2020 International Society of Hypertension global... : Journal of Hypertension (original) (raw)

Table of Contents

SECTION 1. INTRODUCTION 983

SECTION 2. DEFINITION OF HYPERTENSION 984

SECTION 3. BLOOD PRESSURE MEASUREMENT AND DIAGNOSIS OF HYPERTENSION 984

SECTION 4. DIAGNOSTIC AND CLINICAL TESTS 986

SECTION 5. CARDIOVASCULAR RISK FACTORS 987

SECTION 6. HYPERTENSION-MEDIATED ORGAN DAMAGE 987

SECTION 7. EXACERBATORS AND INDUCERS OF HYPERTENSION 988

SECTION 8. TREATMENT OF HYPERTENSION 989

8.1 Lifestyle modification 989

8.2 Pharmacological treatment 989

8.3 Adherence to antihypertensive treatment 989

SECTION 9. COMMON AND OTHER COMORBIDITIES OF HYPERTENSION 992

SECTION 10. SPECIFIC CIRCUMSTANCES 994

10.1 Resistant hypertension 994

10.2 Secondary hypertension 994

10.3 Hypertension in pregnancy 994

10.4 Hypertensive emergencies 996

10.5 Ethnicity, race and hypertension 997

SECTION 11. RESOURCES 997

SECTION 12. HYPERTENSION MANAGEMENT AT A GLANCE 999

ACKNOWLEDGEMENTS 1001

REFERENCES 1001

SECTION 1: INTRODUCTION

Context and purpose of this guideline

Statement of remit: To align with its mission to reduce the global burden of raised blood pressure (BP), the International Society of Hypertension (ISH) has developed worldwide practice guidelines for the management of hypertension in adults, aged 18 years and older. The ISH Guidelines Committee extracted evidence-based content presented in recently published extensively reviewed guidelines and tailored ESSENTIAL and OPTIMAL standards of care in a practical format that is easy-to-use particularly not only in low-resource settings but also in high-resource settings- by clinicians, but also nurses and community health workers, as appropriate. Although distinction between low-resource and high-resource settings often refers to high (HIC) and low-income and middle-income countries (LMIC), it is well established that in HIC, there are areas with low-resource settings, and vice versa.

Herein optimal care refers to evidence-based standard-of-care articulated in recent guidelines [1,2] and summarized here, whereas essential standards recognize that optimal standards would not always be possible. Hence, essential standards refer to minimum standards of care. To allow specification of essential standards of care for low-resource settings, the Committee was often confronted with the limitation or absence in clinical evidence, and thus applied expert opinion.

In the Guidelines, differentiation between optimal and essential standards were not always possible, and were made in sections where it was most practical and sensible. The Guidelines Committee is also aware that some recommended essential standards may not be feasible in low-resource settings, for example, out-of-office BP measurements, the requirement of multiple visits for the diagnosis of hypertension, or advising the use of single pill combination therapy. Although challenging to implement, these guidelines may aid in local initiatives to motivate policy changes and serve as an instrument to drive local improvements in standards of care. Every effort should be made to achieve essential standards of care to reduce hypertension-induced cardiovascular morbidity and mortality.

Motivation: Raised BP remains the leading cause of death globally, accounting for 10.4 million deaths per year [3]. When reviewing global figures, an estimated 1.39 billion people had hypertension in 2010 [4]. However, BP trends show a clear shift of the highest BPs from high-income to low-income regions [5], with an estimated 349 million with hypertension in HIC and 1.04 billion in LMICs [4].

The large disparities in the regional burden of hypertension are accompanied by low levels of awareness, treatment, and control rates in LMIC, when compared with HIC. In response to poor global awareness for hypertension (estimated 67% in HIC and 38% in LMIC) [4], the ISH launched a global campaign to increase awareness of raised BP, namely the May Measurement Month initiative [6,7].

Despite several initiatives, the prevalence of raised BP and adverse impact on cardiovascular morbidity and mortality are increasing globally, irrespective of income [4,5]. It is, therefore, critical that population-based initiatives are applied to reduce the global burden of raised BP, such as salt-reduction activities and improving the availability of fresh fruit and vegetables. To improve the management of hypertension, the ISH has published in 2014 with the American Society of Hypertension, Clinical Practice Guidelines for the Management of Hypertension in the Community (see Section 11: Resources). Recently, we have observed a recent flurry of updated evidence-based guidelines arising mainly from high-income regions and countries, including the United States of America [2], Europe [1], United Kingdom [8], Canada [9], and Japan [10]. New developments include redefining hypertension [2], initiating treatment with a single pill combination therapy [1], advising wider out-of-office BP measurement [2,10], and lower BP targets [1,2,8,11,12].

Low-income and middle-income regions often follow the release of guidelines from high-income regions closely, as their resources and health systems to develop and implement local guidelines remain challenging. In Africa, only 25% of countries have hypertension guidelines [13], and in many instances, these guidelines are adopted from those of high-income regions. However, the adoption of guidelines from high-income regions are sometimes impractical as low-resource settings are confronted with a substantial number of obstacles including severe lack of trained healthcare professionals, unreliable electricity in rural clinics, low access to basic office BP devices and limited ability to conduct basic recommended diagnostic procedures and poor access to affordable high-quality medications. In both low-income and high-income regions, the ambiguities of latest guidelines are often met with confusion among health care providers, anxiety among patients [14], and they resulted in a call for global harmonization [15]. Guidelines from high-income regions may thus not fit global purpose [16].

Guideline development process: The 2020 ISH Global Hypertension Practice Guidelines were developed by the ISH Hypertension Guidelines Committee based on evidence criteria, (a) to be used globally; (b) to be fit for application in low-resource and high-resource settings by advising on essential and optimal standards; and (c) to be concise, simplified, and easy to use. They were critically reviewed and evaluated by numerous external hypertension experts from HIC and LMIC with expertise in the optimal management of hypertension and management in resource-constraint settings. These guidelines were developed without any support from industry or other sources.

Composition of the International Society of Hypertension Hypertension Guidelines Committee and Selection of External Reviewers: The ISH Hypertension Guidelines Committee was composed of members of the ISH Council; they were included on the basis of the following: specific expertise in different areas of hypertension; previous experience with the generation of hypertension guidelines, as well as representation of different regions of the world. A similar strategy was followed concerning the selection of external reviewers with particular consideration of representatives from LMICs.

SECTION 2: DEFINITION OF HYPERTENSION

T1

TABLE 1:

Classification of hypertension based on office blood pressure measurement

T2

TABLE 2:

Criteria for hypertension based on office blood pressure, ambulatory blood pressure, and home blood pressure measurement

SECTION 3: BLOOD PRESSURE MEASUREMENT AND DIAGNOSIS OF HYPERTENSION

ESSENTIAL

Hypertension diagnosis: office blood pressure measurement

T3

TABLE 3:

Recommendations for office blood pressure measurement

F1

FIGURE 1:

How to measure blood pressure.

T4

TABLE 4:

Blood pressure measurement plan according to office blood pressure levels

OPTIMAL

Hypertension diagnosis: office blood pressure measurement

Hypertension diagnosis: out-of-office blood pressure measurement

T5

TABLE 5:

Clinical use of home and ambulatory blood pressure monitoring

White-coat and masked hypertension

SECTION 4: DIAGNOSTIC/CLINICAL TESTS

ESSENTIAL

Medical history

Patients with hypertension are often asymptomatic; however, specific symptoms can suggest secondary hypertension or hypertensive complications that require further investigation. A complete medical and family history is recommended and should include [1]:

Physical examination

A thorough physical examination can assist with confirming the diagnosis of hypertension and the identification of HMOD and/or secondary hypertension and should include:

Laboratory investigations and ECG

OPTIMAL

Additional diagnostic tests

Additional investigations whenever indicated can be undertaken to assess and confirm suspicion of HMOD, co-existent diseases, or/and secondary hypertension.

Imaging techniques

Functional tests and additional laboratory investigations

SECTION 5: CARDIOVASCULAR RISK FACTORS

Diagnostic approach

ESSENTIAL

T6

TABLE 6:

Simplified classification of hypertension risk according to additional risk factors, hypertension-mediated organ damage, and previous diseasea

Other additional risk factors

SECTION 6: HYPERTENSION-MEDIATED ORGAN DAMAGE

Definition and role of hypertension-mediated organ damage in hypertension management

Hypertension-mediated organ damage (HMOD) is defined as the structural or functional alteration of the arterial vasculature and/or the organs it supplies that is caused by elevated BP. End organs include the brain, the heart, the kidneys, central and peripheral arteries, and the eyes.

While assessment of overall cardiovascular risk is important for the management of hypertension, additional detection of HMOD is unlikely to change the management of those patients already identified as high risk (i.e. those with established CVD, stroke, diabetes, CKD, or familial hypercholesterolemia). However, it can provide important therapeutic guidance on 1) management for hypertensive patients with low or moderate overall risk through re-classification because of presence of HMOD, and 2) preferential selection of drug treatment based on the specific impact on HMOD [1].

Specific aspects of hypertension-mediated organ damage and assessment

ESSENTIAL

The following assessments to detect HMOD should be performed routinely in all patients with hypertension:

OPTIMAL

All other techniques mentioned above can add value to optimize management of hypertension in affected individuals and should be considered wherever clinically indicated and available. Serial assessment of HMOD (LVH and albuminuria) to monitor regression with antihypertensive treatment may be helpful to determine the efficacy of treatment in individual patients but this has not been sufficiently validated for most measures of HMOD.

SECTION 7: EXACERBATORS AND INDUCERS OF HYPERTENSION

Background

Several medications and substances may increase BP or antagonize the BP-lowering effects of antihypertensive therapy in individuals (Table 7). It is important to note that the individual effect of these substances on BP can be highly variable with greater increases noted in the elderly, those with higher baseline BP, using antihypertensive therapy or with kidney disease.

ESSENTIAL OPTIMAL

T7

TABLE 7:

Drug/substance exacerbators and inducers of hypertension

SECTION 8: TREATMENT OF HYPERTENSION

8.1. Lifestyle modifications

Healthy lifestyle choices can prevent or delay the onset of high BP and can reduce cardiovascular risk [46]. Lifestyle modification is also the first line of antihypertensive treatment. Modifications in lifestyle can also enhance the effects of antihypertensive treatment. Lifestyle modifications should include the following (Table 8) [47–64].

T8

TABLE 8:

Lifestyle modifications

T9

TABLE 9:

Ideal characteristics of drug treatment

Seasonal blood pressure variation [65]

BP exhibits seasonal variation with lower levels at higher temperatures and higher at lower temperatures. Similar changes occur in people travelling from places with cold to hot temperature, or the reverse. A meta-analysis showed average BP decline in summer of 5/3 mmHg (systolic/diastolic). BP changes are larger in treated hypertensive patients and should be considered when symptoms suggesting over-treatment appear with temperature rise, or BP is increased during cold weather. BP below the recommended goal should be considered for possible down-titration, particularly if there are symptoms suggesting overtreatment.

8.2. Pharmacological treatment

Contemporary data from over 100 countries [66,67] suggest that on average, <50% of adults with hypertension receive BP-lowering medication, with few countries performing better than this and many worse. This is despite the fact that a difference in BP of 20/10 mmHg is associated with a 50% difference in cardiovascular risk [68].

The pharmacological treatment strategies recommended here (Figs. 2–4) are largely compatible with those made in the most recent United States [2] and European guidelines [1,8].

F2

FIGURE 2:

Pharmacological treatment of hypertension: general scheme. See Table 2 (Section 2) for equivalent BP levels based on ambulatory or home BP recordings.

F3

FIGURE 3:

Office blood pressure targets for treated hypertension.

F4

FIGURE 4:

ISH core drug-treatment strategy. Data from [69–73]. Ideal characteristics of drug treatment (see Table 9).

8.3. Adherence to antihypertensive treatment

Background

Adherence is defined as to the extent to which a person's behaviours, such as taking a medication, following a diet or executing lifestyle changes corresponds with agreed recommendations from a healthcare provider [74]. Nonadherence to antihypertensive treatment affects 10–80% of hypertensive patients and is one of the key drivers of suboptimal BP control [75–77]. Poor adherence to antihypertensive treatment correlates with the magnitude of BP elevation and is an indicator of poor prognosis in hypertensive patients [78–81]. The etiology of nonadherence to antihypertensive treatment is multifactorial and includes causes associated with the healthcare system, pharmacological therapy, the disease, patients, and their socioeconomic status [74].

Recommendations: adherence to antihypertensive therapy

ESSENTIAL OPTIMAL

SECTION 9: COMMON AND OTHER COMORBIDITIES AND COMPLICATIONS OF HYPERTENSION

Background

Common comorbidities and complications

Hypertension and coronary artery disease (CAD)

Hypertension and previous stroke

Hypertension and heart failure (HF)

Hypertension and chronic kidney disease (CKD)

Hypertension and chronic obstructive pulmonary disease (COPD)

HIV/AIDS

Management of comorbidities:

figure5

Diabetes

Lipid disorders

Metabolic syndrome (MS)

Other comorbidities

(see Table 10)

T10

TABLE 10:

Outline of evidence-based management of other comorbidities and hypertension

Hypertension and inflammatory rheumatic diseases (IRD)

Hypertension and psychiatric diseases

SECTION 10: SPECIFIC CIRCUMSTANCES

10.1. Resistant hypertension

Background

Resistant hypertension is defined as seated office BP >140/90 mmHg in a patient treated with three or more antihypertensive medications at optimal (or maximally tolerated) doses including a diuretic and after excluding pseudo-resistance (poor BP measurement technique, white-coat effect, nonadherence, and suboptimal choices in antihypertensive therapy) [104,105] as well as the substance/drug-induced hypertension and secondary hypertension [79]. Resistant hypertension affects around 10% of hypertensive individuals, has a negative impact on well-being [106] and increases the risk of coronary artery disease, chronic heart failure, stroke, end-stage renal disease, and all-cause mortality [107]. Approximately 50% of patients diagnosed with resistant hypertension have pseudoresistance rather than true resistant hypertension [104,105,108].

Recommendations:

ESSENTIAL
OPTIMAL

10.2. Secondary hypertension [116–121]

Background

A specific cause of secondary hypertension can be identified in 5–10% of hypertensive patients (Table 11). Early diagnosis of secondary hypertension and the institution of appropriate targeted treatment have the potential to cure hypertension in some patients or improve BP control/reduce the number of prescribed antihypertensive medications in others. The most common types of secondary hypertension in adults are renal parenchymal disease, renovascular hypertension, primary aldosteronism, chronic sleep apnea, and substance/drug-induced.

T11

TABLE 11:

Features of secondary hypertension

Recommendations:

ESSENTIAL
OPTIMAL

10.3. Hypertension in pregnancy [122–126]

Hypertension in pregnancy is a condition affecting 5–10% of pregnancies worldwide. Maternal risks include placental abruption, stroke, multiple organ failure (liver, kidney), disseminated vascular coagulation. Fetal risks include intrauterine growth retardation, preterm birth, intrauterine death. Hypertension in pregnancy includes the following conditions:

Blood pressure measurement in pregnancy

ESSENTIAL Office BP measurement following general guidelines. Take office BP measurement using a manual auscultatory device, or an automated upper-arm cuff device which has been validated specifically in pregnancy and pre-eclampsia (list of validated devices at www.stridebp.org).

OPTIMAL ABPM or home BP monitoring using devices validated specifically in pregnancy and pre-eclampsia to evaluate white coat hypertension, diabetes mellitus, nephropathy.

Investigation of hypertension in pregnancy

ESSENTIAL

Urine analysis, full blood count, liver enzymes, hematocrit, serum creatinine, and s-UA. Test for proteinuria in early pregnancy (pre-existing renal disease) and second half of pregnancy (pre-eclampsia). A dipstick test >1+ should be followed up with UACR in a single spot urine; UACR <30 mg/mmol excludes proteinuria.

OPTIMAL

Ultrasound of kidneys and adrenals, free plasma metanephrines (if clinical features of pheochromocytoma); Doppler ultrasound of uterine arteries (after 20 weeks of gestation is useful to detect those at higher risk of gestational hypertension, pre-eclampsia, and intrauterine growth retardation).

Prevention of pre-eclampsia:

Women at high risk (hypertension in previous pregnancy, CKD, autoimmune disease, diabetes, chronic hypertension), or moderate risk (first pregnancy in a woman >40, pregnancy interval >10 years, BMI >35 kg/m2, family history of pre-eclampsia, multiple pregnancies): 75–162 mg aspirin at weeks 12–36. Oral calcium supplementation of 1.5–2 g/day is recommended in women with low dietary intake (<600 mg/day).

Management of hypertension in pregnancy

Mild hypertension: drug treatment at persistent BP >150/95 mmHg in all women.

Drug treatment at persistent BP >140/90 mmHg in gestational hypertension, pre-existing hypertension with superimposed gestational hypertension; hypertension with subclinical HMOD at any time during pregnancy. First choices: Methyldopa, beta-blockers (labetalol), and dihydropyridine-calcium channel blockers (DHP-CCBs) [nifedipine (not capsular), nicardipine). Contraindicated: RAS Blockers (ACE-I, ARB, direct renin inhibitors (DRI)] because of adverse fetal and neonatal outcomes.

Severe hypertension: At BP >170 mmHg systolic and/or >110 mmHg diastolic: immediate hospitalization is indicated (emergency). Treatment with intravenous labetalol (alternative intravenous nicardipine, esmolol, hydralazine, urapidil), oral methyldopa or DHP-CCBs [nifedipine (not capsular) nicardipine]. Add magnesium (hypertensive crisis to prevent eclampsia). In pulmonary edema: Nitroglycerin intravenous infusion. Sodium-nitroprusside should be avoided because of the danger of fetal cyanide poisoning with prolonged treatment.

Delivery in gestational hypertension or pre-eclampsia: at week 37 in asymptomatic women. Expedite delivery in women with visual disturbances, haemostatic disorders.

Blood pressure postpartum: if hypertension persists, any of recommended drugs except methyldopa (postpartum depression).

Breastfeeding: all antihypertensives excreted into breast milk at low concentrations. Avoid atenolol, propranolol, nifedipine (high concentration in milk). Prefer long-acting CCBs. Refer to prescribing information.

Long-term consequences of gestational hypertension: increased risk of hypertension and CVD (stroke, ischemic heart disease) in later life.

ESSENTIAL Lifestyle adjustment

OPTIMAL Lifestyle adjustment and annual checkups (BP, metabolic factors)

10.4. Hypertensive emergencies

Definition of hypertensive emergencies and their clinical presentation

A hypertensive emergency is the association of substantially elevated BP with acute HMOD. Target organs include the retina, brain, heart, large arteries, and the kidneys [127]. This situation requires rapid diagnostic workup and immediate BP reduction to avoid progressive organ failure. Intravenous therapy is usually required. The choice of antihypertensive treatment is predominantly determined by the type of organ damage. Specific clinical presentations of hypertensive emergencies include:

Malignant hypertension: severe BP elevation (commonly >200/120 mmHg) associated with advanced bilateral retinopathy (hemorrhages, cotton wool spots, papilledema).

Hypertensive encephalopathy: severe BP elevation associated with lethargy, seizures, cortical blindness, and coma in the absence of other explanations.

Hypertensive thrombotic microangiopathy: severe BP elevation associated with haemolysis and thrombocytopenia in the absence of other causes and improvement with BP lowering therapy.

Other presentations of hypertensive emergencies include: severe BP elevation associated with cerebral hemorrhage, acute stroke, acute coronary syndrome, cardiogenic pulmonary edema, aortic aneurysm/dissection, and severe pre-eclampsia and eclampsia.

Patients with substantially elevated BP who lack acute HMOD are not considered a hypertensive emergency and can typically be treated with oral antihypertensive therapy [128].

Clinical presentation and diagnostic workup

The clinical presentation of a hypertensive emergency can vary and is mainly determined by the organ (s) acutely affected. There is no specific BP threshold to define a hypertensive emergency.

Symptoms include: headaches, visual disturbances, chest pain, dyspnoea, neurologic symptoms, dizziness and more unspecific presentations.

Medical history: pre-existing hypertension, onset and duration of symptoms, potential causes [nonadherence with prescribed antihypertensive drugs, lifestyle changes, concomitant use of BP-elevating drugs (NSAIDS, steroids, immune-suppressants, sympathomimetics, cocaine, anti-angiogenic therapy)].

ESSENTIAL Thorough physical examination: cardiovascular and neurologic assessment. Laboratory analysis: haemoglobin, platelets, creatinine, sodium, potassium, lactate dehydrogenase (LDH), haptoglobin, urinalysis for protein, urine sediment. Examinations: fundoscopy, ECG.

OPTIMAL Additional investigations may be required and indicated depending on presentation and clinical findings and may be essential in the context: Troponins (chest pain), chest X-ray (congestion/fluid overload), transthoracic echocardiogram (cardiac structure and function), CT/MRI brain (cerebral hemorrhage/stroke), CT-angiography thorax/abdomen (acute aortic disease). Secondary causes can be found in 20–40% of patients presenting with malignant hypertension [118] and appropriate diagnostic workup to confirm or exclude secondary forms is indicated.

Diagnostic tests and acute therapeutic management

The overall therapeutic goal in patients presenting with hypertensive emergencies is a controlled BP reduction to safer levels to prevent or limit further hypertensive damage while avoiding hypotension and related complications. There is a lack of randomized controlled trial data to provide clear cut guidance on BP targets and times within which these should be achieved. Most recommendations are based on expert consensus. The type of acute HMOD is the main determinant of the preferred treatment choice. The timeline and magnitude of BP reduction is strongly dependent on the clinical context. For example, acute pulmonary edema and aortic dissection require rapid BP reduction, whereas BP levels not exceeding 220/120 mmHg are generally tolerated in acute ischemic stroke for certain periods. Table 12 provides a general overview of timelines and BP targets as well as preferred antihypertensive drug choices with most common clinical presentations. Availability of drugs and local experience with individual drugs are likely to influence the choice of drugs. Labetalol and nicardipine are generally safe to use in all hypertensive emergencies and should be available wherever hypertensive emergencies are being managed. Nitroglycerine and nitroprusside are specifically useful in hypertensive emergencies including the heart and the aorta.

T12

TABLE 12:

Hypertensive Emergencies Requiring Immediate blood pressure lowering

Specific situations

Sympathetic hyperreactivity: If intoxication with amphetamines, sympathomimetics or cocain is suspected as cause of presentation with a hypertensive emergency, use of benzodiazepines should be considered prior to specific antihypertensive treatment. Phentolamine, a competitive alpha-receptor blocking agent and clonidine, a centrally sympatholytic agent with additional sedative properties are useful if additional BP-lowering therapy is required. Nicardipine and nitroprusside are suitable alternatives.

Pheochromocytoma: the adrenergic drive associated with pheochromocytoma responds well to phentolamine. Beta-blockers should only be used once alpha-blockers have been introduced to avoid acceleration of hypertension. Urapidil and nitroprusside are additional suitable options.

Pre-eclampsia/eclampsia: see section 10.3 ‘Hypertension in pregnancy’.

Follow-up

Patients who experienced a hypertensive emergency are at increased risk of cardiovascular and renal disease [129,130]. Thorough investigation of potential underlying causes and assessment of HMOD is mandatory to avoid recurrent presentations with hypertensive emergencies. Similarly, adjustment and simplification of antihypertensive therapy paired with advice for lifestyle modification will assist to improve adherence and long-term BP control. Regular and frequent follow-up (monthly) is recommended until target BP and ideally regression of HMOD has been achieved.

10.5. Ethnicity, race, and hypertension

Hypertension prevalence, treatment, and control rates vary significantly according to ethnicity. Such differences are mainly attributed to genetic differences, but lifestyle and socioeconomic status possibly filters through into health behaviours, such as diet – which appear to be major contributors.

Populations from African descent

Populations from Asia

SECTION 11: RESOURCES

Listings of validated electronic blood pressure devices that were independently assessed for accuracy:

Blood pressure management in pediatric populations:

SECTION 12: HYPERTENSION MANAGEMENT AT A GLANCE

F5

FIGURE 5:

International Society of Hypertension 2020: ESSENTIAL recommendations (minimum standards of care).

F6

FIGURE 6:

International Society of Hypertension 2020: OPTIMAL recommendations (evidence-based standards of care).

ACKNOWLEDGEMENTS

The authors are grateful to Elena Kaschina and Michél Strauss-Kruger for their help in preparing and editing this manuscript.

Conflicts of interest

The authors have no conflict of interest to declare, but declare lecture honoraria or consulting fees as follows: T.U., Bayer, Boehringer Ingelheim, Hexal, Vifor Pharma; C.B., Servier, Menarini, Merck Pharma, Novartis, Egis, Daichy Sankyo, Gilead; N.R.P., Servier, Pfizer, Sanofi, Eva Pharma; D.P., Torrent Pharmaceuticals; M.S., Medtronic, Abbott, Novartis, Servier, Pfizer, Boehringer-Ingelheim; G.S.S., AstraZeneca, Menarini, Pfizer, Servier; B.W., Vascular Dynamics USA Inc, Relypsa Inc. USA; Daiichi Sankyo, Pfizer, Servier, Novartis, Menarini, Omron; A.E.S., Omron, Novartis, Takeda, Servier, Abbott.

REFERENCES

1. Williams B, Mancia G, Spiering W, Agabiti Rosei E, Azizi M, Burnier M, et al. 2018 ESC/ESH Guidelines for the management of arterial hypertension: The Task Force for the management of arterial hypertension of the European Society of Cardiology and the European Society of Hypertension. J Hypertens 2018; 36:1953–2041.

2. Whelton PK, Carey RM, Aronow WS, Casey DE Jr, Collins KJ, Dennison Himmelfarb C, et al. 2017 ACC/AHA/AAPA/ABC/ACPM/AGS/APhA/ASH/ASPC/NMA/PCNA Guideline for the prevention, detection, evaluation, and management of high blood pressure in adults: a report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines. Hypertension 2018; 71:1269–1324.

3. Global Burden of Disease Risk Factor CollaboratorsGlobal, regional, and national comparative risk assessment of 84 behavioural, environmental and occupational, and metabolic risks or clusters of risks for 195 countries and territories, 1990-2017: a systematic analysis for the Global Burden of Disease Study 2017. Lancet 2018; 392:1923–1994.

4. Mills KT, Bundy JD, Kelly TN, Reed JE, Kearney PM, Reynolds K, et al. Global disparities of hypertension prevalence and control: a systematic analysis of population-based studies from 90 countries. Circulation 2016; 134:441–450.

5. Non-communicable Disease Risk Factor CollaborationWorldwide trends in blood pressure from 1975 to 2015: a pooled analysis of 1479 population-based measurement studies with 19.1 million participants. Lancet 2017; 389:37–55.

6. Beaney T, Burrell LM, Castillo RR, Charchar FJ, Cro S, Damasceno A, et al. MMM InvestigatorsMay Measurement Month 2018: a pragmatic global screening campaign to raise awareness of blood pressure by the International Society of Hypertension. Eur Heart J 2019; 40:2006–2017.

7. Beaney T, Schutte AE, Tomaszewski M, Ariti C, Burrell LM, Castillo RR, et al. May measurement month 2017: an analysis of blood pressure screening results worldwide. Lancet Glob Health 2018; 6:e736–e743.

8. Hypertension in adults: Diagnosis and management. NICE guideline [NG136]. August 2019. Available at: https://www.nice.org.uk/guidance/ng136.

9. Nerenberg KA, Zarnke KB, Leung AA, Dasgupta K, Butalia S, McBrien K, et al. Hypertension CanadaHypertension Canada's 2018 guidelines for diagnosis, risk assessment, prevention, and treatment of hypertension in adults and children. Can J Cardiol 2018; 34:506–525.

10. Umemura S, Arima H, Arima S, Asayama K, Dohi Y, Hirooka Y, et al. The Japanese Society of Hypertension Guidelines for the Management of Hypertension (JSH 2019). Hypertens Res 2019; 42:1235–1481.

11. Nakagawa N, Hasebe N. Impact of the 2017 American College of Cardiology/American Heart Association Blood Pressure Guidelines on the next blood pressure guidelines in Asia. Curr Hypertens Rep 2019; 21:2.

12. Kario K, Wang JG. Could 130/80 mm Hg be adopted as the diagnostic threshold and management goal of hypertension in consideration of the characteristics of Asian populations? Hypertension 2018; 71:979–984.

13. Dzudie A, Rayner B, Ojji D, Schutte AE, Twagirumukiza M, Damasceno A, et al. PASCAR Task Force on HypertensionRoadmap to achieve 25% hypertension control in Africa by 2025. Glob Heart 2018; 13:45–59.

14. Messerli FH, Bangalore S. The blood pressure landscape: Schism among guidelines, confusion among physicians, and anxiety among patients. J Am Coll Cardiol 2018; 72:1313–1316.

15. Rehan HS, Grover A, Hungin AP. Ambiguities in the guidelines for the management of arterial hypertension: Indian perspective with a call for global harmonization. Curr Hypertens Rep 2017; 19:17.

16. Poulter NR, Castillo R, Charchar FJ, Schlaich MP, Schutte AE, Tomaszewski M, et al. Are the American Heart Association/American College of Cardiology high blood pressure guidelines fit for global purpose?: thoughts from the International Society of Hypertension. Hypertension 2018; 72:260–262.

17. Stergiou GS, Palatini P, Asmar R, Bilo G, de la Sierra A, Head G, et al. Blood pressure monitoring: theory and practice. European Society of Hypertension Working Group on Blood Pressure Monitoring and Cardiovascular Variability Teaching Course Proceedings. Blood Press Monit 2018; 23:1–8.

18. Muntner P, Einhorn PT, Cushman WC, Whelton PK, Bello NA, Drawz PE, et al. Blood pressure assessment in adults in clinical practice and clinic-based research: JACC Scientific Expert Panel. J Am Coll Cardiol 2019; 73:317–335.

19. O’Brien E, Parati G, Stergiou G, Asmar R, Beilin L, Bilo G, et al. European Society of Hypertension Working Group on Blood Pressure MonitoringEuropean Society of Hypertension position paper on ambulatory blood pressure monitoring. J Hypertens 2013; 31:1731–1768.

20. Parati G, Stergiou GS, Asmar R, Bilo G, de Leeuw P, Imai Y, et al. ESH Working Group on Blood Pressure MonitoringEuropean Society of Hypertension guidelines for blood pressure monitoring at home: a summary report of the Second International Consensus Conference on Home Blood Pressure Monitoring. J Hypertens 2008; 26:1505–1526.

21. Kario K, Shin J, Chen CH, Buranakitjaroen P, Chia YC, Divinagracia R, et al. Expert panel consensus recommendations for ambulatory blood pressure monitoring in Asia: the HOPE Asia Network. J Clin Hypertens (Greenwich) 2019; 21:1250–1283.

22. Stergiou GS, O’Brien E, Myers M, Palatini P, Parati G. STRIDE BP Scientific Advisory BoardSTRIDE BP: an international initiative for accurate blood pressure measurement. J Hypertens 2019; 38:395–399.

23. Stergiou GS, Kyriakoulis KG, Kollias A. Office blood pressure measurement types: different methodology-different clinical conclusions. J Clin Hypertens 2018; 20:1683–1685.

24. Myers MG, Asmar R, Staessen JA. Office blood pressure measurement in the 21st century. J Clin Hypertens (Greenwich) 2018; 20:1104–1107.

25. Mancia G, Facchetti R, Bombelli M, Grassi G, Sega R. Long-term risk of mortality associated with selective and combined elevation in office, home, and ambulatory blood pressure. Hypertension 2006; 47:846–853.

26. Stergiou GS, Asayama K, Thijs L, Kollias A, Niiranen TJ, Hozawa A, et al. International Database on HOme blood pressure in relation to Cardiovascular Outcome (IDHOCO) InvestigatorsPrognosis of white-coat and masked hypertension: International Database of HOme blood pressure in relation to Cardiovascular Outcome. Hypertension 2014; 63:675–682.

27. Asayama K, Thijs L, Li Y, Gu YM, Hara A, Liu YP, et al. International Database on Ambulatory Blood Pressure in Relation to Cardiovascular Outcomes (IDACO) Investigators. Setting thresholds to varying blood pressure monitoring intervals differentially affects risk estimates associated with white-coat and masked hypertension in the population. Hypertension 2014; 64:935–942.

28. Lopez AD, Mathers CD, Ezzati M, Jamison DT, Murray CJ. Global and regional burden of disease and risk factors, 2001: systematic analysis of population health data. Lancet 2006; 367:1747–1757.

29. Tunstall-Pedoel H, Chen R, Kramarz P. Prevalence of individuals with both raised blood pressure and raised cholesterol in WHO MONICA project population surveys 1989–1997. Eur Heart J 2004; 25: (Suppl 1): 234.

30. Neaton JD, Wentworth D. Serum cholesterol, blood pressure, cigarette smoking, and death from coronary heart disease. Overall findings and differences by age for 316,099 white men. Multiple Risk Factor Intervention Trial Research Group. Arch Intern Med 1992; 152:56–64.

31. Rossi GP, Seccia TM, Maniero C, Pessina AC. Drug-related hypertension and resistance to antihypertensive treatment: a call for action. J Hypertens 2011; 29:2295–2309.

32. Aw T-J, Haas SJ, Liew D, Krum H. Meta-analysis of cyclooxygenase-2 inhibitors and their effects on blood pressure. Arch Intern Med 2005; 165:490–496.

33. Chasan-Taber L, Willett WC, Manson JE, Spiegelman D, Hunter DJ, Curhan G, et al. Prospective study of oral contraceptives and hypertension among women in the United States. Circulation 1996; 94:483–489.

34. Grossman E, Messerli FH. Drug-induced hypertension: an unappreciated cause of secondary hypertension. Am J Med 2012; 125:14–22.

35. Robert N, Wong GW, Wright JM. Effect of cyclosporine on blood pressure. Cochrane Database Syst Rev 2010; 1:CD007893.

36. Salerno SM, Jackson JL, Berbano EP. Effect of oral pseudoephedrine on blood pressure and heart rate: a meta-analysis. Arch Intern Med 2005; 165:1686–1694.

37. Licht CM, de Geus EJ, Seldenrijk A, van Hout HP, Zitman FG, van Dyck R, et al. Depression is associated with decreased blood pressure, but antidepressant use increases the risk for hypertension. Hypertension 2009; 53:631–638.

38. Zhong Z, Wang L, Wen X, Liu Y, Fan Y, Liu Z. A meta-analysis of effects of selective serotonin reuptake inhibitors on blood pressure in depression treatment: outcomes from placebo and serotonin and noradrenaline reuptake inhibitor controlled trials. Neuropsychiatr Dis Treat 2017; 13:2781–2796.

39. Plummer C, Michael A, Shaikh G, Stewart M, Buckley L, Miles T, et al. Expert recommendations on the management of hypertension in patients with ovarian and cervical cancer receiving bevacizumab in the UK. Br J Cancer 2019; 121:109–116.

40. Nduka CU, Stranges S, Sarki AM, Kimani PK, Uthman OA. Evidence of increased blood pressure and hypertension risk among people living with HIV on antiretroviral therapy: a systematic review with meta-analysis. J Hum Hypertens 2016; 30:355–362.

41. Krapf R, Hulter HN. Arterial hypertension induced by erythropoietin and erythropoiesis-stimulating agents (ESA). Clin J Am Soc Nephrol 2009; 4:470–480.

42. Vanmolkot FH, de Hoon JN. Acute effects of sumatriptan on aortic blood pressure, stiffness, and pressure waveform. Clin Pharmacol Ther 2006; 80:85–94.

43. Forman JP, Stampfer MJ, Curhan GC. Non-narcotic analgesic dose and risk of incident hypertension in US women. Hypertension 2005; 46:500–507.

44. Haller CA, Benowitz NL. Adverse cardiovascular and central nervous system events associated with dietary supplements containing ephedra alkaloids. N Engl J Med 2000; 343:1833–1838.

45. Penninkilampi R, Eslick EM, Eslick GD. The association between consistent licorice ingestion, hypertension and hypokalaemia: a systematic review and meta-analysis. J Hum Hypertens 2017; 31:699–707.

46. Piepoli MF, Hoes AW, Agewall S, Albus C, Brotons C, Catapano AL, ESC Scientific Document Group, et al. Authors/Task Force Members2016 European Guidelines on cardiovascular disease prevention in clinical practice: The Sixth Joint Task Force of the European Society of Cardiology and Other Societies on Cardiovascular Disease Prevention in Clinical Practice (constituted by representatives of 10 societies and by invited experts) Developed with the special contribution of the European Association for Cardiovascular Prevention & Rehabilitation (EACPR). Eur Heart J 2016; 37:2315–2381.

47. He FJ, Li J, Macgregor GA. Effect of longer term modest salt reduction on blood pressure: Cochrane systematic review and meta-analysis of randomised trials. BMJ 2013; 346:f1325.

48. Gay HC, Rao SG, Vaccarino V, Ali MK. Effects of different dietary interventions on blood pressure: systematic review and meta-analysis of randomized controlled trials. Hypertension 2016; 67:733–739.

49. Cicero AFG, Grassi D, Tocci G, Galletti F, Borghi C, Ferri C. Nutrients and nutraceuticals for the management of high normal blood pressure: an evidence-based consensus document. High Blood Press Cardiovasc Prev 2019; 26:9–25.

50. Xie C, Cui L, Zhu J, Wang K, Sun N, Sun C. Coffee consumption and risk of hypertension: a systematic review and dose-response meta-analysis of cohort studies. J Hum Hypertens 2018; 32:83–93.

51. Roerecke M, Kaczorowski J, Tobe SW, Gmel G, Hasan OSM, Rehm J. The effect of a reduction in alcohol consumption on blood pressure: a systematic review and meta-analysis. Lancet Public Health 2017; 2:e108–e120.

52. Alberti G, Zimmet P, Shaw J, Grundy SM. The IDF consensus worldwide definition of the metabolic syndrome. Brussels: International Diabetes Federation. 2006. Available at: https://www.idf.org/e-library/consensus-statements/60-idfconsensus-worldwide-definitionof-the-metabolic-syndrome.html.

53. Ashwell M, Gunn P, Gibson S. Waist-to-height ratio is a better screening tool than waist circumference and BMI for adult cardiometabolic risk factors: systematic review and meta-analysis. Obes Rev 2012; 13:275–286.

54. Browning LM, Hsieh SD, Ashwell M. A systematic review of waist-to-height ratio as a screening tool for the prediction of cardiovascular disease and diabetes: 0.5 could be a suitable global boundary value. Nutr Res Rev 2010; 23:247–269.

55. Global Burden of Disease Risk Factor CollaboratorsGlobal, regional, and national comparative risk assessment of 84 behavioural, environmental and occupational, and metabolic risks or clusters of risks, 1990–2016: a systematic analysis for the Global Burden of Disease Study 2016. Lancet 2017; 390:1345–1422.

56. Casonatto J, Goessler KF, Cornelissen VA, Cardoso JR, Polito MD. The blood pressure-lowering effect of a single bout of resistance exercise: a systematic review and meta-analysis of randomised controlled trials. Eur J Prev Cardiol 2016; 23:1700–1714.

57. Costa EC, Hay JL, Kehler DS, Boreskie KF, Arora RC, Umpierre D, et al. Effects of high-intensity interval training versus moderate-intensity continuous training on blood pressure in adults with pre-to established hypertension: a systematic review and meta-analysis of randomized trials. Sports Med 2018; 48:2127–2142.

58. Cornelissen VA, Smart NA. Exercise training for blood pressure: a systematic review and meta-analysis. J Am Heart Assoc 2013; 2:e004473.

59. Matthews KA, Katholi CR, McCreath H, Whooley MA, Williams DR, Zhu S, et al. Blood pressure reactivity to psychological stress predicts hypertension in the CARDIA study. Circulation 2004; 110:74–78.

60. Solano Lopez AL. Effectiveness of the mindfulness-based stress reduction program on blood pressure: A systematic review of literature. Worldviews Evid Based Nurs 2018; 15:344–352.

61. Wang J, Xiong X. Evidence-based chinese medicine for hypertension. Evid Based Complement Alternat Med 2013; 2013:978398.

62. Liwa AC, Smart LR, Frumkin A, Epstein HA, Fitzgerald DW, Peck RN. Traditional herbal medicine use among hypertensive patients in sub-Saharan Africa: a systematic review. Curr Hypertens Rep 2014; 16:437.

63. Giorgini P, Di Giosia P, Grassi D, Rubenfire M, Brook RD, Ferri C. Air pollution exposure and blood pressure: an updated review of the literature. Curr Pharm Des 2016; 22:28–51.

64. Fedak KM, Good N, Walker ES, Balmes J, Brook RD, Clark ML, et al. Acute effects on blood pressure following controlled exposure to cookstove air pollution in the STOVES Study. J Am Heart Assoc 2019; 8:e012246.

65. Stergiou GS, Palatini P, Modesti PA, Asayama K, Asmar R, Bilo G, et al. Seasonal variation in blood pressure: evidence, consensus and recommendations for clinical practice. Consensus statement by the European Society of Hypertension Working Group on Blood Pressure Monitoring and Cardiovascular Variability. J Hypertens 2020; [Epub ahead of print].

66. Geldsetzer P, Manne-Goehler J, Marcus ME, Ebert C, Zhumadilov Z, Wesseh CS, et al. The state of hypertension care in 44 low-income and middle-income countries: a cross-sectional study of nationally representative individual-level data from 1.1 million adults. Lancet 2019; 394:652–662.

67. Non-communicable Disease Risk Factor CollaborationLong-term and recent trends in hypertension awareness, treatment, and control in 12 high-income countries: an analysis of 123 nationally representative surveys. Lancet 2019; 394:639–651.

68. Lewington S, Clarke R, Qizilbash N, Peto R, Collins R. Prospective Studies CollaborationAge-specific relevance of usual blood pressure to vascular mortality: a meta-analysis of individual data for one million adults in 61 prospective studies. Lancet 2002; 360:1903–1913.

69. Dahlof B, Sever PS, Poulter NR, Wedel H, Beevers DG, Caulfield M, et al. ASCOT InvestigatorsPrevention of cardiovascular events with an antihypertensive regimen of amlodipine adding perindopril as required versus atenolol adding bendroflumethiazide as required, in the Anglo-Scandinavian Cardiac Outcomes Trial-Blood Pressure Lowering Arm (ASCOT-BPLA): a multicentre randomised controlled trial. Lancet 2005; 366:895–906.

70. Jamerson K, Weber MA, Bakris GL, Dahlof B, Pitt B, Shi V, et al. Benazepril plus amlodipine or hydrochlorothiazide for hypertension in high-risk patients. N Engl J Med 2008; 359:2417–2428.

71. Williams B, MacDonald TM, Morant S, Webb DJ, Sever P, McInnes G, et al. British Hypertension Society's PATHWAY Studies GroupSpironolactone versus placebo, bisoprolol, and doxazosin to determine the optimal treatment for drug-resistant hypertension (PATHWAY-2): a randomised, double-blind, crossover trial. Lancet 2015; 386:2059–2068.

72. Chapman N, Chang CL, Dahlof B, Sever PS, Wedel H, Poulter NR. ASCOT InvestigatorsEffect of doxazosin gastrointestinal therapeutic system as third-line antihypertensive therapy on blood pressure and lipids in the Anglo-Scandinavian Cardiac Outcomes Trial. Circulation 2008; 118:42–48.

73. Ojji DB, Mayosi B, Francis V, Badri M, Cornelius V, Smythe W, et al. CREOLE Study InvestigatorsComparison of dual therapies for lowering blood pressure in black Africans. N Engl J Med 2019; 380:2429–2439.

74. Sabaté E. Adherence to long-term therapies: evidence for action. Geneva:World Health Organization; 2003.

75. Tomaszewski M, White C, Patel P, Masca N, Damani R, Hepworth J, et al. High rates of non-adherence to antihypertensive treatment revealed by high-performance liquid chromatography-tandem mass spectrometry (HP LC-MS/MS) urine analysis. Heart 2014; 100:855–861.

76. Mazzaglia G, Ambrosioni E, Alacqua M, Filippi A, Sessa E, Immordino V, et al. Adherence to antihypertensive medications and cardiovascular morbidity among newly diagnosed hypertensive patients. Circulation 2009; 120:1598–1605.

77. Corrao G, Parodi A, Nicotra F, Zambon A, Merlino L, Cesana G, et al. Better compliance to antihypertensive medications reduces cardiovascular risk. J Hypertens 2011; 29:610–618.

78. Gupta P, Patel P, Strauch B, Lai FY, Akbarov A, Maresova V, et al. Risk factors for nonadherence to antihypertensive treatment. Hypertension 2017; 69:1113–1120.

79. Wei FF, Zhang ZY, Huang QF, Staessen JA. Diagnosis and management of resistant hypertension: state of the art. Nat Rev Nephrol 2018; 14:428–441.

80. Gupta P, Patel P, Horne R, Buchanan H, Williams B, Tomaszewski M. How to screen for non-adherence to antihypertensive therapy. Curr Hypertens Rep 2016; 18:89.

81. Abegaz TM, Shehab A, Gebreyohannes EA, Bhagavathula AS, Elnour AA. Nonadherence to antihypertensive drugs: a systematic review and meta-analysis. Medicine (Baltimore) 2017; 96:e5641.

82. Conn VS, Ruppar TM. Medication adherence outcomes of 771 intervention trials: Systematic review and meta-analysis. Prev Med 2017; 99:269–276.

83. Conn VS, Ruppar TM, Chase JA, Enriquez M, Cooper PS. Interventions to improve medication adherence in hypertensive patients: Systematic review and meta-analysis. Curr Hypertens Rep 2015; 17:94.

84. Verma AA, Khuu W, Tadrous M, Gomes T, Mamdani MM. Fixed-dose combination antihypertensive medications, adherence, and clinical outcomes: a population-based retrospective cohort study. PLoS Med 2018; 15:e1002584.

85. Gupta P, Patel P, Strauch B, Lai FY, Akbarov A, Gulsin GS, et al. Biochemical screening for nonadherence is associated with blood pressure reduction and improvement in adherence. Hypertension 2017; 70:1042–1048.

86. Ruppar TM, Dunbar-Jacob JM, Mehr DR, Lewis L, Conn VS. Medication adherence interventions among hypertensive black adults: a systematic review and meta-analysis. J Hypertens 2017; 35:1145–1154.

87. Costa E, Giardini A, Savin M, Menditto E, Lehane E, Laosa O, et al. Interventional tools to improve medication adherence: review of literature. Patient Prefer Adherence 2015; 9:1303–1314.

88. Yusuf S, Hawken S, Ounpuu S, Dans T, Avezum A, Lanas F, et al. INTERHEART Study InvestigatorsEffect of potentially modifiable risk factors associated with myocardial infarction in 52 countries (the INTERHEART study): case-control study. Lancet 2004; 364:937–952.

89. Mach F, Baigent C, Catapano AL, Koskinas KC, Casula M, Badimon L, et al. 2019 ESC/EAS Guidelines for the management of dyslipidaemias: lipid modification to reduce cardiovascular risk. Eur Heart J 2020; 41:111–188.

90. O’Donnell MJ, Xavier D, Liu L, Zhang H, Chin SL, Rao-Melacini P, et al. Risk factors for ischaemic and intracerebral haemorrhagic stroke in 22 countries (the INTERSTROKE study): a case-control study. Lancet 2010; 376:112–123.

91. Bohm M, Young R, Jhund PS, Solomon SD, Gong J, Lefkowitz MP, et al. Systolic blood pressure, cardiovascular outcomes and efficacy and safety of sacubitril/valsartan (LCZ696) in patients with chronic heart failure and reduced ejection fraction: results from PARADIGM-HF. Eur Heart J 2017; 38:1132–1143.

92. Drawz PE, Alper AB, Anderson AH, Brecklin CS, Charleston J, Chen J, et al. Masked hypertension and elevated nighttime blood pressure in CKD: prevalence and association with target organ damage. Clin J Am Soc Nephrol 2016; 11:642–652.

93. Farsang C, Kiss I, Tykarski A, Narkiewicz K. Treatment of hypertension in patients with chronic obstructive pulmonary disease (COPD). European Society of Hypertension Scientific Newsletter 2016; 17:62.

94. Borghi C, Rosei EA, Bardin T, Dawson J, Dominiczak A, Kielstein JT, et al. Serum uric acid and the risk of cardiovascular and renal disease. J Hypertens 2015; 33:1729–1741.

95. Arnett DK, Blumenthal RS, Albert MA, Buroker AB, Goldberger ZD, Hahn EJ, et al. 2019 ACC/AHA Guideline on the primary prevention of cardiovascular disease: a report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines. J Am Coll Cardiol 2019; 74:1376–1414.

96. American Diabetes AssociationStandards of medical care in diabetes 2017. Diabetes Care 2017; 40: (Suppl 1): S1–S135.

97. Sever PS, Dahlof B, Poulter NR, Wedel H, Beevers G, Caulfield M, et al. ASCOT InvestigatorsPrevention of coronary and stroke events with atorvastatin in hypertensive patients who have average or lower-than-average cholesterol concentrations, in the Anglo-Scandinavian Cardiac Outcomes Trial--Lipid Lowering Arm (ASCOT-LLA): a multicentre randomised controlled trial. Lancet 2003; 361:1149–1158.

98. Nordestgaard BG. Triglyceride-rich lipoproteins and atherosclerotic cardiovascular disease: new insights from epidemiology, genetics, and biology. Circ Res 2016; 118:547–563.

99. Agca R, Heslinga SC, Rollefstad S, Heslinga M, McInnes IB, Peters MJ, et al. EULAR recommendations for cardiovascular disease risk management in patients with rheumatoid arthritis and other forms of inflammatory joint disorders: 2015/2016 update. Ann Rheum Dis 2017; 76:17–28.

100. Ikdahl E, Wibetoe G, Rollefstad S, Salberg A, Bergsmark K, Kvien TK, et al. Guideline recommended treatment to targets of cardiovascular risk is inadequate in patients with inflammatory joint diseases. Int J Cardiol 2019; 274:311–318.

101. Musselman DL, Evans DL, Nemeroff CB. The relationship of depression to cardiovascular disease: epidemiology, biology, and treatment. Arch Gen Psychiatry 1998; 55:580–592.

102. Patten SB, Williams JV, Lavorato DH, Campbell NR, Eliasziw M, Campbell TS. Major depression as a risk factor for high blood pressure: epidemiologic evidence from a national longitudinal study. Psychosom Med 2009; 71:273–279.

103. Siwek M, Woroń J, Gorostowicz A, Wordliczek J. Adverse effects of interactions between antipsychotics and medications used in the treatment of cardiovascular disorders. Pharmacol Rep 2020; doi: 10.1007/s43440-020-00058-6. [Epub ahead of print].

104. Bhatt H, Siddiqui M, Judd E, Oparil S, Calhoun D. Prevalence of pseudoresistant hypertension due to inaccurate blood pressure measurement. J Am Soc Hypertens 2016; 10:493–499.

105. de Jager RL, van Maarseveen EM, Bots ML, Blankestijn PJ. SYMPATHY investigatorsMedication adherence in patients with apparent resistant hypertension: Findings from the SYMPATHY trial. Br J Clin Pharmacol 2018; 84:18–24.

106. Vongpatanasin W. Resistant hypertension: a review of diagnosis and management. JAMA 2014; 311:2216–2224.

107. Ayala DE, Hermida RC, Mojon A, Fernandez JR. Cardiovascular risk of resistant hypertension: dependence on treatment-time regimen of blood pressure-lowering medications. Chronobiol Int 2013; 30:340–352.

108. Nazarzadeh M, Pinho-Gomes AC, Rahimi K. Resistant hypertension in times of changing definitions and treatment recommendations. Heart 2019; 105:96–97.

109. Rossignol P, Massy ZA, Azizi M, Bakris G, Ritz E, Covic A, et al. ERA-EDTA EURECA-m working groupThe double challenge of resistant hypertension and chronic kidney disease. Lancet 2015; 386:1588–1598.

110. Williams B, MacDonald TM, Morant SV, Webb DJ, Sever P, McInnes GT, et al. Endocrine and haemodynamic changes in resistant hypertension, and blood pressure responses to spironolactone or amiloride: the PATHWAY-2 mechanisms substudies. Lancet Diabetes Endocrinol 2018; 6:464–475.

111. Sinnott SJ, Tomlinson LA, Root AA, Mathur R, Mansfield KE, Smeeth L, Douglas IJ. Comparative effectiveness of fourth-line anti-hypertensive agents in resistant hypertension: a systematic review and meta-analysis. Eur J Prev Cardiol 2017; 24:228–238.

112. Krieger EM, Drager LF, Giorgi DMA, Pereira AC, Barreto-Filho JAS, Nogueira AR, et al. ReHOT InvestigatorsSpironolactone versus clonidine as a fourth-drug therapy for resistant hypertension: the ReHOT Randomized Study (Resistant Hypertension Optimal Treatment). Hypertension 2018; 71:681–690.

113. Brown MJ, Williams B, Morant SV, Webb DJ, Caulfield MJ, Cruickshank JK, et al. Effect of amiloride, or amiloride plus hydrochlorothiazide, versus hydrochlorothiazide on glucose tolerance and blood pressure (PATHWAY-3): a parallel-group, double-blind randomised phase 4 trial. Lancet Diabetes Endocrinol 2016; 4:136–147.

114. Manolis AA, Manolis TA, Melita H, Manolis AS. Eplerenone versus spironolactone in resistant hypertension: an efficacy and/or cost or just a men's issue? Curr Hypertens Rep 2019; 21:22.

115. Denker MG, Haddad DB, Townsend RR, Cohen DL. Blood pressure control 1 year after referral to a hypertension specialist. J Clin Hypertens 2013; 15:624–629.

116. Funder JW, Carey RM, Mantero F, Murad MH, Reincke M, Shibata H, et al. The management of primary aldosteronism: case detection, diagnosis, and treatment. An Endocrine Society clinical practice guideline. J Clin Endocrinol Metab 2016; 101:1889–1916.

117. Gornik HL, Persu A, Adlam D, Aparicio LS, Azizi M, Boulanger M, et al. First international consensus on the diagnosis and management of fibromuscular dysplasia. J Hypertens 2019; 37:229–252.

118. Nieman LK, Biller BM, Findling JW, Newell-Price J, Savage MO, Stewart PM, Montori VM. The diagnosis of Cushing's syndrome: an Endocrine Society clinical practice guideline. J Clin Endocrinol Metab 2008; 93:1526–1540.

119. Rimoldi SF, Scherrer U, Messerli FH. Secondary arterial hypertension: when, who, and how to screen? Eur Heart J 2014; 35:1245–1254.

120. Viera AJ, Neutze DM. Diagnosis of secondary hypertension: an age-based approach. Am Fam Physician 2010; 82:1471–1478.

121. Borgel J, Springer S, Ghafoor J, Arndt D, Duchna HW, Barthel A, et al. Unrecognized secondary causes of hypertension in patients with hypertensive urgency/emergency: prevalence and co-prevalence. Clin Res Cardiol 2010; 99:499–506.

122. Regitz-Zagrosek V, Roos-Hesselink JW, Bauersachs J, Blomström-Lundqvist C, Cífková R, De Bonis M, et al. 2018 ESC Guidelines for the management of cardiovascular diseases during pregnancy: the Task Force for the Management of Cardiovascular Diseases during Pregnancy of the European Society of Cardiology (ESC). Eur Heart J 2018; 39:3165–3241.

123. American College of Obstetricians and GynecologistsHypertension in pregnancy. Report of the American College of Obstetricians and Gynecologists’ Task Force on Hypertension in Pregnancy. Obstet Gynecol 2013; 122:1122–1131.

124. Lowe SA, Bowyer L, Lust K, McMahon LP, Morton MR, North RA, et al. Society of Obstetric Medicine of Australia and New ZealandThe SOMANZ guidelines for the management of hypertensive disorders of pregnancy 2014. Aust N Z J Obstet Gynaecol 2015; 55:11–16.

125. Rolnik DL, Wright D, Poon LC, O’Gorman N, Syngelaki A, de Paco Matallana C, et al. Aspirin versus placebo in pregnancies at high risk for preterm preeclampsia. N Engl J Med 2017; 377:613–622.

126. Abalos E, Duley L, Steyn DW. Antihypertensive drug therapy for mild to moderate hypertension during pregnancy. Cochrane Database Syst Rev 2014; 2:CD002252.

127. van den Born BH, Lip GYH, Brguljan-Hitij J, Cremer A, Segura J, Morales E, et al. ESC Council on hypertension position document on the management of hypertensive emergencies. Eur Heart J Cardiovasc Pharmacother 2019; 5:37–46.

128. van den Born BJ, Koopmans RP, Groeneveld JO, van Montfrans GA. Ethnic disparities in the incidence, presentation and complications of malignant hypertension. J Hypertens 2006; 24:2299–2304.

129. Amraoui F, Van Der Hoeven NV, Van Valkengoed IG, Vogt L, Van Den Born BJ. Mortality and cardiovascular risk in patients with a history of malignant hypertension: a case-control study. J Clin Hypertens (Greenwich) 2014; 16:122–126.

130. Gonzalez R, Morales E, Segura J, Ruilope LM, Praga M. Long-term renal survival in malignant hypertension. Nephrol Dial Transplant 2010; 25:3266–3272.

131. Tarver-Carr ME, Powe NR, Eberhardt MS, LaVeist TA, Kington RS, Coresh J, et al. Excess risk of chronic kidney disease among African-American versus white subjects in the United States: a population-based study of potential explanatory factors. J Am Soc Nephrol 2002; 13:2363–2370.

132. Benjamin EJ, Muntner P, Alonso A, Bittencourt MS, Callaway CW, Carson AP, et al. Heart disease and stroke statistics-2019 update: a report from the American Heart Association. Circulation 2019; 139:e56–e528.

133. van Rooyen JM, Poglitsch M, Huisman HW, Mels C, Kruger R, Malan L, et al. Quantification of systemic renin-angiotensin system peptides of hypertensive black and white African men established from the RAS-Fingerprint(R). J Renin Angiotensin Aldosterone Syst 2016; 17: pii: 1470320316669880.

134. Opie LH, Seedat YK. Hypertension in Sub-Saharan African populations. Circulation 2005; 112:3562–3568.

135. Bochud M, Staessen JA, Maillard M, Mazeko MJ, Kuznetsova T, Woodiwiss A, et al. Ethnic differences in proximal and distal tubular sodium reabsorption are heritable in black and white populations. J Hypertens 2009; 27:606–612.

136. Huisman HW, Schutte AE, Schutte R, van Rooyen JM, Fourie CM, Mels CM, et al. Exploring the link between cardiovascular reactivity and end-organ damage in African and Caucasian men: the SABPA study. Am J Hypertens 2013; 26:68–75.

137. Mokwatsi GG, Schutte AE, Kruger R. Ethnic differences regarding arterial stiffness of 6-8-year-old black and white boys. J Hypertens 2017; 35:960–967.

138. Brewster LM, van Montfrans GA, Oehlers GP, Seedat YK. Systematic review: antihypertensive drug therapy in patients of African and South Asian ethnicity. Intern Emerg Med 2016; 11:355–374.

139. Kostis JB, Kim HJ, Rusnak J, Casale T, Kaplan A, Corren J, Levy E. Incidence and characteristics of angigra associated with enalapril. Arch Intern Med 2005; 165:1637–1642.

140. Hoshide S, Kario K, de la Sierra A, Bilo G, Schillaci G, Banegas JR, et al. Ethnic differences in the degree of morning blood pressure surge and in its determinants between Japanese and European hypertensive subjects: data from the ARTEMIS study. Hypertension 2015; 66:750–756.

141. Anchala R, Kannuri NK, Pant H, Khan H, Franco OH, Di Angelantonio E, Prabhakaran D. Hypertension in India: a systematic review and meta-analysis of prevalence, awareness, and control of hypertension. J Hypertens 2014; 32:1170–1177.

142. Wang Z, Chen Z, Zhang L, Wang X, Hao G, Zhang Z, et al. China Hypertension Survey InvestigatorsStatus of hypertension in China: results from the China hypertension survey, 2012–2015. Circulation 2018; 137:2344–2356.

Keywords:

hypertension diagnosis; hypertension guidelines; hypertension treatment; hypertension

Copyright © 2020 Wolters Kluwer Health, Inc. All rights reserved.