outbreak of extended-spectrum _β_-lactamase-producing Klebsiella pneumoniae controlled by cohorting patients and reinforcing infection control measures. Infect Control Hosp Epidemiol 2008;29:517–524.CrossRefGoogle ScholarPubMed

24.Peña, C, Pujol, M, Ardanuy, C, et al.Epidemiology and successful control of a large outbreak due to Klebsiella pneumoniae producing extended-spectrum _β_-lactamases. Antimicrob Agents Chemother 1998;42:53–58.CrossRefGoogle ScholarPubMed

25.Lee, J, Pai, H, Kim, YK, et al.Control of extended-spectrum _β_-lactamase-producing Escherichia coli and Klebsiella pneumoniae in a children's hospital by changing antimicrobial agent usage policy. J Antimicrob Chemother 2007;60:629–637.CrossRefGoogle Scholar

26.Lucet, JC, Decré, D, Fichelle, A, et al.Control of a prolonged outbreak of extended-spectrum _β_-lactamase-producing Enterobacteriaceae in a university hospital. Clin Infect Dis 1999;29:1411–1418.CrossRefGoogle ScholarPubMed

27.Harris, AD, McGregor, JC, Furano, JP. What infection control interventions should be undertaken to control multidrug-resistant gram-negative bacteria? Clin Infect Dis 2006;43(suppl 2):S57–S61.Google Scholar

28.Clancy, M, Graepler, A, Wilson, M, Douglas, I, Johnson, J, Price, CS. Active screening in high-risk units is an effective and cost-avoidant method to reduce the rate of methicillin-resistant Staphylococcus aureus infection in the hospital. Infect Control Hosp Epidemiol 2006;27:1009–1017.Google Scholar

29.Jernigan, JA, Clemence, MA, Stott, GA, et al.Control of methicillin-resistant Staphylococcus aureus at a university hospital: one decade later. Infect Control Hosp Epidemiol 1995;16:686–696.Google Scholar

30.West, TE, Guerry, C, Hiott, M, Morrow, N, Ward, K, Saigado, CD. Effect of targeted surveillance for control of methicillin-resistant Staphylococcus aureus in a community hospital system. Infect Control Hosp Epidemiol 2006;27:233–238.CrossRefGoogle Scholar

31.Troche, G, Joly, LM, Guibert, M, Zazzo, JF. Detection and treatment of antibiotic-resistant bacterial carriage in a surgical intensive care unit: a 6-year prospective survey. Infect Control Hosp Epidemiol 2005;26:161–165.CrossRefGoogle Scholar

32.Gardam, MA, Burrows, LL, Kus, JV, et al.Is surveillance for multidrug-resistant Enterobacteriaceae an effective infection control strategy in the absence of an outbreak? J Infect Dis 2002;186:1754–1760.CrossRefGoogle ScholarPubMed

33.Calfee, D, Jenkins, SG. Use of active surveillance cultures to detect asymptomatic colonization with carbapenem-resistant Klebsiella pneumoniae in intensive care unit patients. Infect Control Hosp Epidemiol 2008;29:966–968.Google Scholar

34.Harris, AD, Nemoy, L, Johnson, JA, et al.Co-carriage rates of vancomycin-resistant Enterococcus and extended-spectrum beta-lactamase-producing bacteria among a cohort of intensive care unit patients: implications for an active surveillance program. Infect Control Hosp Epidemiol 2004;25: 105–108.CrossRefGoogle ScholarPubMed

35.Chaix, C, Durand-Zaleski, I, Alberti, C, Brun-Buisson, C. Control of endemic methicillin-resistant Staphylococcus aureus: a cost-benefit analysis in an intensive care unit. JAMA 1999;282:1745–1751.Google Scholar

36.Harbarth, S, Fankhauser, C, Schrenzel, J, et al.Universal screening for methicillin-resistant Staphylococcus aureus at hospital admission and nosocomial infection in surgical patients. JAMA 2008;299:1149–1157.Google Scholar

37.Centers for Disease Control and Prevention (CDC). Guidance for control of infections with carbapenem-resistant or carbapenemase-producing Enterobacteriaceae in acute care facilities. MMWR Morb Mortal Wkly Rep 2009;58:256–260.Google Scholar