Escherichia coli Sequence Type 131 Is a Dominant, Antimicrobial-Resistant Clonal Group Associated with Healthcare and Elderly Hosts | Infection Control & Hospital Epidemiology | Cambridge Core (original) (raw)

References

1.Coque, T, Baquero, F, Canton, R. Increasing prevalence of _ESBL_-producing enterobacteriaceae in Europe. Eurosurveillance 2008;13:1–11.Google Scholar

2.Nicolas-Chanoine, M-H, Blanco, J, Leflon-Guibout, V, et al.Intercontinental emergence of Escherichia coli clone O25:H4ST131 producing CTX-M-15. J Antimicrob Chemother 2008;61:273–281.Google Scholar

3.Peirano, G, Pitout, J. Molecular epidemiology of Escherichia coli producing CTX-M-beta lactamases: the wordwide emergence of clone ST131 025:H4 Int J Antimicrob Agents 2009;35:316–321.Google Scholar

4.Johnson, J, Johnston, B, Clabots, C, Kuskowski, M, Castanheira, M. Escherichia coli sequence type ST131 as the major cause of serious multidrug-resistant E. coli infections in the United States. Clin Infect Dis 2010;51:286–294.CrossRefGoogle ScholarPubMed

5.Yokota, S, Sato, T, Okubo, T, et al.Prevalence of fluoroquinolone-resistant Escherichia coli 025:H4-ST131 (CTX-M-15-nonproducing) strains isolated in Japan. Chemother 2012;58:52–59.Google Scholar

6.Rogers, B, Sidjabat, H, Paterson, D. Escherichia coli 025b-ST131: a pandemic, multiresistant, community-associated strain. J Antimicrob Chemother 2011;66:1–14.Google Scholar

7.Cagnacci, S, Gualco, L, Debbia, E, Schito, G, Marchese, A. European emergence of ciprofloxacin-resistant Escherichia coli clonal groups O25:H4-ST131 and O15:K52:H1 causing community-acquired uncomplicated cystitis. J Clin Microbiol 2008;46:2605–2612.Google Scholar

8.Livermore, D, Canton, R, Gniadkowski, M, et al.CTX-M: changing the face of ESBLs in Europe. J Antimicrob Chemother 2007;59:165–174.Google Scholar

9.Johnson, J, Urban, C, Weissman, S, et al.Molecular epidemiological analysis of Escherichia coli sequence type ST131 (O25:H4) and blaCTX-M-15 among extended spectrum beta-lactamase producing E. coli from the United States, 2000–2009. Antimicrob Agents Chemother 2012;56:2364–2370.Google Scholar

10.Johnson, J, Nicolas-Chanoine, M-H, DebRoy, C, et al.Comparison of Escherichia coli ST131 pulsotypes, by epidemiologic traits, 1967–2009. Emerg Infect Dis 2012;18:598–607.Google Scholar

11.Owens, R, Johnson, J, Stogsdill, P, Yarmus, L, Lolans, K, Quinn, J. Community transmission in the United States of a CTX-M-15-producing sequence type ST 131 Escherichia coli strain resulting in death. J Clin Microbiol 2011;49:3406–3408.Google Scholar

12.Vincent, C, Boerlin, P, Daignault, D, et al.Food reservoir for Escherichia coli causing urinary tract infections. Emerg Infect Dis 2010;16:88–95.CrossRefGoogle ScholarPubMed

13.Swami, S, Liesinger, J, Shah, N, Baddour, L, Banerjee, R. Incidence of antibiotic-resistant Escherichia coli bacteriuria according to age and location of onset: a population-based study from Olmsted County, Minnesota. Mayo Clin Proc 2012;87:753–759.Google Scholar

14.Clinical and Laboratory Standards Institute. Performance Standards for Antimicrobial Susceptibility Testing: Nineteenth Informational Supplement. CLSI document (M100-S19). Wayne, PA: Clinical and Laboratory Standards Institute, 2009.Google Scholar

15.Clinical and Laboratory Standards Institute. Performance Standards for Antimicrobial Susceptibility Testing: Twentieth Informational Supplement. CLSI document M100-S20. Wayne, PA: Clinical and Laboratory Standards Institute, 2010.Google Scholar

16.Clermont, O, Bonacorsi, S, Bingen, E. Rapid and simple determination of Escherichia coli phylogenetic group. Appl Environ Microbiol 2000;66:4555–4558.Google Scholar

17.Johnson, J, Menard, M, Johnston, B, Kuskowski, M, Nichol, K, Zhanel, G. Epidemic clonal groups of Escherichia coli as a cause of antimicrobial-resistant urinary tract infections in Canada, 2002–2004. Antimicrob Agents Chemother 2009;53:2733–2739.Google Scholar

18.Weissman, S, Johnson, J, Tchesnokova, V, et al.High resolution two-locus clonal typing of extraintestinal pathogenic Escherichia coli. Appl Environ Microbiol 2012;78:1353–1360.Google Scholar

19.Chung, H-C, Lai, C-H, Lin, J-N, et al.Bacteremia caused by extended-spectrum beta-lactamase-producing Escherichia coli sequence type ST131 and non-ST131 clones: comparison of demographic data, clinical features, and mortality. Antimicrob Agents Chemother 2012;56:618–622.Google Scholar

20.Tiruvury, H, Johnson, J, Mariano, N, et al.Identification of CTX-M-beta-lactamases among Escherichia coli from the community in New York City. Diag Microbiol Infect Dis 2012;72:248–252.Google Scholar

21.Blanco, M, Alonso, MP, Nicolas-Chanoine, M-H, et al.Molecular epidemiology of Escherichia coli producing extended-spectrum beta lactamases in Lugo (Spain): dissemination of clone O25b: H4-ST131 producing CTX-M-15. J Antimicrob Chemother 2009;63:1135–1141.Google Scholar

22.Brisse, S, Diancourt, L, Laouenan, C, et al.Phylogenetic distribution of CTX-M and non-ESBL producing Escherichia coli isolates: group B2 isolates, except ST131 rarely produce CTX-M enzymes. J Clin Microbiol 2012;50:2974–2981.Google Scholar

23.Burke, L, Humphreys, H, Fitzgerald-Hughes, D. The revolving door between hospital and community: extended-spectrum β-lactamase-producing Escherichia coli in Dublin. J Hosp Infect 2012;81:192–198.CrossRefGoogle ScholarPubMed

24.Urban, C, Mariano, N, Bradford, PA, et al.Identification of CTX-M-β-lactamases in Escherichia coli from hospitalized patients and residents of long-term care facilities. Diag Microbiol Infect Dis 2010;66:402–406.Google Scholar

25.Rooney, P, O'Leary, M, Loughrey, A, et al.Nursing homes as a reservoir of extended-spectrum β-lactamase (ESBL)-producing ciprofloxacin-resistant Escherichia coli. J Antimicrob Chemother 2009;64:635–641.Google Scholar

26.March, A, Aschbacher, R, Dhanji, H, et al.Colonization of residents and staff of a long term care facility and adjacent acute-care hospital geriatric unit by multiresistant bacteria. Clin Microbiol Infect 2009;16:934–944.Google Scholar

27.Lautenbach, E, Han, J, Santana, E, Tolomeo, P, Bilker, W, Maslow, J. Colonization with extended-spectrum beta-lactamase-producing Escherichia coli and Klebsiella species in long-term care facility residents. Infect Cont Hosp Epidemiol 2012;33:302–304.Google Scholar

28.Yoo, J, Byeon, J, Yang, J, Yoo, J, Chung, G, Lee, Y. High prevalence of extended-spectrum β-lactamases and plasmid-mediate AmpC β-lactamases in Enterobacteriaceae isolated from long term care facilities in Korea. Diag Microbiol Infect Dis 2010;67:261–265.Google Scholar

29.Gaviria, D, Greenfield, V, Bixler, D, et al.Carbapenem-resistant Klebsiella pneumoniae associated with a long term-care facility, West Virginia, 2009–2011. MMWR Morb Mortal Wkly Rep 2011;60:1418–1420.Google Scholar

30.Won, S, Munoz-Price, LS, lolans, K, Hota, B, Weinstein, R, Hayden, M. Emergence and rapid regional spread of Klebsiella pneumoniae carbapenemase producing Enterobacteriaceae. Clin Infect Dis 2011;53:532–540.CrossRefGoogle ScholarPubMed

31.Wiener, J, Quinn, J, Bradford, P, et al.Multiple antibiotic-resistant Klebsiella and Escherichia coli in nursing homes. JAMA 1999;281:517–523.Google Scholar

32.Claesson, MJ, Jeffery, IB, Conde, S, et al.Gut microbiota composition correlates with diet and health in the elderly. Nature 2012;488:178–185.Google Scholar

33.Johnson, J, Porter, S, Zhanel, G, Kuskowski, M, Denamur, E. Virulence of Escherichia coli clinical isolates in a murine sepsis model in relation to sequence type ST131 status, fluoroquinolone resistance, and virulence genotype. Infect Immun 2012;80:1554–1562.CrossRefGoogle Scholar

34.Lavigne, J-P, Bergunst, AC, Goret, L, et al.Virulence potential and genomic mapping of the worldwide clone Escherichia coli ST131. PLOS ONE 2012;7:e34294.Google Scholar