Isolation and characterization of Drosophila cAMP-dependent protein kinase genes. (original) (raw)

  1. D Kalderon and
  2. G M Rubin
  3. Howard Hughes Medical Institute, Department of Biochemistry, University of California, Berkeley 94720.

Abstract

We have used mammalian probes to clone genes encoding the catalytic (C) and type I regulatory (RI) components of the cAMP-dependent protein kinase in Drosophila. Both Drosophila gene products are very similar in amino acid sequence (RI, 71%; C, 82%) to their respective mammalian counterparts, implying homologous activity. A single Drosophila type I regulatory subunit gene is the source of at least three distinct transcripts originating from different promoters and spliced to a common body that would encode a full-length analog and two amino-terminally truncated variants of the mammalian RI protein. The RI locus also includes two intronic genes of unknown function. A single highly conserved catalytic subunit gene (DC0) was found that codes for a single polypeptide. It was used to isolate 11 further more distantly related apparent protein kinase genes. Two of these genes (DC1 and DC2) are sufficiently similar to DC0 in sequence (45% and 49% amino acid identity, respectively) that they could conceivably encode products of overlapping function. Two further genes are very similar in sequence to bovine cGMP-dependent protein kinase. The remaining putative gene products include amino acid sequence motifs characteristic of serine-threonine protein kinases but cannot, from the available data, be defined as homologous to specific protein kinases of other organisms.

Footnotes