Lotharmeyerite, Ca(Zn,Mn)2(AsO4)2(H2O,OH)2 (original) (raw)

inorganic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logo CRYSTALLOGRAPHICCOMMUNICATIONS

ISSN: 2056-9890

Open Open Access access

aDepartment of Chemsitry and Biochemistry, University of Arizona, 1306 E. University Blvd., Tucson, Arizona 85721-0041, USA, and bDepartment of Geosciences, University of Arizona, 1040 E. 4th Street, Tucson, Arizona 85721-0077, USA
*Correspondence e-mail: ywyang@email.arizona.edu

(Received 5 December 2011; accepted 16 December 2011; online 23 December 2011)

Lotharmeyerite, calcium bis­(zinc/manganese) bis­(arsenate) bis­(hydroxide/hydrate), Ca(Zn,Mn3+)2(AsO4)2(H2O,OH)2, is a member of the natrochalcite group of minerals, which are characterized by the general formula _AM_2(_X_O4)2(H2O,OH)2, where A may be occupied by Pb2+, Ca2+, Na+, and Bi3+, M by Fe3+, Mn3+, Cu2+, Zn2+, Co2+, Ni2+, Al3+, and Mg2+, and X by PV, AsV, VV, and SVI. The minerals in the group display either monoclinic or triclinic symmetry, depending on the ordering of chemical components in the M site. Based on single-crystal X-ray diffraction data of a sample from the type locality, Mapimi, Durango, Mexico, this study presents the first structure determination of lotharmeyerite. Lotharmeyerite is isostructural with natrochalcite and tsumcorite. The structure is composed of rutile-type chains of edge-shared _M_O6 octa­hedra (site symmetry [\overline1]) extending along [010], which are inter­connected by _X_O4 tetra­hedra (site symmetry 2) and hydrogen bonds to form [_M_2(_X_O4)2(OH,H2O)2] sheets parallel to (001). These sheets are linked by the larger A cations (site symmetry 2/m), as well as by hydrogen bonds. Bond-valence sums for the M cation, calculated with the parameters for Mn3+ and Mn2+ are 2.72 and 2.94 v.u., respectively, consistent with the occupation of the M site by Mn3+. Two distinct hydrogen bonds are present, one with O⋯O = 2.610 (4) Å and the other O⋯O = 2.595 (3) Å. One of the H-atom positions is disordered over two sites with 50% occupancy, in agreement with observations for other natrochalcite-type minerals, such as natrochalcite and tsumcorite.

Experimental

Crystal data
Data collection
Refinement

Table 1
Hydrogen-bond geometry (Å, °)

D_—H⋯_A _D_—H H⋯A D_⋯_A D_—H⋯_A
O1—H1⋯O1i 0.82 (7) 1.79 (8) 2.610 (4) 177 (11)
O1—H2⋯O4ii 0.66 (5) 1.95 (5) 2.595 (3) 163 (6)
Symmetry codes: (i) ; (ii) [-x+{\script{1\over 2}}, -y+{\script{1\over 2}}, -z].

Data collection: APEX2 (Bruker, 2004[[Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]](#BB5)); cell refinement: SAINT (Bruker, 2004[[Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]](#BB5)); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]](#BB17)); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]](#BB17)); molecular graphics: XtalDraw (Downs & Hall-Wallace, 2003[[Downs, R. T. & Hall-Wallace, M. (2003). Am. Mineral. 88, 247-250.]](#BB7)); software used to prepare material for publication: publCIF (Westrip, 2010[[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]](#BB19)).

Supporting information

S2. Experimental top

The lotharmeyerite crystal used in this study is from the type locality Mapimi, Durango, Mexico and is in the collection of the RRUFF project (deposition No. R060682; http://rruff.info). The experimental chemical composition, Ca0.99(Zn1.01Mn3+0.85)(As1.03O4)2(H2O,OH)2, was determined with a CAMECA SX100 electron microprobe at the conditions of 15 kV, 10 nA, and a beam size of 5 µm (http//rruff.info).

S3. Refinement top

A further empirical absorption correction for the X-ray intensity data was made using the program XABS2 (Parkin et al., 1995), which significantly flattened the residual difference map features from 1.425 and -0.847 eÅ-3 to 0.808 and -0.767 eÅ-3 and lowered _R_1 to 1.88% from 2.24%. Two H atoms were located near O1 from difference Fourier syntheses and their positions refined freely with a fixed isotropic displacement (Uiso = 0.04). The occupancy of the H1 site was fixed to 50% because of its splitting. During the structure refinements, for simplicity, we assumed the full occupations of the three non-hydrogen cation sites A, M, and X by Ca, (Zn + Mn), and As, respectively, with the Zn/Mn ratio refined. The resultant structural formula is Ca1.00(Zn1.02Mn3+0.98)(As1.00O4)2[(OH)0.98.1.04H2O]. The amount of OH is given for the charge balance. The highest residual peak in the difference Fourier maps was located at (0.3600, 0, 0.2766), 0.82 Å from O2, and the deepest hole at (0.4798, 0, 0.6433), 1.10 Å from As1.

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: XtalDraw (Downs & Hall-Wallace, 2003); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top

[[Figure 1]](./pk2375fig1.html) Fig. 1. Crystal structure of lotharmeyerite. The large green and small blue spheres represent Ca and H atoms, respectively. The yellow octahedra and red tetrahedra represent _M_O4(H2O,OH)2 and AsO4 groups.

calcium bis(zinc/manganese) bis(arsenate) bis(hydroxide/hydrate) top

Crystal data

top

Ca(Zn·Mn)2(AsO4)2(H2O·OH)2 F(000) = 448
M r = 474.14 _D_x = 4.186 Mg m−3
Monoclinic, _C_2/m Mo _K_α radiation, λ = 0.71073 Å
Hall symbol: -C 2y Cell parameters from 1568 reflections
a = 9.0727 (6) Å θ = 4.0–29.5°
b = 6.2530 (4) Å µ = 14.38 mm−1
c = 7.4150 (5) Å T = 293 K
β = 116.739 (4)° Cube, brown
V = 375.68 (4) Å3 0.06 × 0.05 × 0.05 mm
Z = 2

Data collection

top

Bruker APEXII CCD area-detector diffractometer 739 independent reflections
Radiation source: fine-focus sealed tube 659 reflections with I > 2σ(I)
Graphite monochromator _R_int = 0.022
ϕ and ω scan θmax = 32.6°, θmin = 3.1°
Absorption correction: multi-scan [SADABS (Sheldrick, 2005) and XABS2 (Parkin et al., 1995)] h = −13→13
_T_min = 0.477, _T_max = 0.532 k = −8→9
2512 measured reflections l = −11→8

Refinement

top

Refinement on _F_2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: difference Fourier map
_R_[_F_2 > 2σ(_F_2)] = 0.019 All H-atom parameters refined
wR(_F_2) = 0.045 w = 1/[σ2(F_o2) + (0.030_P)2] where P = (_F_o2 + 2_F_c2)/3
S = 0.91 (Δ/σ)max < 0.001
739 reflections Δρmax = 0.81 e Å−3
49 parameters Δρmin = −0.77 e Å−3
0 restraints Extinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methods Extinction coefficient: 0

Crystal data

top

Ca(Zn·Mn)2(AsO4)2(H2O·OH)2 V = 375.68 (4) Å3
M r = 474.14 Z = 2
Monoclinic, _C_2/m Mo _K_α radiation
a = 9.0727 (6) Å µ = 14.38 mm−1
b = 6.2530 (4) Å T = 293 K
c = 7.4150 (5) Å 0.06 × 0.05 × 0.05 mm
β = 116.739 (4)°

Data collection

top

Bruker APEXII CCD area-detector diffractometer 739 independent reflections
Absorption correction: multi-scan [SADABS (Sheldrick, 2005) and XABS2 (Parkin et al., 1995)] 659 reflections with I > 2σ(I)
_T_min = 0.477, _T_max = 0.532 _R_int = 0.022
2512 measured reflections

Refinement

top

_R_[_F_2 > 2σ(_F_2)] = 0.019 0 restraints
wR(_F_2) = 0.045 All H-atom parameters refined
S = 0.91 Δρmax = 0.81 e Å−3
739 reflections Δρmin = −0.77 e Å−3
49 parameters

Special details

top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of _F_2 against ALL reflections. The weighted _R_-factor wR and goodness of fit S are based on _F_2, conventional _R_-factors R are based on F, with F set to zero for negative _F_2. The threshold expression of _F_2 > σ(_F_2) is used only for calculating _R_-factors(gt) etc. and is not relevant to the choice of reflections for refinement. _R_-factors based on _F_2 are statistically about twice as large as those based on F, and _R_- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

top

| | x | y | z | _U_iso*/_U_eq | Occ. (<1) | | | ----- | ------------ | ---------- | -------------- | ------------ | --------- | | Ca1 | 0.0000 | 0.0000 | 0.0000 | 0.01360 (16) | | | Zn1 | 0.2500 | 0.2500 | 0.5000 | 0.00936 (11) | 0.512 (8) | | Mn1 | 0.2500 | 0.2500 | 0.5000 | 0.00936 (11) | 0.488 (8) | | As1 | 0.41579 (3) | 0.0000 | 0.20474 (4) | 0.00864 (9) | | | O1 | 0.3390 (3) | 0.5000 | 0.4132 (3) | 0.0140 (4) | | | O2 | 0.3182 (3) | 0.0000 | 0.3536 (3) | 0.0153 (4) | | | O3 | 0.03469 (18) | 0.2798 (2) | 0.2437 (2) | 0.0127 (3) | | | O4 | 0.2569 (3) | 0.0000 | −0.0265 (3) | 0.0199 (5) | | | H1 | 0.440 (9) | 0.5000 | 0.464 (16) | 0.040* | 0.50 | | H2 | 0.298 (6) | 0.5000 | 0.313 (7) | 0.040* | |

Atomic displacement parameters (Å2)

top

| | _U_11 | _U_22 | _U_33 | _U_12 | _U_13 | _U_23 | | | ------- | ------------ | ------------ | ------------ | ------------ | ------------ | ------------- | | Ca1 | 0.0185 (4) | 0.0120 (3) | 0.0108 (4) | 0.000 | 0.0070 (3) | 0.000 | | Zn1 | 0.00931 (18) | 0.00899 (16) | 0.0080 (2) | 0.00002 (10) | 0.00232 (14) | −0.00002 (11) | | Mn1 | 0.00931 (18) | 0.00899 (16) | 0.0080 (2) | 0.00002 (10) | 0.00232 (14) | −0.00002 (11) | | As1 | 0.00787 (14) | 0.00860 (12) | 0.00895 (16) | 0.000 | 0.00336 (11) | 0.000 | | O1 | 0.0098 (10) | 0.0201 (10) | 0.0092 (11) | 0.000 | 0.0017 (8) | 0.000 | | O2 | 0.0192 (11) | 0.0116 (8) | 0.0220 (12) | 0.000 | 0.0155 (10) | 0.000 | | O3 | 0.0122 (7) | 0.0110 (6) | 0.0146 (8) | 0.0023 (5) | 0.0057 (6) | −0.0005 (5) | | O4 | 0.0150 (11) | 0.0294 (12) | 0.0111 (11) | 0.000 | 0.0020 (9) | 0.000 |

Geometric parameters (Å, º)

top

Ca1—O4i 2.426 (2) Zn1—O1 1.9940 (14)
Ca1—O4 2.426 (2) Zn1—O3iv 2.0303 (15)
Ca1—O3 2.4318 (14) Zn1—O3 2.0303 (15)
Ca1—O3i 2.4318 (14) Zn1—O2iv 2.1468 (14)
Ca1—O3ii 2.4318 (14) Zn1—O2 2.1468 (14)
Ca1—O3iii 2.4318 (14) As1—O4 1.671 (2)
Ca1—O2 2.898 (2) As1—O3v 1.6918 (13)
Ca1—O2i 2.898 (2) As1—O3vi 1.6918 (13)
Zn1—O1iv 1.9940 (14) As1—O2 1.698 (2)
O4i—Ca1—O4 180.00 (10) O3ii—Ca1—O2i 114.55 (4)
O4i—Ca1—O3 75.38 (5) O3iii—Ca1—O2i 65.45 (4)
O4—Ca1—O3 104.62 (5) O2—Ca1—O2i 180.00 (9)
O4i—Ca1—O3i 104.62 (5) O1iv—Zn1—O1 180.0
O4—Ca1—O3i 75.38 (5) O1iv—Zn1—O3iv 89.12 (7)
O3—Ca1—O3i 180.00 (7) O1—Zn1—O3iv 90.88 (7)
O4i—Ca1—O3ii 75.38 (5) O1iv—Zn1—O3 90.88 (7)
O4—Ca1—O3ii 104.62 (5) O1—Zn1—O3 89.12 (7)
O3—Ca1—O3ii 92.03 (7) O3iv—Zn1—O3 180.0
O3i—Ca1—O3ii 87.97 (7) O1iv—Zn1—O2iv 99.04 (6)
O4i—Ca1—O3iii 104.62 (5) O1—Zn1—O2iv 80.96 (6)
O4—Ca1—O3iii 75.38 (5) O3iv—Zn1—O2iv 88.18 (7)
O3—Ca1—O3iii 87.97 (7) O3—Zn1—O2iv 91.82 (7)
O3i—Ca1—O3iii 92.03 (7) O1iv—Zn1—O2 80.96 (6)
O3ii—Ca1—O3iii 180.00 (12) O1—Zn1—O2 99.04 (6)
O4i—Ca1—O2 121.94 (7) O3iv—Zn1—O2 91.82 (7)
O4—Ca1—O2 58.06 (7) O3—Zn1—O2 88.18 (7)
O3—Ca1—O2 65.45 (4) O2iv—Zn1—O2 180.0
O3i—Ca1—O2 114.55 (4) O4—As1—O3v 111.37 (7)
O3ii—Ca1—O2 65.45 (4) O4—As1—O3vi 111.37 (7)
O3iii—Ca1—O2 114.55 (4) O3v—As1—O3vi 108.93 (10)
O4i—Ca1—O2i 58.06 (7) O4—As1—O2 101.87 (11)
O4—Ca1—O2i 121.94 (7) O3v—As1—O2 111.60 (6)
O3—Ca1—O2i 114.55 (4) O3vi—As1—O2 111.60 (6)
O3i—Ca1—O2i 65.45 (4)

Symmetry codes: (i) −x, −y, −z; (ii) x, −y, z; (iii) −x, y, −z; (iv) −x+1/2, −y+1/2, −z+1; (v) x+1/2, −y+1/2, z; (vi) x+1/2, _y_−1/2, z.

Hydrogen-bond geometry (Å, º)

top

D_—H···_A _D_—H H···A D_···_A D_—H···_A
O1—H1···O1vii 0.82 (7) 1.79 (8) 2.610 (4) 177 (11)
O1—H2···O4viii 0.66 (5) 1.95 (5) 2.595 (3) 163 (6)

Symmetry codes: (vii) −x+1, −y+1, −z+1; (viii) −x+1/2, −y+1/2, −z.

Experimental details

Crystal data
Chemical formula Ca(Zn·Mn)2(AsO4)2(H2O·OH)2
_M_r 474.14
Crystal system, space group Monoclinic, _C_2/m
Temperature (K) 293
a, b, c (Å) 9.0727 (6), 6.2530 (4), 7.4150 (5)
β (°) 116.739 (4)
V (Å3) 375.68 (4)
Z 2
Radiation type Mo _K_α
µ (mm−1) 14.38
Crystal size (mm) 0.06 × 0.05 × 0.05
Data collection
Diffractometer Bruker APEXII CCD area-detector diffractometer
Absorption correction Multi-scan [SADABS (Sheldrick, 2005) and XABS2 (Parkin et al., 1995)]
_T_min, _T_max 0.477, 0.532
No. of measured, independent and observed [I > 2σ(I)] reflections 2512, 739, 659
_R_int 0.022
(sin θ/λ)max (Å−1) 0.757
Refinement
_R_[_F_2 > 2σ(_F_2)], wR(_F_2), S 0.019, 0.045, 0.91
No. of reflections 739
No. of parameters 49
H-atom treatment All H-atom parameters refined
Δρmax, Δρmin (e Å−3) 0.81, −0.77

Hydrogen-bond geometry (Å, º)

top

D_—H···_A _D_—H H···A D_···_A D_—H···_A
O1—H1···O1i 0.82 (7) 1.79 (8) 2.610 (4) 177 (11)
O1—H2···O4ii 0.66 (5) 1.95 (5) 2.595 (3) 163 (6)

Symmetry codes: (i) −x+1, −y+1, −z+1; (ii) −x+1/2, −y+1/2, −z.

Acknowledgements

The authors gratefully acknowledge support of this study by the Arizona Science Foundation.

References

First citationAnsell, G. H., Roberts, A. C., Dunn, P. J., Birch, W. D., Ansell, V. E. & Grice, J. D. (1992). Can. Mineral. 30, 225–227. CAS Google Scholar
First citationBrese, N. E. & O'Keeffe, M. (1991). Acta Cryst. B47, 192–197. CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationBrugger, J., Krivovichev, S. V., Kolitsch, U., Meisser, N., Andrut, M., Ansermet, S. & Burns, P. C. (2002). Can. Mineral. 40, 1597–1608. Web of Science CrossRef CAS Google Scholar
First citationBrugger, J., Meisser, N., Schenk, K., Berlepsch, P., Bonin, M., Armbruster, T., Nyfeler, D. & Schmidt, S. (2000). Am. Mineral. 85, 1307–1314. CAS Google Scholar
First citationBruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
First citationChevrier, G., Giester, G. & Zemann, J. (1993). Z. Kristallogr. 206, 7–14. CrossRef CAS Web of Science Google Scholar
First citationDowns, R. T. & Hall-Wallace, M. (2003). Am. Mineral. 88, 247–250. CAS Google Scholar
First citationDunn, P. J. (1983). Mineral. Rec, 14, 35–36. CAS Google Scholar
First citationFerraris, G. & Ivaldi, G. (1984). Acta Cryst. B40, 1–6. CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationKampf, A. R., Shigley, J. E. & Rossman, G. R. (1984). Mineral. Rec, 15, 223–226. CAS Google Scholar
First citationKrause, W., Belendorff, K., Bernhardt, H. J., McCammon, C. A., Effenberger, H. & Mikenda, W. (1998). Eur. J. Mineral. 10, 179–206. CAS Google Scholar
First citationKrause, W., Bernhardt, H. J., Effenberger, H. & Martin, M. (2001). Neues Jahr. Mineral. Monatsh. 2001, 558–576. Google Scholar
First citationKrause, W., Effenberger, H., Bernhardt, H. J. & Martin, M. (1999). Neues Jahr. Mineral. Monatsh. 1999, 505–517. Google Scholar
First citationKrickl, R. & Wildner, M. (2007). Eur. J. Mineral. 19, 805–816. CrossRef CAS Google Scholar
First citationParkin, S., Moezzi, B. & Hope, H. (1995). J. Appl. Cryst. 28, 53–56. CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationSheldrick, G. M. (2005). SADABS. University of Göttingen, Germany. Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTillmanns, E. & Gebert, W. (1973). Acta Cryst. B29, 2789–2794. CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925. Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logo CRYSTALLOGRAPHICCOMMUNICATIONS

ISSN: 2056-9890

Open Open Access access