Statistical methods for testing functional divergence after gene duplication. (original) (raw)
Journal Article
1Department of Zoology/Genetics, Iowa Computational Molecular Biology Laboratory, Iowa State University, Ames 50011, USA. xgu@iastate.edu
Search for other works by this author on:
Published:
01 December 1999
Navbar Search Filter Mobile Enter search term Search
Functional innovations after gene duplication may result in altered functional constraints between member gene clusters of a gene family. This type (type I) of functional divergence is measured by the coefficient of functional divergence (theta lambda), which can be interpreted as the decrease in rate correlation between gene clusters, or the probability that the evolutionary rate at a site is statistically independent between two gene clusters. A simple stochastic model has been developed for estimating theta lambda and testing its statistical significance. The current model includes the model of rate variation among sites as a special case when theta lambda = 0. Moreover, we have developed a site-specific profile based on the hidden Markov model to identify critical amino acid residues that are responsible for these functional differences between two gene clusters, which may have great potential in functional genomics.
This content is only available as a PDF.
Citations
Views
Altmetric
Metrics
Total Views 1,005
140 Pageviews
865 PDF Downloads
Since 1/1/2017
Month: | Total Views: |
---|---|
January 2017 | 3 |
February 2017 | 32 |
March 2017 | 1 |
April 2017 | 1 |
May 2017 | 19 |
June 2017 | 9 |
July 2017 | 6 |
August 2017 | 2 |
September 2017 | 9 |
October 2017 | 13 |
November 2017 | 6 |
December 2017 | 16 |
January 2018 | 19 |
February 2018 | 33 |
March 2018 | 35 |
April 2018 | 16 |
May 2018 | 4 |
June 2018 | 13 |
July 2018 | 9 |
August 2018 | 6 |
September 2018 | 6 |
October 2018 | 10 |
November 2018 | 16 |
December 2018 | 3 |
January 2019 | 12 |
February 2019 | 13 |
March 2019 | 17 |
April 2019 | 25 |
May 2019 | 16 |
June 2019 | 13 |
July 2019 | 14 |
August 2019 | 14 |
September 2019 | 10 |
October 2019 | 8 |
November 2019 | 11 |
December 2019 | 6 |
January 2020 | 4 |
February 2020 | 4 |
March 2020 | 12 |
April 2020 | 10 |
May 2020 | 8 |
June 2020 | 4 |
July 2020 | 9 |
August 2020 | 11 |
September 2020 | 18 |
October 2020 | 15 |
November 2020 | 9 |
December 2020 | 14 |
January 2021 | 6 |
February 2021 | 3 |
March 2021 | 11 |
April 2021 | 7 |
May 2021 | 4 |
June 2021 | 6 |
July 2021 | 8 |
August 2021 | 10 |
September 2021 | 11 |
October 2021 | 7 |
November 2021 | 10 |
December 2021 | 10 |
January 2022 | 12 |
February 2022 | 14 |
March 2022 | 10 |
April 2022 | 13 |
May 2022 | 10 |
June 2022 | 17 |
July 2022 | 4 |
August 2022 | 3 |
September 2022 | 7 |
October 2022 | 4 |
November 2022 | 10 |
December 2022 | 3 |
January 2023 | 7 |
February 2023 | 10 |
March 2023 | 7 |
April 2023 | 9 |
May 2023 | 16 |
June 2023 | 12 |
July 2023 | 3 |
August 2023 | 24 |
September 2023 | 7 |
October 2023 | 9 |
November 2023 | 10 |
December 2023 | 4 |
January 2024 | 10 |
February 2024 | 14 |
March 2024 | 25 |
April 2024 | 13 |
May 2024 | 19 |
June 2024 | 11 |
July 2024 | 8 |
August 2024 | 6 |
September 2024 | 9 |
October 2024 | 5 |
November 2024 | 3 |
Citations
378 Web of Science
×
Email alerts
Email alerts
Citing articles via
More from Oxford Academic