Lotharmeyerite, Ca(Zn,Mn)2(AsO4)2(H2O,OH)2 (original) (raw)
inorganic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)
CRYSTALLOGRAPHICCOMMUNICATIONS |
---|
ISSN: 2056-9890
Open access
aDepartment of Chemsitry and Biochemistry, University of Arizona, 1306 E. University Blvd., Tucson, Arizona 85721-0041, USA, and bDepartment of Geosciences, University of Arizona, 1040 E. 4th Street, Tucson, Arizona 85721-0077, USA
*Correspondence e-mail: ywyang@email.arizona.edu
(Received 5 December 2011; accepted 16 December 2011; online 23 December 2011)
Lotharmeyerite, calcium bis(zinc/manganese) bis(arsenate) bis(hydroxide/hydrate), Ca(Zn,Mn3+)2(AsO4)2(H2O,OH)2, is a member of the natrochalcite group of minerals, which are characterized by the general formula _AM_2(_X_O4)2(H2O,OH)2, where A may be occupied by Pb2+, Ca2+, Na+, and Bi3+, M by Fe3+, Mn3+, Cu2+, Zn2+, Co2+, Ni2+, Al3+, and Mg2+, and X by PV, AsV, VV, and SVI. The minerals in the group display either monoclinic or triclinic symmetry, depending on the ordering of chemical components in the M site. Based on single-crystal X-ray diffraction data of a sample from the type locality, Mapimi, Durango, Mexico, this study presents the first structure determination of lotharmeyerite. Lotharmeyerite is isostructural with natrochalcite and tsumcorite. The structure is composed of rutile-type chains of edge-shared _M_O6 octahedra (site symmetry ) extending along [010], which are interconnected by _X_O4 tetrahedra (site symmetry 2) and hydrogen bonds to form [_M_2(_X_O4)2(OH,H2O)2] sheets parallel to (001). These sheets are linked by the larger A cations (site symmetry 2/m), as well as by hydrogen bonds. Bond-valence sums for the M cation, calculated with the parameters for Mn3+ and Mn2+ are 2.72 and 2.94 v.u., respectively, consistent with the occupation of the M site by Mn3+. Two distinct hydrogen bonds are present, one with O⋯O = 2.610 (4) Å and the other O⋯O = 2.595 (3) Å. One of the H-atom positions is disordered over two sites with 50% occupancy, in agreement with observations for other natrochalcite-type minerals, such as natrochalcite and tsumcorite.
Experimental
Crystal data
- Ca(Zn·Mn)2(AsO4)2(H2O·OH)2
- M r = 474.14
- Monoclinic,
- a = 9.0727 (6) Å
- b = 6.2530 (4) Å
- c = 7.4150 (5) Å
- β = 116.739 (4)°
- V = 375.68 (4) Å3
- Z = 2
- Mo _K_α radiation
- μ = 14.38 mm−1
- T = 293 K
- 0.06 × 0.05 × 0.05 mm
Data collection
- Bruker APEXII CCD area-detector diffractometer
- Absorption correction: multi-scan [SADABS (Sheldrick, 2005[](#BB16)) and XABS2 (Parkin et al., 1995[](#BB15))] _T_min = 0.477, _T_max = 0.532
- 2512 measured reflections
- 739 independent reflections
- 659 reflections with I > 2σ(I)
- _R_int = 0.022
Refinement
- _R_[_F_2 > 2σ(_F_2)] = 0.019
- wR(_F_2) = 0.045
- S = 0.91
- 739 reflections
- 49 parameters
- All H-atom parameters refined
- Δρmax = 0.81 e Å−3
- Δρmin = −0.77 e Å−3
Table 1
Hydrogen-bond geometry (Å, °)
D_—H⋯_A | _D_—H | H⋯A | D_⋯_A | D_—H⋯_A |
---|---|---|---|---|
O1—H1⋯O1i | 0.82 (7) | 1.79 (8) | 2.610 (4) | 177 (11) |
O1—H2⋯O4ii | 0.66 (5) | 1.95 (5) | 2.595 (3) | 163 (6) |
Symmetry codes: (i) ; (ii) . |
Data collection: APEX2 (Bruker, 2004[](#BB5)); cell refinement: SAINT (Bruker, 2004[](#BB5)); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[](#BB17)); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[](#BB17)); molecular graphics: XtalDraw (Downs & Hall-Wallace, 2003[](#BB7)); software used to prepare material for publication: publCIF (Westrip, 2010[](#BB19)).
Supporting information
S2. Experimental top
The lotharmeyerite crystal used in this study is from the type locality Mapimi, Durango, Mexico and is in the collection of the RRUFF project (deposition No. R060682; http://rruff.info). The experimental chemical composition, Ca0.99(Zn1.01Mn3+0.85)(As1.03O4)2(H2O,OH)2, was determined with a CAMECA SX100 electron microprobe at the conditions of 15 kV, 10 nA, and a beam size of 5 µm (http//rruff.info).
S3. Refinement top
A further empirical absorption correction for the X-ray intensity data was made using the program XABS2 (Parkin et al., 1995), which significantly flattened the residual difference map features from 1.425 and -0.847 eÅ-3 to 0.808 and -0.767 eÅ-3 and lowered _R_1 to 1.88% from 2.24%. Two H atoms were located near O1 from difference Fourier syntheses and their positions refined freely with a fixed isotropic displacement (Uiso = 0.04). The occupancy of the H1 site was fixed to 50% because of its splitting. During the structure refinements, for simplicity, we assumed the full occupations of the three non-hydrogen cation sites A, M, and X by Ca, (Zn + Mn), and As, respectively, with the Zn/Mn ratio refined. The resultant structural formula is Ca1.00(Zn1.02Mn3+0.98)(As1.00O4)2[(OH)0.98.1.04H2O]. The amount of OH is given for the charge balance. The highest residual peak in the difference Fourier maps was located at (0.3600, 0, 0.2766), 0.82 Å from O2, and the deepest hole at (0.4798, 0, 0.6433), 1.10 Å from As1.
Computing details top
Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: XtalDraw (Downs & Hall-Wallace, 2003); software used to prepare material for publication: publCIF (Westrip, 2010).
Figures top
[](./pk2375fig1.html) | Fig. 1. Crystal structure of lotharmeyerite. The large green and small blue spheres represent Ca and H atoms, respectively. The yellow octahedra and red tetrahedra represent _M_O4(H2O,OH)2 and AsO4 groups. |
---|
calcium bis(zinc/manganese) bis(arsenate) bis(hydroxide/hydrate) top
Crystal data
Ca(Zn·Mn)2(AsO4)2(H2O·OH)2 | F(000) = 448 |
---|---|
M r = 474.14 | _D_x = 4.186 Mg m−3 |
Monoclinic, _C_2/m | Mo _K_α radiation, λ = 0.71073 Å |
Hall symbol: -C 2y | Cell parameters from 1568 reflections |
a = 9.0727 (6) Å | θ = 4.0–29.5° |
b = 6.2530 (4) Å | µ = 14.38 mm−1 |
c = 7.4150 (5) Å | T = 293 K |
β = 116.739 (4)° | Cube, brown |
V = 375.68 (4) Å3 | 0.06 × 0.05 × 0.05 mm |
Z = 2 |
Data collection
Bruker APEXII CCD area-detector diffractometer | 739 independent reflections |
---|---|
Radiation source: fine-focus sealed tube | 659 reflections with I > 2σ(I) |
Graphite monochromator | _R_int = 0.022 |
ϕ and ω scan | θmax = 32.6°, θmin = 3.1° |
Absorption correction: multi-scan [SADABS (Sheldrick, 2005) and XABS2 (Parkin et al., 1995)] | h = −13→13 |
_T_min = 0.477, _T_max = 0.532 | k = −8→9 |
2512 measured reflections | l = −11→8 |
Refinement
Refinement on _F_2 | Secondary atom site location: difference Fourier map |
---|---|
Least-squares matrix: full | Hydrogen site location: difference Fourier map |
_R_[_F_2 > 2σ(_F_2)] = 0.019 | All H-atom parameters refined |
wR(_F_2) = 0.045 | w = 1/[σ2(F_o2) + (0.030_P)2] where P = (_F_o2 + 2_F_c2)/3 |
S = 0.91 | (Δ/σ)max < 0.001 |
739 reflections | Δρmax = 0.81 e Å−3 |
49 parameters | Δρmin = −0.77 e Å−3 |
0 restraints | Extinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
Primary atom site location: structure-invariant direct methods | Extinction coefficient: 0 |
Crystal data
Ca(Zn·Mn)2(AsO4)2(H2O·OH)2 | V = 375.68 (4) Å3 |
---|---|
M r = 474.14 | Z = 2 |
Monoclinic, _C_2/m | Mo _K_α radiation |
a = 9.0727 (6) Å | µ = 14.38 mm−1 |
b = 6.2530 (4) Å | T = 293 K |
c = 7.4150 (5) Å | 0.06 × 0.05 × 0.05 mm |
β = 116.739 (4)° |
Data collection
Bruker APEXII CCD area-detector diffractometer | 739 independent reflections |
---|---|
Absorption correction: multi-scan [SADABS (Sheldrick, 2005) and XABS2 (Parkin et al., 1995)] | 659 reflections with I > 2σ(I) |
_T_min = 0.477, _T_max = 0.532 | _R_int = 0.022 |
2512 measured reflections |
Refinement
_R_[_F_2 > 2σ(_F_2)] = 0.019 | 0 restraints |
---|---|
wR(_F_2) = 0.045 | All H-atom parameters refined |
S = 0.91 | Δρmax = 0.81 e Å−3 |
739 reflections | Δρmin = −0.77 e Å−3 |
49 parameters |
Special details
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
---|
Refinement. Refinement of _F_2 against ALL reflections. The weighted _R_-factor wR and goodness of fit S are based on _F_2, conventional _R_-factors R are based on F, with F set to zero for negative _F_2. The threshold expression of _F_2 > σ(_F_2) is used only for calculating _R_-factors(gt) etc. and is not relevant to the choice of reflections for refinement. _R_-factors based on _F_2 are statistically about twice as large as those based on F, and _R_- factors based on ALL data will be even larger. |
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)
| | x | y | z | _U_iso*/_U_eq | Occ. (<1) | | | ----- | ------------ | ---------- | -------------- | ------------ | --------- | | Ca1 | 0.0000 | 0.0000 | 0.0000 | 0.01360 (16) | | | Zn1 | 0.2500 | 0.2500 | 0.5000 | 0.00936 (11) | 0.512 (8) | | Mn1 | 0.2500 | 0.2500 | 0.5000 | 0.00936 (11) | 0.488 (8) | | As1 | 0.41579 (3) | 0.0000 | 0.20474 (4) | 0.00864 (9) | | | O1 | 0.3390 (3) | 0.5000 | 0.4132 (3) | 0.0140 (4) | | | O2 | 0.3182 (3) | 0.0000 | 0.3536 (3) | 0.0153 (4) | | | O3 | 0.03469 (18) | 0.2798 (2) | 0.2437 (2) | 0.0127 (3) | | | O4 | 0.2569 (3) | 0.0000 | −0.0265 (3) | 0.0199 (5) | | | H1 | 0.440 (9) | 0.5000 | 0.464 (16) | 0.040* | 0.50 | | H2 | 0.298 (6) | 0.5000 | 0.313 (7) | 0.040* | |
Atomic displacement parameters (Å2)
| | _U_11 | _U_22 | _U_33 | _U_12 | _U_13 | _U_23 | | | ------- | ------------ | ------------ | ------------ | ------------ | ------------ | ------------- | | Ca1 | 0.0185 (4) | 0.0120 (3) | 0.0108 (4) | 0.000 | 0.0070 (3) | 0.000 | | Zn1 | 0.00931 (18) | 0.00899 (16) | 0.0080 (2) | 0.00002 (10) | 0.00232 (14) | −0.00002 (11) | | Mn1 | 0.00931 (18) | 0.00899 (16) | 0.0080 (2) | 0.00002 (10) | 0.00232 (14) | −0.00002 (11) | | As1 | 0.00787 (14) | 0.00860 (12) | 0.00895 (16) | 0.000 | 0.00336 (11) | 0.000 | | O1 | 0.0098 (10) | 0.0201 (10) | 0.0092 (11) | 0.000 | 0.0017 (8) | 0.000 | | O2 | 0.0192 (11) | 0.0116 (8) | 0.0220 (12) | 0.000 | 0.0155 (10) | 0.000 | | O3 | 0.0122 (7) | 0.0110 (6) | 0.0146 (8) | 0.0023 (5) | 0.0057 (6) | −0.0005 (5) | | O4 | 0.0150 (11) | 0.0294 (12) | 0.0111 (11) | 0.000 | 0.0020 (9) | 0.000 |
Geometric parameters (Å, º)
Ca1—O4i | 2.426 (2) | Zn1—O1 | 1.9940 (14) |
---|---|---|---|
Ca1—O4 | 2.426 (2) | Zn1—O3iv | 2.0303 (15) |
Ca1—O3 | 2.4318 (14) | Zn1—O3 | 2.0303 (15) |
Ca1—O3i | 2.4318 (14) | Zn1—O2iv | 2.1468 (14) |
Ca1—O3ii | 2.4318 (14) | Zn1—O2 | 2.1468 (14) |
Ca1—O3iii | 2.4318 (14) | As1—O4 | 1.671 (2) |
Ca1—O2 | 2.898 (2) | As1—O3v | 1.6918 (13) |
Ca1—O2i | 2.898 (2) | As1—O3vi | 1.6918 (13) |
Zn1—O1iv | 1.9940 (14) | As1—O2 | 1.698 (2) |
O4i—Ca1—O4 | 180.00 (10) | O3ii—Ca1—O2i | 114.55 (4) |
O4i—Ca1—O3 | 75.38 (5) | O3iii—Ca1—O2i | 65.45 (4) |
O4—Ca1—O3 | 104.62 (5) | O2—Ca1—O2i | 180.00 (9) |
O4i—Ca1—O3i | 104.62 (5) | O1iv—Zn1—O1 | 180.0 |
O4—Ca1—O3i | 75.38 (5) | O1iv—Zn1—O3iv | 89.12 (7) |
O3—Ca1—O3i | 180.00 (7) | O1—Zn1—O3iv | 90.88 (7) |
O4i—Ca1—O3ii | 75.38 (5) | O1iv—Zn1—O3 | 90.88 (7) |
O4—Ca1—O3ii | 104.62 (5) | O1—Zn1—O3 | 89.12 (7) |
O3—Ca1—O3ii | 92.03 (7) | O3iv—Zn1—O3 | 180.0 |
O3i—Ca1—O3ii | 87.97 (7) | O1iv—Zn1—O2iv | 99.04 (6) |
O4i—Ca1—O3iii | 104.62 (5) | O1—Zn1—O2iv | 80.96 (6) |
O4—Ca1—O3iii | 75.38 (5) | O3iv—Zn1—O2iv | 88.18 (7) |
O3—Ca1—O3iii | 87.97 (7) | O3—Zn1—O2iv | 91.82 (7) |
O3i—Ca1—O3iii | 92.03 (7) | O1iv—Zn1—O2 | 80.96 (6) |
O3ii—Ca1—O3iii | 180.00 (12) | O1—Zn1—O2 | 99.04 (6) |
O4i—Ca1—O2 | 121.94 (7) | O3iv—Zn1—O2 | 91.82 (7) |
O4—Ca1—O2 | 58.06 (7) | O3—Zn1—O2 | 88.18 (7) |
O3—Ca1—O2 | 65.45 (4) | O2iv—Zn1—O2 | 180.0 |
O3i—Ca1—O2 | 114.55 (4) | O4—As1—O3v | 111.37 (7) |
O3ii—Ca1—O2 | 65.45 (4) | O4—As1—O3vi | 111.37 (7) |
O3iii—Ca1—O2 | 114.55 (4) | O3v—As1—O3vi | 108.93 (10) |
O4i—Ca1—O2i | 58.06 (7) | O4—As1—O2 | 101.87 (11) |
O4—Ca1—O2i | 121.94 (7) | O3v—As1—O2 | 111.60 (6) |
O3—Ca1—O2i | 114.55 (4) | O3vi—As1—O2 | 111.60 (6) |
O3i—Ca1—O2i | 65.45 (4) |
Symmetry codes: (i) −x, −y, −z; (ii) x, −y, z; (iii) −x, y, −z; (iv) −x+1/2, −y+1/2, −z+1; (v) x+1/2, −y+1/2, z; (vi) x+1/2, _y_−1/2, z.
Hydrogen-bond geometry (Å, º)
D_—H···_A | _D_—H | H···A | D_···_A | D_—H···_A |
---|---|---|---|---|
O1—H1···O1vii | 0.82 (7) | 1.79 (8) | 2.610 (4) | 177 (11) |
O1—H2···O4viii | 0.66 (5) | 1.95 (5) | 2.595 (3) | 163 (6) |
Symmetry codes: (vii) −x+1, −y+1, −z+1; (viii) −x+1/2, −y+1/2, −z.
Experimental details
Crystal data | |
---|---|
Chemical formula | Ca(Zn·Mn)2(AsO4)2(H2O·OH)2 |
_M_r | 474.14 |
Crystal system, space group | Monoclinic, _C_2/m |
Temperature (K) | 293 |
a, b, c (Å) | 9.0727 (6), 6.2530 (4), 7.4150 (5) |
β (°) | 116.739 (4) |
V (Å3) | 375.68 (4) |
Z | 2 |
Radiation type | Mo _K_α |
µ (mm−1) | 14.38 |
Crystal size (mm) | 0.06 × 0.05 × 0.05 |
Data collection | |
Diffractometer | Bruker APEXII CCD area-detector diffractometer |
Absorption correction | Multi-scan [SADABS (Sheldrick, 2005) and XABS2 (Parkin et al., 1995)] |
_T_min, _T_max | 0.477, 0.532 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 2512, 739, 659 |
_R_int | 0.022 |
(sin θ/λ)max (Å−1) | 0.757 |
Refinement | |
_R_[_F_2 > 2σ(_F_2)], wR(_F_2), S | 0.019, 0.045, 0.91 |
No. of reflections | 739 |
No. of parameters | 49 |
H-atom treatment | All H-atom parameters refined |
Δρmax, Δρmin (e Å−3) | 0.81, −0.77 |
Hydrogen-bond geometry (Å, º)
D_—H···_A | _D_—H | H···A | D_···_A | D_—H···_A |
---|---|---|---|---|
O1—H1···O1i | 0.82 (7) | 1.79 (8) | 2.610 (4) | 177 (11) |
O1—H2···O4ii | 0.66 (5) | 1.95 (5) | 2.595 (3) | 163 (6) |
Symmetry codes: (i) −x+1, −y+1, −z+1; (ii) −x+1/2, −y+1/2, −z.
Acknowledgements
The authors gratefully acknowledge support of this study by the Arizona Science Foundation.
References
Ansell, G. H., Roberts, A. C., Dunn, P. J., Birch, W. D., Ansell, V. E. & Grice, J. D. (1992). Can. Mineral. 30, 225–227. CAS Google Scholar
Brese, N. E. & O'Keeffe, M. (1991). Acta Cryst. B47, 192–197. CrossRef CAS Web of Science IUCr Journals Google Scholar
Brugger, J., Krivovichev, S. V., Kolitsch, U., Meisser, N., Andrut, M., Ansermet, S. & Burns, P. C. (2002). Can. Mineral. 40, 1597–1608. Web of Science CrossRef CAS Google Scholar
Brugger, J., Meisser, N., Schenk, K., Berlepsch, P., Bonin, M., Armbruster, T., Nyfeler, D. & Schmidt, S. (2000). Am. Mineral. 85, 1307–1314. CAS Google Scholar
Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Chevrier, G., Giester, G. & Zemann, J. (1993). Z. Kristallogr. 206, 7–14. CrossRef CAS Web of Science Google Scholar
Downs, R. T. & Hall-Wallace, M. (2003). Am. Mineral. 88, 247–250. CAS Google Scholar
Dunn, P. J. (1983). Mineral. Rec, 14, 35–36. CAS Google Scholar
Ferraris, G. & Ivaldi, G. (1984). Acta Cryst. B40, 1–6. CrossRef CAS Web of Science IUCr Journals Google Scholar
Kampf, A. R., Shigley, J. E. & Rossman, G. R. (1984). Mineral. Rec, 15, 223–226. CAS Google Scholar
Krause, W., Belendorff, K., Bernhardt, H. J., McCammon, C. A., Effenberger, H. & Mikenda, W. (1998). Eur. J. Mineral. 10, 179–206. CAS Google Scholar
Krause, W., Bernhardt, H. J., Effenberger, H. & Martin, M. (2001). Neues Jahr. Mineral. Monatsh. 2001, 558–576. Google Scholar
Krause, W., Effenberger, H., Bernhardt, H. J. & Martin, M. (1999). Neues Jahr. Mineral. Monatsh. 1999, 505–517. Google Scholar
Krickl, R. & Wildner, M. (2007). Eur. J. Mineral. 19, 805–816. CrossRef CAS Google Scholar
Parkin, S., Moezzi, B. & Hope, H. (1995). J. Appl. Cryst. 28, 53–56. CrossRef CAS Web of Science IUCr Journals Google Scholar
Sheldrick, G. M. (2005). SADABS. University of Göttingen, Germany. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Tillmanns, E. & Gebert, W. (1973). Acta Cryst. B29, 2789–2794. CrossRef CAS IUCr Journals Web of Science Google Scholar
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
CRYSTALLOGRAPHICCOMMUNICATIONS |
---|
ISSN: 2056-9890
Open access