${1.46} \; \pm \; {1.11}$ mm, ${1.58} \; \pm \; {1.30}$ mm, and ${1.55} \; \pm \; {0.86}$ mm, respectively. In addition, the instance segmentation-based system simultaneously estimated sound speeds with absolute errors (mean ± one standard deviation) of ${19.22} \; \pm \; {26.26}$ m/s in simulated data and standard deviations ranging 14.6–32.3 m/s in experimental data. These results demonstrate the potential of the proposed photoacoustic imaging-based methods to localize and track tool tips in three dimensions during surgical and interventional procedures.">

Deep Learning to Localize Photoacoustic Sources in Three Dimensions: Theory and Implementation (original) (raw)

IEEE Account

Purchase Details

Profile Information

Need Help?

A not-for-profit organization, IEEE is the world's largest technical professional organization dedicated to advancing technology for the benefit of humanity.
© Copyright 2026 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.