V(D)J recombination: a functional definition of the joining signals. (original) (raw)
- J E Hesse,
- M R Lieber,
- K Mizuuchi, and
- M Gellert
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, Maryland 20892.
Abstract
Two conserved DNA sequences serve as joining signals in the assembly of immunoglobulins and T-cell receptors from V-, (D)-, and J-coding segments during lymphoid differentiation. We have examined V(D)J recombination as a function of joining signal sequence. Plasmid substrates with mutations in one or both of the heptamer-spacer-nonamer sequences were tested for recombination in a pre-B-cell line active in V(D)J recombination. No signal variant recombines more efficiently than the consensus forms of the joining signals. We find the heptamer sequence to be the most important; specifically, the three bases closest to the recombination crossover site are critical. The nonamer is not as rigidly defined, and it is not important to maintain the five consecutive As that distinguish the consensus nonamer sequence. Both types of signals display very similar sequence requirements and have in common an intolerance for changes in spacer length greater than 1 bp. Although the two signal types share sequence motifs, we find no evidence of a role in recombination for homology between the signals, suggesting that they serve primarily as protein recognition and binding sites.