American Mathematical Society (original) (raw)
Journals Home eContent Search About Mathematics of Computation Editorial Board Author and Submission Information Journal Policies Subscription Information Journal Email Notifications
Odd perfect numbers have at least nine distinct prime factors
HTML articles powered by AMS MathViewer
Math. Comp. 76 (2007), 2109-2126
DOI: https://doi.org/10.1090/S0025-5718-07-01990-4
Published electronically: May 9, 2007
Abstract:
An odd perfect number, NNN, is shown to have at least nine distinct prime factors. If 3nmidN3\nmid N3nmidN then NNN must have at least twelve distinct prime divisors. The proof ultimately avoids previous computational results for odd perfect numbers.
References
- A. Bang, Taltheoretiske Undersøgelser, Tidsskrift Math. 5 IV (1886), 70–80, 130–137.
- Geo. D. Birkhoff and H. S. Vandiver, On the integral divisors of an−bna^n-b^nan−bn, Ann. of Math. (2) 5 (1904), no. 4, 173–180. MR 1503541, DOI 10.2307/2007263
- R. P. Brent, G. L. Cohen, and H. J. J. te Riele, Improved techniques for lower bounds for odd perfect numbers, Math. Comp. 57 (1991), no. 196, 857–868. MR 1094940, DOI 10.1090/S0025-5718-1991-1094940-3
- Joseph E. Z. Chein, An odd perfect number has at least 8 prime factors, Ph.D. thesis, Pennsylvania State University, 1979.
- Graeme L. Cohen and Ronald M. Sorli, On the number of distinct prime factors of an odd perfect number, J. Discrete Algorithms 1 (2003), no. 1, 21–35. Combinatorial algorithms. MR 2016472, DOI 10.1016/S1570-8667(03)00004-2
- R. J. Cook, Bounds for odd perfect numbers, Number theory (Ottawa, ON, 1996) CRM Proc. Lecture Notes, vol. 19, Amer. Math. Soc., Providence, RI, 1999, pp. 67–71. MR 1684591, DOI 10.1090/crmp/019/07
- Leonard Eugene Dickson, Finiteness of the Odd Perfect and Primitive Abundant Numbers with nnn Distinct Prime Factors, Amer. J. Math. 35 (1913), no. 4, 413–422. MR 1506194, DOI 10.2307/2370405
- Otto Grün, Über ungerade vollkommene Zahlen, Math. Z. 55 (1952), 353–354 (German). MR 53123, DOI 10.1007/BF01181133
- Peter Hagis Jr., Outline of a proof that every odd perfect number has at least eight prime factors, Math. Comp. 35 (1980), no. 151, 1027–1032. MR 572873, DOI 10.1090/S0025-5718-1980-0572873-9
- Peter Hagis Jr., Sketch of a proof that an odd perfect number relatively prime to 333 has at least eleven prime factors, Math. Comp. 40 (1983), no. 161, 399–404. MR 679455, DOI 10.1090/S0025-5718-1983-0679455-1
- Kevin G. Hare, More on the total number of prime factors of an odd perfect number, Math. Comp. 74 (2005), no. 250, 1003–1008. MR 2114661, DOI 10.1090/S0025-5718-04-01683-7
- D. R. Heath-Brown, Odd perfect numbers, Math. Proc. Cambridge Philos. Soc. 115 (1994), no. 2, 191–196. MR 1277055, DOI 10.1017/S0305004100072030
- Douglas E. Iannucci, The second largest prime divisor of an odd perfect number exceeds ten thousand, Math. Comp. 68 (1999), no. 228, 1749–1760. MR 1651761, DOI 10.1090/S0025-5718-99-01126-6
- Douglas E. Iannucci, The third largest prime divisor of an odd perfect number exceeds one hundred, Math. Comp. 69 (2000), no. 230, 867–879. MR 1651762, DOI 10.1090/S0025-5718-99-01127-8
- Paul M. Jenkins, Odd perfect numbers have a prime factor exceeding 10710^7107, Math. Comp. 72 (2003), no. 243, 1549–1554. MR 1972752, DOI 10.1090/S0025-5718-03-01496-0
- Wilfrid Keller and Jörg Richstein, Solutions of the congruence ap−1equiv1pmodpra^{p-1}\equiv 1\pmod {p^r}ap−1equiv1pmodpr, Math. Comp. 74 (2005), no. 250, 927–936. MR 2114655, DOI 10.1090/S0025-5718-04-01666-7
- Masao Kishore, On odd perfect, quasiperfect, and odd almost perfect numbers, Math. Comp. 36 (1981), no. 154, 583–586. MR 606516, DOI 10.1090/S0025-5718-1981-0606516-3
- Masao Kishore, Odd perfect numbers not divisible by 333. II, Math. Comp. 40 (1983), no. 161, 405–411. MR 679456, DOI 10.1090/S0025-5718-1983-0679456-3
- Wayne L. McDaniel, The non-existence of odd perfect numbers of a certain form, Arch. Math. (Basel) 21 (1970), 52–53. MR 258723, DOI 10.1007/BF01220877
- Peter L. Montgomery, New solutions of ap−1equiv1pmodp2a^{p-1}\equiv 1\pmod {p^2}ap−1equiv1pmodp2, Math. Comp. 61 (1993), no. 203, 361–363. MR 1182246, DOI 10.1090/S0025-5718-1993-1182246-5
- Trygve Nagell, Introduction to Number Theory, John Wiley & Sons, Inc., New York; Almqvist & Wiksell, Stockholm, 1951. MR 43111
- Pace P. Nielsen, An upper bound for odd perfect numbers, Integers 3 (2003), A14, 9. MR 2036480
- Carl Pomerance, Odd perfect numbers are divisible by at least seven distinct primes, Acta Arith. 25 (1973/74), 265–300. MR 340169, DOI 10.4064/aa-25-3-265-300
- Carl Pomerance, Multiply perfect numbers, Mersenne primes, and effective computability, Math. Ann. 226 (1977), no. 3, 195–206. MR 439730, DOI 10.1007/BF01362422
- John Voight, On the nonexistence of odd perfect numbers, MASS selecta, Amer. Math. Soc., Providence, RI, 2003, pp. 293–300. MR 2027187
Similar Articles
- Retrieve articles in Mathematics of Computation with MSC (2000):11N25,11Y50
- Retrieve articles in all journals with MSC (2000):11N25,11Y50
Bibliographic Information
- Pace P. Nielsen
- Affiliation: Department of Mathematics, University of Iowa, Iowa City, Iowa 52242
- MR Author ID: 709329
- Email: pace_nielsen@hotmail.com
- Received by editor(s): April 1, 2006
- Received by editor(s) in revised form: September 1, 2006
- Published electronically: May 9, 2007
- © Copyright 2007 American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication. - Journal: Math. Comp. 76 (2007), 2109-2126
- MSC (2000): Primary 11N25; Secondary 11Y50
- DOI: https://doi.org/10.1090/S0025-5718-07-01990-4
- MathSciNet review: 2336286